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We propose a new framework to model the exterior of residential buildings.
The main goal of our work is to design a model that can be learned from data
that is observable from the outside of a building and that can be trained with
widely available data such as aerial images and street view images. First,
we propose a parametric model to describe the exterior of a building (with a
varying number of parameters) and propose a set of attributes as a building
representation with fixed dimensionality. Second, we propose a hierarchical
graphical model with hidden variables to encode the relationships between
building attributes and learn both the structure and parameters of the model
from the database. Third, we propose optimization algorithms to generate
three-dimensional models based on building attributes sampled from the
graphical model. Finally, we demonstrate our framework by synthesizing
new building models and completing partially observed building models
from photographs.
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1. INTRODUCTION

In the last two decades, we could observe a drastic improvement
of remote sensing technology and Internet-based mapping. As a re-
sult, large amounts of urban data are available and accessible via the
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Input Element Selection

Building Completion

Fig. 1: An application of our building model. Starting from a single image
(Input), a user can specify parts of a building mass model and mark shapes
(windows and doors) on the observed part of a building facade in a rectified
image (Element Selection). Our framework can complete the missing parts
of the building (mass model and facades). A 3D rendering of the completed
building is shown on the bottom.

most popular mapping sites Google maps and Bing maps. In this
context, a major challenge in urban modeling is to learn the struc-
tures and geometries of urban environments from available data.

In this paper, we tackle a part of this grand challenge and we
propose a probabilistic model for building exteriors of residential
buildings. To motivate our design choices, we first elaborate on the
design goals of such a computational building model:

(1) Learning: It should be possible to learn the model from avail-
able remote sensing data. We would like to rely exclusively
on orthographic aerial images and street-view images that are
widely available for most parts of the world. This restricts the
data that we can consider to things that are observable from
the outside and we cannot rely on interior information such as
floor plans [Merrell et al. 2010].

(2) Sampling: The model should be generative. After the model is
learned from the data, it should be possible to sample a large
variety of buildings from this model that reflects the variety in
the available data.

(3) Hard Constraints: The model should be able to handle hard
geometric constraints. While modeling buildings from scratch
is the major application of a computational building model,
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Fig. 2: Overview of our framework.

another important application is to complete partial buildings.
Often a user might only have a single photograph or a build-
ing can be only partially observed because of occlusions due
to vegetation. In a completion application, we would like to re-
construct the visible parts of a building from photographs and
then to complete the rest of the building using the partial re-
construction as hard constraints.

Our model can fulfill these three design goals. It is inspired by
previous work on assembly-based shape synthesis by Kalogerakis
et al. [2012]. Their model is designed for shapes that mainly have
components with unique labels. This is not the case for building
models, where many components share the same label, e.g., win-
dows. To solve this problem, we propose a set of attributes to de-
scribe a building and design a suitable hierarchical structure of the
graphical model to represent the joint probability distribution of
these attributes. Given a set of building attributes, we also pro-
pose optimization algorithms to generate three-dimensional build-
ing models. The contribution of our work are the design of the
probabilistic model and the optimization methods for building gen-
eration. The learning algorithm for the graphical model is adapted
from previous work [Koller and Friedman 2009; Kalogerakis et al.
2012]. We train our model on a database of conventional contem-
porary houses, and we demonstrate our model by synthesizing new
building models and completing partially observed building mod-
els from photographs. In the next section, we will discuss related
work and explain why current works do not handle all three design
goals at the same time.

2. RELATED WORK

Procedural modeling. Generative building models have been stud-
ied in the context of procedural modeling, e.g. using shape gram-
mars [Wonka et al. 2003; Müller et al. 2006; Schwarz and Müller
2015] or optimization [Lin et al. 2011; Bao et al. 2013]. We re-
fer the reader to recent surveys on procedural modeling [Vanegas
et al. 2010; Smelik et al. 2014] and urban reconstruction [Musialski
et al. 2013] for discussions on a variety of models. In general, exist-
ing procedural models adequately fulfill design goal 2 (sampling),
but they are not sufficiently developed to deal with design goals 1
(learning) and 3 (hard constraints). One open challenge in procedu-
ral modeling is how to derive a model that fulfills given hard con-
straints. Talton et al. [2011] propose an algorithm that makes gram-
mars conform to high-level goals and soft constraints by MCMC.
The extension to hard constraints (goal 3) and finding an efficient
algorithm are still open questions. An additional challenge is in-
verse procedural modeling discussed next.

Inverse procedural modeling. One challenge in inverse proce-
dural modeling is to find a procedural description for a single in-
put model. Bokeloh et al. [2010] propose a solution for low-level

shape understanding of a single 3D model to find a set of replace-
able parts by partial symmetry detection. Zhang et al. [2013] and
Wu et al. [2014] work on segmented facades to extract a compact
model by optimizing a symmetry heuristic or the description length
of a context-free grammar, respectively. An earlier effort in this di-
rection was presented in the context of vector graphics [Št’ava et al.
2010] using L-systems. The more difficult challenge in inverse pro-
cedural modeling is to find a procedural description that can encode
a shape space given by a set of representative models. There are
some initial ideas in this direction, e.g. [Talton et al. 2012; Marti-
novic and Van Gool 2013], that adapt the Bayesian model merg-
ing algorithm that was originally presented in the context of natu-
ral language processing. Still, there are many obstacles in making
this approach work on interesting examples. While Bayesian model
merging is elegant and simple to implement, the learned grammar
creates many undesirable models. A better solution might need or-
ders of magnitude more training examples or a more expressive
procedural model than context-free grammars. We therefore con-
clude that design goal 1 (learning) is still an open question in pro-
cedural modeling.

Shape space interpolation. Our work is also related to shape
space interpolation, which aims to generate novel shapes by in-
terpolating examples from a given shape space. A key problem in
shape space methods is to find a joint parameterization. This works
well for shape collections with similar elements, e.g., fonts, but it
is harder for shape collections with few distinct and labeled com-
ponents, e.g., airplanes and chairs. Kim et al. [2013] learn shape
templates from a large collection of shapes automatically. These
templates can be used to explain the input model collection and
synthesize new shapes. This idea is then extended by Averkiou et
al. [2014] by embedding the feature vector of the templates into 2D
subspaces. Users can explore the parameterized space and synthe-
size novel models by deforming and combining parts from input
shapes. Yang et al. [2011] explore the shape space of constrained
meshes. Bao et al. [2013] build on this idea to explore and inter-
polate novel building layouts from a set of layouts by optimizing
building constraints. Our work represents a building as unions of
boxes, similar to [Bao et al. 2013]. Complementary to this pre-
vious work, we focus on learning variations from a database and
on completing partial buildings with sampled constraints. The idea
of shape space exploration is also applied to fonts [Campbell and
Kautz 2014]. They learn a generative manifold of standard fonts to
explore and synthesize new fonts. The challenge in parameterizing
building models is that many shapes have the same label. Addi-
tional work on shape space interpolation methods would be needed
to satisfy the design goals (1-3) in the context of building modeling.

Probabilistic models. Probabilistic models seem to be the most
promising direction for our work because they can be used to
learn building attributes from observations and then to generate
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new building models (goal 1). Merrel et al. [2010] learn a directed
graphical model that encodes the relationships between rooms for
interior building modeling. We would like to create a complemen-
tary model for the exterior of a building. What makes our task
more challenging is the fact that we have many elements in the
model with the same label. Merrell et al. also have to deal with
label ambiguity for bedroom labels, but this challenge and its solu-
tion is not described in the text. However, with limited ambiguity,
one can imagine a brute-force solution to this problem. Rather than
using a simple directed graphical model, we propose to use a hi-
erarchical graphical model with hidden variables. Our probabilis-
tic model is inspired by the generative models for assembly-based
modeling [Chaudhuri et al. 2011; Kalogerakis et al. 2012]. Chaud-
huri et al. [2011] develop a probabilistic representation of shape
structures that can be used to suggest relevant components dur-
ing an interactive assembly-based modeling session. Kalogerakis
et al. [2012] learn a distribution over a part-based model encod-
ing multiple object styles, part cardinalities, part shapes, and part
placements. They use this model for shape synthesis. Similar to the
graphical model employed in this paper, they also use hidden vari-
ables in their model. Chaudhuri et al. [2013] improve the model by
learning relative attributes for design components that reflect the
high-level intent people may have for creating content in a domain.

3. OVERVIEW

Our framework consists of the following components:

—First, we introduce a parametric building model that can de-
scribe a building by a varying number of parameters. To make the
model suitable for learning, we also present a fixed-dimensional,
attributes-based building representation (see Sec. 4).

—Second, we describe how to structure the attributes of the
attribute-based building representation in a hierarchical graph-
ical model with hidden variables. We also describe how the
graphical model can be learned from data and our database (see
Sec. 5).

—Third, we propose an optimization-based approach to convert a
sampled attribute-based building representation into a parametric
building representation. We use a separate optimization for the
mass model and of the roofs and the facades (see Sec. 6).

—Fourth, we evaluate our graphical model and show applications
in building synthesis and model completion for partially recon-
structed buildings (see Sec. 7).

Figure 2 illustrates how these components work together. Start-
ing from a database of buildings, we extract an attribute-based rep-
resentation of each building. Then, we learn a graphical model from
these building representations. To synthesize new buildings or com-
plete partial buildings, we sample an attribute-based representation
from the graphical model. Finally, we derive a parametric represen-
tation by optimization.

4. A PARAMETRIC BUILDING MODEL

4.1 A Parametric Building Representation

A building consists of its mass model, facades, and the roof. The
mass model of the building is defined as the union of a set of (over-
lapping) boxes,

⋃
bi, (see Figure 3 top). We parameterize each box,

bi, using its position attributes (center (xi, yi)) and size attributes
(width wi, depth di, and height hi). A box also has a style param-
eter to distinguish between the garage, porch, and general building
box. Additionally, each box has the following roof parameters: a

Top
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h

Fig. 3: We represent a building (top left) as the union of a set of boxes (top
right), where each box is parametrized by its position attributes (x, y) and
size attributes (w, d, h). The facades are labeled by their orientation, i.e.,
front, back, left, and right. Each building side consists of a set of facade
pieces {fi,j}. The right building side is shown on the bottom right.

label describing the style of the roof, an angle encoding the pitch,
and a flag encoding the orientation. The facades of a building are
labeled by their orientation, i.e., front, back, left, and right (see Fig-
ure 3 bottom). Each building side consists of a set of facade pieces,
{fi,j}. The facade elements (e.g., doors, windows) are represented
by rectangles on the facade. Each element is defined by its width,
height, location inside the facade, and a label describing its style.

The parametric building model describes a building by a list of
parameters. The challenge of this parametric model in the con-
text of machine learning is that the length of the list of parameters
for each building model can vary. Further, there is no clear corre-
spondence between the individual parameters, because most of the
boxes in the mass model and the windows on the facades cannot be
assigned a unique label based on their position, function, or other
semantic meaning. Therefore, we propose a fixed set of attributes
that can describe a building model in the next subsection. Note that
the lack of distinct labels is the main reason that finding good rep-
resentations for the exterior of a building is more challenging than
describing its interior [Merrell et al. 2010].

4.2 An Attribute-based Building Representation

Finding a fixed set of attributes to describe a building is essentially
a modeling task. There are four things we look for in a good set
of attributes. First, the attributes should be descriptive enough such
that mapping a parametric building description to a set of attributes
and back gives a similar looking building. Second, the attributes
need to be distinct (directly comparable). Third, it has to be pos-
sible to construct the attribute-based representation directly from
easily available building descriptions without the need of manually
reconstructing a large number of 3D buildings. Fourth, the model
should be as simple as possible because the complexity determines
how much data is needed during the learning step. In practice, we
used an iterative design process to obtain the proposed set of at-
tributes. For example, we initially used a building volume attribute
that was not descriptive enough to encode information about the
geometry of the mass model. We therefore replaced this attribute
with two attributes in our final model: floor area ratio and area ratio
of floors. Another example is an initial attempt to encode the com-
plexity of the boundary with a discrete variable. This resulted in a
value space that was too large and would have required too much
training data. The attributes can be classified into three categories:
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Fig. 4: Design choices for the graphical model. (a) A simple directed graphical model with continuous variables {Ci} and discrete variables
{Dj}. (b) A hidden variable S is introduced into the model to reduce the learned lateral edges. (c) Additional hidden variables {Hi} are
introduced. (d) To endow the model with more semantics, we separate mass model and facade variables to arrive at the final model.

—Mass model attributes (Mc). We define five attributes to describe
the basic configuration of a building. They are size of the bound-
ing box (Mc,bbox), building coverage ratio (Mc,bcr), boundary
complexity (Mc,bdry), floor area ratio (Mc,far), and area ratio
of floors Mc,arf . Since some of the building parts (i.e., garage,
porch) can be easily recognized from outside, and they also play
an important role in the mass model, we add two feature vec-
tors (Mc,gar and Mc,por), which consist of position, size, and
exposure ratio of the garage and porch, respectively.

—Facade attributes (Fc). Each side of the building is described
by a set of facade attributes, i.e., window-to-wall ratio (Fc,wwr),
alignment of facade elements (Fc,align), and symmetry of facade
elements (Fc,sym). They describe the number and size of each
facade element type and their layouts on each building side.

—Element attributes (Ed). We observed that the presence of spe-
cific types of building elements makes the building distinctive.
For example buildings in Victorian style widely use bay win-
dows and usually have a tower structure in the corner. We use
three attributes to describe the roof style (Eroof ), window style
(Ewnd), and special building elements (Espe).

Then the building exterior can be parameterized by a vector of the
above attributes [Mc,Fc,Ed]. The definition of each attribute is
described in Appendix A. In total, we have seven mass model at-
tributes, three facade attributes, and three element attributes. This
results in a 49-dimensional representation.

5. PROBABILISTIC MODELING

We design a probabilistic graphical model with a hierarchy of hid-
den variables to represent the joint probability distribution of build-
ing attributes. In the following, we describe the motivation of our
design choices in Sec. 5.1, the hierarchical graphical model in
Sec. 5.2, the learning algorithm in Sec. 5.3, and the database used
for learning in Sec. 5.4.

5.1 Motivation

A very popular model for encoding the relationship between vari-
ables is a directed graphical model without hidden variables and
without a given hierarchy. Such a model directly encodes condi-
tional dependencies between continuous variables {Ci} and dis-
crete variables {Dj} (see Figure 4(a)). For example, such a simple
directed graphical model was used by Merrell et al. [2010] to en-
code the topology of floor plans. However, it cannot learn different
building styles. As a result, the complexity of the model will be

higher than necessary requiring more training data. Therefore, it
seems better to introduce a hidden variable, S, that will reduce the
learned directed edges (see Figure 4(b)). In our experiments with
this model, we noted difficulties in learning a style because S is
dependent on both continuous and discrete variables. Specifically,
defining a distance metric that considers discrete as well as contin-
uous variables is difficult in the learning step. Based on this obser-
vation, we decided to include additional hidden variables, one for
each continuous variable. Then S only depends on discrete vari-
ables, and it could easily be expressed by a conditional probability
table (see Figure 4(c)). To endow the model with more semantics,
we separate mass model and facade variables to arrive at the final
model (see Figure 4(d)). The advantages of this model are that it is
easy to learn and does not require a large amount of training data.
Additionally, it is easily extendable and all the derived equations
can be reused when adding additional attributes. We also consid-
ered additional refinements, by grouping multiple attributes under
the same hidden variable. However, this requires extensive prior
knowledge and makes it harder to extend the model. By contrast,
having label information makes it easy to group variables under
the same hidden variable, e.g., for encoding airplanes with labeled
parts [Kalogerakis et al. 2012]. We therefore decided against such
refinements. The main differences between our graphical model
and the model in [Kalogerakis et al. 2012] are as follows. First,
the variables in the graphical model of Kalogerakis et al. are di-
rectly related to the labeled components of a 3D model. Due to the
aforementioned problems of labeling building exteriors, we need
to resort to a different solution and work with building attributes
as an intermediate representation. Second, we separate the contin-
uous and discrete variables and place them on two different lev-
els rather than placing the continuous and discrete variables on the
same level.

5.2 Hierarchical Graphical Model

Random variables. Our model is a hierarchical mixture of distri-
butions over attributes of buildings with a set of hidden variables,
i.e., S, {Md,i}, and {Fd,j}. At the root of the model, S can be in-
terpreted as the overall style of a building. For each mass model and
facade attribute, the corresponding hidden variables, {Md,i} and
{Fd,j}, represent the styles of each attribute, respectively. The hid-
den variables are learned from training data as described in Sec. 5.3.
Observed random variables describe attributes extracted from the
data. These variables are mass model attributes {Mc,i}, facade at-
tributes {Fc,j}, and element attributes {Ed,k}. All of them are
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from the attribute-based model of the building exterior described
in Sec. 4.2.

Model structure. We organize the random variables hierarchi-
cally as shown in Figure 4(d). There are three levels in our model.
Random variables on the bottom level are continuous. They corre-
spond to the mass model attributes and facade attributes introduced
in the previous section. Random variables on the middle level are
discrete. {Ed,k} represents the different element styles and is ex-
pressed by binary vectors to encode the presence of specific ele-
ment styles, e.g., hip roof, bay window, etc. {Md,i} and {Fd,j} are
hidden variables whose values represent clusters of similar build-
ings in the corresponding building attribute. The hidden variable,
S, on the top of the model represents clusters of similar build-
ings in terms of the mass model, facade, and elements. To encode
the conditional dependencies between the observed random vari-
ables, the model also includes lateral edges, which are not shown
in Figure 4(d). For example, variables between {Md,i} can be con-
nected by edges to represent strong relationships between different
attributes. The lateral edges are also learned from the training data.

Probability distribution. We use different methods to encode
the probability distributions of discrete and continuous random
variables. The discrete random variables, D = {S,Md,Fd,Ed},
are expressed by conditional probability tables (CPTs) or condi-
tional probability distributions (CPDs), while the continuous ran-
dom variables, C = {Mc,Fc}, are always expressed by CPDs.
As CPDs we use distributions based on sigmoid functions for dis-
crete variables and conditional multi-variate Gaussian distributions
for continuous variables.

Based on the structure of the model, the probability distribution
P (B) over all random variables B = {S,Md,Mc,Fd,Fc,Ed}
can be factored as a product of conditional probability distributions:

P (B) = P (S)
∏
i

P (Md,i|S)P (Mc,i|Md,i, π(Mc,i))·∏
j

P (Fd,j |S)P (Fc,j |Fd,j , π(Fc,j)) ·
∏
k

P (Ed,k|S),

(1)

where π(Mc,i) and π(Fc,j) are the learned parents of the corre-
sponding random variables.

5.3 Learning

We derive a learning framework based on the description by
Koller and Friedman [2009]. Given a set of N buildings, O =
{O1, O2, . . . , ON}, we learn the structure, G (i.e., the cardinality
of the values of the hidden variables and the lateral edges) and the
parameters, Θ (i.e., parameters of CPTs and CPDs). Each training
sample is encoded as a feature vector Oi = [Mi

c,F
i
c,E

i
d].

Structure learning. We learn the structure, G, of the model us-
ing maximum a posteriori (MAP) estimation. To make the compu-
tation tractable, we use a scoring function to estimate Score(G|O).
Following Bayes’ rule, the straightforward choice of a scoring
function is the BIC score [Heckerman 1998]. However, we try to
learn a model with hidden variables using a relatively small dataset.
In this case, the BIC score is not accurate enough. Therefore,
we use the Cheeseman-Stutz score [Cheeseman and Stutz 1996]
which provides a good tradeoff between accuracy and computa-
tional speed. Given a structure, G, and the training data, O, the
score of the structure is defined as follows:

Score(G|O) = logP (G) + logP (O∗|G)+

logP (O|G,ΘG)− logP (O∗|G,ΘG),
(2)

Element attributes:

- Roof styles: 

    gable roof

- Window styles: 

    sash window, 

    sliding window

- Special element: 

    chimeny

1m

garage

front porch

back porch

window

Fig. 5: An example building from our database. Left: the attributes of the
building mass model are automatically extracted from the contour of the
building footprint. The garage and the porches are labeled manually. Mid-
dle: the facade region, windows and their styles, and doors are annotated.
The facade attributes are computed based on the annotations. Right: as-
signed element attributes according to the corresponding building.

where O∗ is a fictitious complete dataset that consists of the train-
ing data O, estimated values for the hidden variables and estimated
statistics for all variables, and ΘG are the parameters estimated for
a given structure, G. To facilitate learning, we also assume a uni-
form prior P (G) over possible structures.

Structure learning algorithm. Since our model contains hid-
den variables, it is still difficult to maximize the Cheeseman-Stutz
score. Due to the complexity of structure learning, most existing
algorithms are heuristic in nature. We therefore apply an itera-
tive search method to explore possible graph structures with differ-
ent value spaces for the hidden variables. This method is adapted
from previous works [Koller and Friedman 2009; Kalogerakis et al.
2012]. The search procedure is initialized as follows: we start by
setting the cardinality of all the value spaces of all hidden variables
to 2. Then, we gradually increase the cardinality of the value space
of the first hidden variable on the middle level, evaluating the score
at each iteration. If the score increases, we keep the change and try
the next higher cardinality. Otherwise, we keep the previous car-
dinality and move to the next hidden variable on the middle level.
After iterating over all variables on the middle level, we increase
the cardinality of the value space of S, reinitialize the cardinality
of all hidden variables on the middle level to 2, and then repeat the
procedure. We do this by trying all values in [2, 25] for the cardi-
nality of the value space of S. In our implementation we also cap
the cardinality of other value spaces to 25. At the end, we keep
the configuration with the highest score. For each configuration of
value spaces that is explored in the search algorithm, we then need
to search over the possible set of lateral edges between observed
random variables. We employ a greedy search method that pro-
poses new candidate structures by adding edges, testing the topo-
logical validity, and then scoring the structure candidate. We retain
the graph structure with the highest score.

Parameter learning. For a given structure G, we estimate the
parameters using MAP. We apply an expectation-maximization
(EM) framework to optimize the parameters of our model. The EM
algorithm iterates until all parameters change by less than 10−6. In
order to achieve a better generalization, we follow common con-
ventions and assume Dirichlet priors and normal-Wishart priors for
the discrete random variables and the continuous random variables,
respectively.

5.4 Building Dataset

We generated a building database of 200 buildings consisting of
building footprints and photographs. Thumbnails of all buildings
in our dataset are shown in the additional materials. Figure 5 shows
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Fig. 6: Two mass models generated by the given sets of attributes (shown in
the additional materials). The evolution of the energy of each mass model
during the optimization process is shown on the right.

an example of how we obtain data from a building. We developed a
tool to analyze the attributes of the building mass model from im-
ages and to process the facade images semi-automatically. The user
needs to annotate only the garages and the porches on the footprints
and the observed facade elements on the facade images. Then, all
the attributes are computed automatically. Potentially, automatic
image parsing methods could be used, but this is currently not im-
plemented. A larger database could be built using aerial images and
corresponding street view images from an Internet-based mapping
site such as Google Maps or Bing Maps. The building database is
used to learn the probabilistic model described in this section.

6. BUILDING GENERATION

Given an instance of the building parametric model described in
Sec. 4.2, i.e., a vector of building attributes, [Mc,Fc,Ed], we
would like to compute a corresponding parametric building rep-
resentation (Sec. 4.1) that takes the attributes as constraints. In this
section, we describe the following components: mass model and
roof generation (Sec. 6.1) and facade generation (Sec. 6.2). Mass
model generation is a fairly easy problem and we observed good
results with a straightforward simulated annealing algorithm. Roof
generation is a simple geometric construction. Facade generation is
more difficult. Therefore, we propose a two-step approach. We use
a stochastic algorithm to propose candidate layouts with varying
topologies and quadratic programming to optimize size and spac-
ing parameters. The colors are assigned based on pre-designed tem-
plates extracted from the training data.

6.1 Mass Model and Roof Generation

Mass model energy. We define the mass model energy, E, for M
by summing up the normalized squared error of each attribute:

E(M) =
∑
i

‖Mc,i −M ∗
c,i‖2

‖M ∗
c,i‖2

+Etopo(M) +Ethick(M), (3)

where {M ∗
c,i} is the desired attribute set. To generate more realistic

mass models, we add two additional constraints, i.e., a topology
constraint (Etopo) and a thickness constraint (Ethick). We require
that all boxes in the mass model are connected, and we penalize
the mass model with more than one connected part by returning a
large constant (106), otherwise 0. We also would like to avoid mass
models that are too narrow. We find all pairs of parallel edges and
ensure the distance between each pair of edges, t, is constrained as
t ≥ tmin. The energy, Ethick, is defined as ( t−tmin

tmin
)2 if t < tmin
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Fig. 7: Given the mass models in Figure 6 and the target attributes (shown in
the additional materials), we generate facade layouts using our algorithm by
reusing the elements in the database. The minimal energy of each iteration
is shown on the right.

and 0 otherwise, where tmin is the minimum width of the box. tmin

could be learned from the database; in practice, we simply set it to
0.5 m.

Simulated annealing. We employ simulated annealing (SA) to
generate the mass model, M , according to the mass model at-
tributes, Mc. We start with an empty layout, i.e., M = ∅. At
each iteration, a new mass model, M ′, is proposed by applying
one of the following operations randomly: 1) adding a box, b, i.e.,
M ′ = M ∪ b; 2) removing an existing box, b, at random, i.e.,
M ′ = M \ b; 3) moving an existing box, b, by randomly perturb-
ing (b.x, b.y); 4) resizing an existing box, b, by changing its size
randomly (b.w, b.d, b.h). To get more plausible alignments, edges
of any pair of boxes that are closer than 10 cm are snapped. Then,
we compute the energy for the new mass model as E ′. If E ′ < E,
we always accept M ′; otherwise, we accept M ′ with probability of
exp(−(E ′ − E)/t), where t is the temperature. We gradually re-
duce the temperature, t, in each iteration. The algorithm terminates
either whenE is smaller than a threshold (10−3), or when the max-
imum number of iterations (i.e., 104) has been reached. Figure 6
shows that given a set of mass model attributes, SA can generate a
desired mass model. The target attributes and results for each mass
model are shown in the additional materials.

Roof generation. The main roof style of the mass model is based
on the roof style in element attributes, Ed. In our current imple-
mentation, we can generate five types of roofs, i.e., flat, gable, hip,
shed and cone roof. Gable roofs and hip roofs are generated by ap-
plying the straight skeleton method [Aichholzer et al. 1996] over
the top polygons of the mass model.

6.2 Facade Generation

Given a mass model, M , the next step is to place elements on the
facades of M . Our facade generation problem is more challenging
than in previous works, since our goal is to obtain the facades for
the whole building, which requires the facades of each building
side to be consistent. Fan et al. [2014] use grids to encode a facade
structure, but the proposed approach only works on a single facade.
We propose a facade generation method that can generate facades
for the whole building from data. Moreover our method considers
the consistency between different facade pieces and the reusability
of the elements (i.e., windows and doors).

Facade layout energy. We formulate the facade layout problem
as an optimization problem to minimize the following energy of the
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facades on all building sides:

E(F ) =
∑
s

∑
j

(
Fc,j,s − F ∗c,j,s

F ∗c,j,s

)2

, (4)

where s is the index of the building side, and {F ∗c,j,s} denote the
desired facade attributes for the s-th building side.

Genetic algorithm. There are two main challenges in solving
the above problem. One challenge is how to obtain the combina-
tion of facade elements on each facade piece; the other is how to
obtain the new size for each facade element. We propose a stochas-
tic optimization method combined with a continuous facade layout
optimization to solve these two problems jointly. Before that, in
our building database, we label elements according to their main
style (e.g., sash window, sliding window, etc.) and then generate
five sub-styles of the elements for each style by k-means clustering
according to their sizes. We use the style attributes of the build-
ing to find the building with the most similar style attributes in
the database and reuse its facade elements. Given a set of facade
element candidates, we employ a genetic algorithm to solve the
problem. The elements layout of each facade piece can be repre-
sented by a set of genes. Then the facades of the building can be
represented as a genome, that contains four sections corresponding
to four building sides, and each section consists of a set of genes
describing its corresponding facade piece. We set the population
size to 100. A crossover is computed by exchanging the layouts
of the same facade piece from two parents. A mutation is com-
puted by sampling the layout for a randomly selected facade piece.
By using this method, we can explore the combination of facade
elements efficiently. Once a combination of facade elements is ob-
tained, we apply the facade layout optimization to adapt them to
each facade piece. Then the obtained facade layouts are evaluated
by Equation 4.

Facade layout optimization. Since the sizes of the assets need
to be adapted to each specific building, we employ a quadratic pro-
gramming approach similar to Bao et al.’s work [2013] by comput-
ing

arg min
wi

∑
i

(wi − w∗i)
2, (5)

where w∗i is the width suggested by the genetic algorithm. The op-
timization tries to find a new size for each element sub-style and to
make it as close as possible to its original size. The constraints for
this problem are: 1) the region-size constraint ensures that the width
of each element is in the range of prescribed widthswi ≤ wi ≤ wi,
where wi and wi are the minimum and maximum of the allowed
width for element ei. In practice, we set them to be 0.5 times and
1.5 times the average size of the corresponding element respec-
tively. 2) The total-size constraint enforces that the elements in each
facade piece equal to the current region’s size, wtotal. It takes form∑

i wi = wtotal. Figure 7 shows the generated facade layouts ac-
cording to the given mass models in Figure 6 and the facade at-
tributes.

7. RESULTS

We implemented the proposed framework in C++ using the CGAL
library for geometric computations and the GAlib library for the
genetic algorithm. We report running times for a computer with
two 2.53 GHz Intel core i5 processors and 8 GB main memory.

The parametric building model. First, we evaluate the para-
metric building model and the building generation. We reconstruct
a ground-truth building based on a photograph using our parametric

Fig. 8: We regenerate the building according to the attributes from the real
building model. Top: photograph of the real building and two views of the
reconstructed building model. Bottom: three views of the regenerated build-
ing. The attributes of each building are shown in the additional materials.

building model. Then, we encode this parametric building model
using the attribute-based building representation and use the opti-
mization algorithms from Sec. 6 to regenerate the parametric build-
ing model. In Figure 8, we show that the regenerated building is
similar to the ground-truth building. Second, we evaluate the effect
of each attribute by performing leave-one-out tests. In the top two
rows of Figure 9, we show the effect of each mass model attribute.
We can see that the building size is unreasonable if Mc,bbox is ex-
cluded. WithoutMc,bcr , the coverage of the building is much larger
than the ground-truth building. There is an unexpected courtyard
in the regenerated building without Mc,bdry . Excluding Mc,far or
Mc,arf leads to buildings with quite different second floors to that
of the ground-truth building. Mc,gar and Mc,por contribute to the
position and size of the garage and porches, respectively. The effect
of each facade attribute is shown in the bottom row of Figure 9.
The facades are synthesized on the mass model shown in (b). We
can see that the number of windows and their sizes are determined
by Fc,wwr , the types and arrangement of the windows are deter-
mined by both Fc,sym and Fc,align, e.g., the windows’ types and
positions are quite different than (j). In summary, we find that each
attribute contributes to the regenerated result and that leaving out
any attribute reduces the overall quality.

Structure of the model. Our model uses hidden variables to
compactly parameterize the structural variability of building mod-
els. The cardinality of the value spaces of these variables are
learned from data and different values represent different under-
lying styles of buildings. In Figure 10, we show the seven styles
learned from our dataset for the hidden variable, S. The buildings
are sampled by fixing S in the learned model. We can observe that
the seven styles impose a reasonable partition on the space of all
buildings. For example, styles 1-3 are simpler residential buildings
that are predominantly one floor high. We can also see that the dis-
crete hidden variables are very useful to encode the existence of a
porch or a garage. For example, if multiple models within the same
style are found without a garage (encoded by setting all garage at-
tributes to 0), the discrete hidden variable will form a cluster of
these models. During synthesis, if the garage attributes are 0, we do
not generate a garage. Lateral edges encode strong relationships be-
tween different attributes. We learn nine lateral edges in our graph-
ical model (see Fig 11 left). For example, one of the edges connects
the size of the bounding box with the garage attributes. This implies
that a large building usually has a large garage as well.

Evaluation of synthesized results. We sample high-probability,
attribute-based building models. To avoid similar buildings, we re-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



8 • Lubin Fan and Peter Wonka

(a) Real building (b) All Mc included (c) Mc,bbox excluded (d) Mc,bcr excluded (e) Mc,bdry excluded

(j) Real building (k) All Fc included (l) Fc,wwr excluded (m) Fc,sym excluded (n) Fc,align excluded

(f) Mc,far excluded (g) Mc,arf excluded (h) Mc,gar excluded (i) Mc,por excluded

Fig. 9: The effect of each attribute. The top two rows show the effect of each mass model attribute. We extract the attributes from a real
building (a). (b) A mass model generated with all attributes selected from the five-highest probability results. (c-i) Ablation of individual
attributes and the effect on the result. For each mass model, two views of the mass model and its box representation from a top view are
shown. The third row shows the effect of each facade attribute. All facades are generated on the same mass model shown in (b). (k) A
facade model generated with all attributes selected from the five highest-probability results. The attributes of each building are shown in the
additional materials.

Style 1 Style 2 Style 3 Style 4 Style 5 Style 6 Style 7

Fig. 10: Seven building styles are encoded in the hidden variable, S, of our model. We show two high-probability buildings of each style.

ject samples that have similar attributes to a model in the input
dataset or to a previous sample. To evaluate the compatibility of
attributes from different source buildings, we sample a large num-
ber of building models and collect the top 1000 models with high-

probability. By computing the most similar building model from
the database per attribute, we can observe that on average, each
sample consists of the attributes from 6 different buildings in the
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Fig. 11: Left: nine learned lateral edges of our graphical model. Right: his-
togram of the number of different buildings in the training dataset contribut-
ing to the attributes to sampled buildings.
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Fig. 12: Evaluations of generalization performance. Left: negative log-
likelihood of our model compared with other versions of the model. Lower
negative log-likelihood indicates better generalization performance. Model
1 is similar to our model but without learned edges between variables.
Model 2 does not use hidden variables on the second level (see Figure 4(b)).
Model 3 uses a directed graphical model without hidden variables (see Fig-
ure 4(a)). The performance of a Gaussian mixture model is visualized as the
right bar. Our model achieves the best generalization performance across
the test set. Right: The impact of training set size on generalization perfor-
mance. Performance increases as the training set becomes larger.

training dataset (see Fig 11 right), which means that our graphical
model can sample buildings with high compatibility of attributes.

Comparison with other graphical models. Similar to a classi-
fication algorithm that can be evaluated by predicting the label of
instances in a test dataset, a generative model can be evaluated by
computing the probability of the instances in a test dataset. We ex-
pect that a good generative model assigns high probability to the
instances in the test dataset, which means that the model can syn-
thesize novel and reasonable instances. We apply the holdout val-
idation method to evaluate the generalization performance of our
model. Firstly, we randomly split out dataset into a training set
(80%) and a test set (20%). Then, we train our model using only the
training dataset and compute the likelihood for all test data. Higher
likelihood on the test dataset corresponds to better generalization
performance. We repeat the procedure five times. In Fig 12 left, we
show the generalization performance of our model and compare it
with alternative graphical models discussed in Sec. 5.1. Each bar in
the figure denotes the negative logarithm of the geometric mean of
the likelihoods, and a lower bar corresponds to better generalization
performance. We can see that our model has the best performance.

Comparison with the baseline method. The purpose of this
test is to investigate what happens if no graphical model is used to
encode the joint probability distribution of the building attributes.
The result of this test will be useful to understand the benefit of a
graphical model in general in the context of our application. For
this purpose, we set up a baseline method for comparison using a

5.07m

5.
13

m

Fig. 13: Two buildings are reconstructed by the mean vectors of a Gaussian
mixture model. Two views of the building and the parametric representation
are shown. The problems of the building are highlighted in the box repre-
sentation by red rectangles. The front porch is in blue, the back porch is in
red, and the garage is in green.

Gaussian mixture model (GMM), which does not encode the rela-
tionship between building attributes. Each building in the dataset is
represented as a high-dimensional feature vector by concatenating
the attributes. We build a GMM for the feature vectors to encode
the building distribution and estimate the number of components in
the mixture model using the MDL criterion [Rissanen 1983]. Fi-
nally, we obtain a mixture model with two components and extract
the mean of each Gaussian as building attributes. The reconstructed
buildings of the extracted attributes are shown in Figure 13. We
can find that GMM cannot encode and learn the building distribu-
tion well. For example, in the left building, the position of the back
porch is unreasonable, and the size of the garage is neither reason-
able for a one-car garage nor for a two-car garage. In the right build-
ing, the front porch and garage intersect. The causes of the prob-
lems are the high-dimensionality of the feature vector and the com-
paratively small dataset. More importantly, GMM cannot encode
the relationship between different attributes well. To compare our
model with the baseline method, we sample the building attributes
with given bounding box and garage attributes. The reconstructed
buildings are shown in Fig 14. We can see that the front porch
and garage intersect in the building sampled from the GMM. We
also evaluate the generalization performance of the GMM, which
is much worse than our model (see Figure 12 left).

Training set size. In Figure 12 right, we evaluate the perfor-
mance of our model using an increasingly larger training set. Using
the same test protocol as in the previous test, we can observe that
our model improves with more training data. However, based on the
slope of the curve, we can also speculate that better performance
could be achieved with a larger database.

Applications. We demonstrate two major applications of our
work. The first application is building synthesis. We sample the
building attributes from the trained probabilistic graphical model
and generate the building model as discussed in Sec. 6. Several
synthesis results are shown in Figs. 10 and 15. The second appli-
cation is building completion. Starting from a single image, a user
can specify parts of a building mass model and mark facade ele-
ments (i.e., windows and doors) on the observed part of a build-
ing facade in a rectified image. Our framework will extract the
observed attributes from the annotations and sample the remain-
ing building attributes with high-probability automatically. Then,
taking both user’s annotations (e.g., window sizes and locations)
and the building attributes as constraints, our framework can re-
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Fig. 14: The left and the right buildings are reconstructed by the attributes
sampled from a GMM and our model, respectively. Mc,bbox and Mc,gar

are given. Two views of the building and the box representation are shown.
The front porch and garage intersect in the building sampled from the
GMM.

Fig. 15: Six buildings synthesized using our algorithm.

construct the whole building. The whole process is shown in Fig-
ure 1 and the accompanying video. Figure 17 shows three build-
ings that are completed from images. Our completion framework
can also take a partial 3D building as input. Since we can sam-
ple multiple attribute-based representations and since the mapping
from attributes to the parametric representation is not unique, we
can generate many possible completion results. For evaluation pur-
poses, we generate five possible reconstructions and select the best
fitting candidate among them. Figure 16 shows that given a partial
building, our work can complete the whole building which is sim-
ilar to the ground truth. More results are shown in the additional
materials. Another example application is a suggestion system for
residential building design. A user can specify partial attributes of
a building and ask the system for a complete building design. Then
the user can edit the completed building design by adding, deleting,
and moving building boxes. We show such an editing sequence in
Figure 19. The main bottleneck of this application is the perfor-
mance of the building generation algorithm, which we leave to fu-
ture work.

Performance. In our implementation, learning takes about 40
minutes for 200 buildings. Given a set of attributes, the algorithm
takes about 12 minutes to obtain a set of building mass models and
1 minutes to get facade layouts on a mass model.

Discussions and limitations. In the probabilistic model, we deal
with two special building structures, i.e., garages and porches. The
main reason is that these two structures can be recognized from
the outside of the building without ambiguity. In contrast, it is not

Fig. 16: Building completion compared to ground truth. Top row: photo-
graph of the building, the right side and the back side of the incomplete
building. Middle row: the ground truth shown from the front, back, and
right side respectively. Bottom row: one possible completed building se-
lected from the five highest probability reconstructions.

Completion 1 Completion 2 Completion 3

Fig. 18: Given an incomplete building model, our algorithm can generate
multiple completions. Top row: photograph of the building, and two views
of the incomplete building. Middle and bottom rows show three possible
completions. For each completion, the front and back of the building are
shown.

easily possible to recognize other rooms, such as a living room or
a kitchen from the outside. If a building is without a garage or a
porch, we set the corresponding attributes to zero. Note that our
model can be easily extended by adding other building structures,
such as patios and decks, to describe more details of a building.
In our work, the mass model generation and the facade genera-
tion are formulated as non-convex optimization problems that have
many local minima in the general case. A disadvantage of our so-
lution is that we cannot guarantee finding a global minimum for
either of these two problems. In the mass model generation, our
graphical model samples a set of high-probability attributes. In gen-
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Fig. 17: Three buildings are completed using our method. Each completed building is shown from three views. The observed parts are
highlighted in yellow.

(a) (b)

(c) (d)

Fig. 19: An application for building design. For each stage, two views of
the current 3D model are shown, and the new modifications are illustrated
on the box representation. (a) The initial model. In this edit, the user adds
a garage in the left front corner. The garage position is shown as a green
dashed box. The system suggests a new building (b), and the user moves
the garage to the back of the building yielding result (c). Then, the user
changes the size of one building box (shown by a red dashed line). The
final building model is shown in (d).

eral, the building attributes might be conflicting, but since we start
with high-probability attributes, the conflicts are typically minor.
Therefore, simulated annealing can find good local minima, i.e.,
a configuration where the parametric description and the attribute
description of the building are in agreement. In our implementa-
tion, we restart simulated annealing three times and take the best
result. However, like in most other applications of simulated an-
nealing, no theoretical guarantees for convergence can be given,
not even for finding a local minimum. In the facade generation, we
opted for a genetic algorithm instead of simulated annealing, be-
cause the exploration of the search space is more difficult. In this
context, it is important to have a proposed mechanism for large
changes. Here, we found the crossover operation of genetic algo-
rithms to be more suitable than the restart operation in simulated
annealing. While our genetic algorithm can successfully find low
energy states in the search space, we cannot guarantee that a local

or global minimum has been found. While our building generation
has high-quality output, it takes several minutes to obtain a good
result. To generate very large environments, it might be essential
to optimize this step first. Our model does not consider appearance
(e.g., color and texture) of the building. We believe that appearance
can be integrated into our model, but this requires a larger database
for training, thus we leave appearance to future work. Also, our
model does not consider the context of a building, such as the par-
cel shape, parcel slope, vegetation, or the relative location of the
street. Although one of our applications is building completion, our
model does not focus on reconstruction of an exact building from
a single image. We consider this problem complementary to our
work.

8. CONCLUSIONS

In this paper, we proposed a probabilistic model for building exte-
riors of residential buildings. Starting from a variable-sized para-
metric building description, we identify a fixed dimensional list of
attributes to describe a building. The joint probability distribution
of these attributes is then encoded in a hierarchical graphical model
with hidden variables. Finally, an optimization algorithm can con-
vert a set of building attributes to a three-dimensional geometric
model. This framework is useful for learning building designs from
training data and automatically synthesizing new buildings. Addi-
tionally, it can be used for completing buildings that are partially re-
constructed from photographs. The main motivation for designing
our model was to consider only information that can be observed
from the outside. In this way, we can make use of widely available
data from Internet-based mapping sites such as Google maps and
Bing maps to build a training dataset. Our framework relies on a
conversion from an attribute-based representation to a parametric
representation. It is a promising research direction to find a model
that would support both learning and building generation without
the conversion step. In future work, we would also like to extend
our probabilistic model to include information of garden layouts.
Further, we would like to extend the model to include building in-
teriors that can conform to a given building mass model.
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Fig. 20: Mass model attributes used in our framework.

APPENDIX

A. BUILDING PARAMETRIC MODEL

A.1 Mass Model Attributes Mc

We use seven attributes to describe a building mass model (See
Figure 20):

Size of bounding box Mc,bbox. The size of the bounding box
of a mass model: Mc,bbox = (w, d, h), where w, d and h are the
width, depth and height of the bounding box of the building mass
model.

Building coverage ratio Mc,bcr . We borrow the concept of
building coverage ratio from architecture to describe the coverage
ratio of the ground floor. Since we do not know the real parcel of
the building, we replace the building parcel by the bounding box of
the ground floor (Flr0). Then, Mc,bcr = Area(Flr0)

Area(BBox(Flr0))
.

Boundary complexity Mc,bdry . We use an attribute to describe
the boundary complexity of the building. It is defined asMc,bdry =
Perimeter(Flr0)√

Area(Flr0)
.

Floor area ratio Mc,far . We also borrow the concept of floor
area ratio from architecture to describe the availability of space.
Similar to Mc,bcr , we use the bounding box of the ground floor
instead of the building parcel. Then, Mc,far =

∑
i Area(Flri)

Area(BBox(Flr0))
.

Area ratio of floorsMc,arf . We use this attribute to describe the
area of each floor. In our current problem, each residential building
has less than three floors, thus we use a 3-dimensional vector to
encode it, Mc,arf = [ar0, ar1, ar2], where ari = Area(Flri)∑

j Area(Flrj)
,

i = 0, 1, 2.
Garage attributes Mc,gar . We define a 6-dimensional vector to

encode a description of the garage. We concatenate three features,
i.e., Mc,gar = [GarPos,GarSize,GarBdry], where GarPos
denotes the garage’s 2D position in the bounding box of the ground
floor, GarSize denotes the 3D size of the garage, GarBdry =
Length(V isible(garage))

Perimeter(garage)
. V isible(garage) computes the visible

part of the garage from the outside of the building (shown in red
in Figure 20). If the building does not have a garage, we set all the
elements of this attribute to 0.

Porch attributes Mc,por . We describe the front and back
porches using a 12-dimensional feature vector, Mc,por . It is con-
catenated by two feature vectors from the front porch and the back
porch. The feature vector is defined in the same manner as Mc,gar .

flat gable hip

sash sliding fixed casementbay

Fig. 21: An illustration of roof styles and window styles used as element
attributes.

A.2 Facade Attributes Fc

As discussed in Sec. 4.2, each building side consists of a set of
facade pieces {fj} and each of the facade pieces contains a set of
facade elements {ek}. We use the following attributes:

Window-to-wall ratio Fc,wwr . We use the window-to-wall ratio
to describe how much of the facade is covered by facade elements.
This attribute helps us to decide the size and number of facade ele-
ments. It is defined as Fc,wwr =

∑
k Area(ek)∑
j Area(fj)

.
Symmetry Fc,sym. Symmetry is a very important attribute ob-

served in facades. To compute the symmetry attribute, we sum up
the area of all symmetric facade pieces and divide it by the total
facade area: Fc,sym =

∑
j Area(fj)·IsSymmetric(fj)∑

j Area(fj)
.

Alignment between facade pieces Fc,align. We also consider
the vertical alignment of elements between facade pieces. We first
find all pairs of facade pieces that can be aligned. The number of
candidate pairs is Ncandi. Then, we count the number of aligned
pairs, Nalign. Finally, Fc,align =

Nalign

Ncandi
.

A.3 Element attributes Ed

For each element attribute, we use a binary vector to encode the
presence of specific element styles. We consider three types of el-
ements, i.e., roof, window, and special building elements. We cur-
rently do not encode the door style and assume that there is at least
one door.

Roof stylesEroof . We use a 3D binary vector to encode the pres-
ence of a particular roof style. The three roof styles in our dataset
are flat, gable, and hip.

Window styles Ewnd. Window styles are encoded by a 5D bi-
nary vector. In our database, we use sash window, sliding window,
casement window, bay window, and fixed window.

Special building elements Espe. We also encode the presence
of two special building elements, i.e., chimney and tower, as a 2-
dimensional binary vector.
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