
Large Scale Asset Extraction for Urban Images

Lama Affara, Liangliang Nan, Bernard Ghanem, and Peter Wonka

King Abdullah University of Science and Technology (KAUST), Saudi Arabia
lama.affara@kaust.edu.sa, liangliang.nan@gmail.com,

bernard.ghanem@kaust.edu.sa, pwonka@gmail.com

Abstract. Object proposals are currently used for increasing the com-
putational efficiency of object detection. We propose a novel adaptive
pipeline for interleaving object proposals with object classification and
use it as a formulation for asset detection. We first preprocess the im-
ages using a novel and efficient rectification technique. We then employ
a particle filter approach to keep track of three priors, which guide pro-
posed samples and get updated using classifier output. Tests performed
on over 1000 urban images demonstrate that our rectification method is
faster than existing methods without loss in quality, and that our inter-
leaved proposal method outperforms current state-of-the-art. We further
demonstrate that other methods can be improved by incorporating our
interleaved proposals.

1 Introduction

The goal of our work is to efficiently extract high-quality assets of architectural
elements from a large set of urban images. We define an asset as a rectangular
image region depicting an architectural element, such as a window, door, ledge,
ornament, or even a complete facade. Because these assets might be captured
from different viewpoints, their corresponding image regions should be rectified
and stored as textures, so they can be subsequently incorporated into applica-
tions such as urban modeling or architectural analysis.

We formulate asset extraction as an object detection problem with the follow-
ing focus. First, we require a fast overall processing time, where we expect each
urban image to require at most 1s to be processed by our end-to-end pipeline.
We believe that longer processing times are not feasible for practical scenarios
where the image dataset is large nor for interactive applications. Second, small
low-resolution assets are not interesting for most applications, so we make sure
to ignore regions covering only a few pixels. Third, while the fundamental prin-
ciples of our work are applicable in a wider context, we build a framework best
suited for extracting architectural assets.

To tackle this problem, we build on recent work in the area of object pro-
posals. Since processing time is crucial in our application, we assume that a
state-of-the-art asset classifier can be learned from a given training set and that
it would take more than 1s to exhaustively apply this classifier on all possible
image regions to retrieve high-quality assets. In this case, we pose the question:
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which image regions are good candidates for the classifier? Recent work on ob-
ject proposals, namely EdgeBoxes [33] and Geodesic proposals [14], have shown
great promise in the field of object detection. In fact, they have become stan-
dard methods in many state-of-the-art detection pipelines. Also, we found these
two methods to be the most competitive on our urban asset datasets and we
therefore use them in our comparisons.

The basic idea of these two approaches (as well as most other object pro-
posal methods) is to find a simple scoring function that can quickly determine
whether a candidate region is likely to contain an object or not, thus, reducing
the number of negative instances that an object classifier is applied. We would
like to extend this idea to interleave object proposals with the classification. In
doing so, the proposal method evolves and adapts to the streaming image data.
By analyzing the classification result in a previous image or in a particular image
region of the current image, we can build insight on what image regions should
be considered next as proposals. We realize this idea using a probabilistic sam-
pling strategy akin to a particle filter, where the posterior distribution of the
next proposal state (e.g. scale, location, and aspect ratio) is updated with more
observations (outputs from the classifier).

Contributions. This work makes three main contributions. (1) For the task of
urban asset detection, we improve upon state-of-the-art object proposals by using
the concept of interleaved proposing and classification. (2) We propose a novel
rectification algorithm for images with a dominant plane, in general, and urban
images, in particular. This method is 18 times faster than previous work. (3)
We compile and manually annotate a large-scale dataset of urban images, where
each facade and window asset are precisely labelled. Our extensive experiments
will show that our interleaved proposal technique can outperform state-of-the-
art proposal methods on over 1000 facades, as well as, be incorporated into these
methods to improve their performance on the same facade scenes.

2 Related Work

Asset extraction relates to techniques ranging from low-level image segmenta-
tion to high-level semantic modeling. In this section, we mainly review the work
that is closely related to ours, in particular, facade parsing and object proposals.

Facade Parsing. This task aims to decompose facade images into semanti-
cally meaningful parts. One key ingredient to facade parsing is the detection of
translational symmetry, e.g. Müller et al. [19]. To classify facade elements, many
recent papers [4, 20, 17] employ machine learning techniques . By combining ran-
dom forests with shape grammars, Teboul et al. [25] incorporate reinforcement
learning for parsing facades. Cech et al. [1] define it as a maximum aposteriori
probability labeling task. By assuming s structured facade can be represented as
a rank-one matrix, Yang et al. [30] formulate the problem as a matrix decompo-
sition problem. Riemenschneider et al. [20] utilize low-level classifiers combined



Large Scale Asset Extraction for Urban Images 3

with middle-level object detection for parsing irregular facades. They adapt a
variation of the Cocke-Younger-Kasami (CYK) algorithm [22] for the split gram-
mars, and the complexity of the CYK algorithm is significantly reduced by rep-
resenting the facade as irregular lattices. By combining split grammar and shape
priors, Kolinsky et al. [13] enable parsing of occluded facade parts.

In practice, shape grammars are usually manually constructed by experts
for style-specific facade structures. To avoid this, Martinović et al. [18] propose
a three-layered facade parsing approach that combines supervised learning with
object detection and knowledge of the architecture. Borrowing ideas from natural
language processing, authors in [17, 28] propose to learn context-free grammars
based on Bayesian Model Merging [23]. For efficiency, they exploit the similar
idea of representing the facade structures as 2D lattices as in [20]. While some
of these facade parsing methods can generate very good results, the computation
time is too high for our application.

Object Proposals. In order to extract meaningful facade elements, an alterna-
tive approach is to use object detection techniques. However, traditional tech-
niques usually apply sliding window search [10, 15, 9], which is computationally
inefficient. In recent years, researchers proposed generic objectness proposals to
reduce the large number of candidate windows [21, 31, 27, 7, 2].

By encoding the likelihood of neighboring superpixels into a connectivity
graph, Manen et al. [16] generate object proposals as bounding boxes of ran-
domized partial spanning trees. Krähenbühl et al. [14] also use superpixels where
critical level sets in geodesic distance transforms are computed. Cheng et al. [2]
resize the image windows to a small fixed size and use the norm of the gradi-
ents as features to detect object boundaries. This method can generate object
proposals at a very high frame rate but at the cost of low recall. Zhao et al. [32]
further reduce the number of candidate windows by analyzing the distributions
of the locations and sizes of object rectangles. Similar to the work of [2], Edge-
Boxes [33] relies on edge information. Specifically, the more the edges contained
by a box, the more likely there is an object bounded by this box. For a compre-
hensive evaluation and an in-depth analysis of object proposal methods, please
refer to the recent survey [11].

In this work, we follow the idea of object proposals and extend it to interleave
object proposals with the task of classification. We compare our performance to
the best state-of-the-art methods in Section 4.2.

3 Our Approach

Our asset extraction framework detects bounding boxes around urban assets
using four major components visualized in Fig. 1.

1. Preprocessing: Given an input image, we first detect line segments and
rectify the image based on the detected most dominant facade. We then
extract rectangular superpixels to restrict the search space for assets. (See
Section 3.1)
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Fig. 1: Overall pipeline. Given an input image, rectification and rectangular su-
perpixels are calculated. Proposals are generated using the estimated global pri-
ors as well as the adaptively updated history and image priors using the particle
filter strategy. The output of our pipeline is urban assets stored as textures.

2. Prior Estimation: We employ a particle filter to estimate prior distribution
functions (pdf) for the four bounding box parameters. For each parameter,
three pdfs are estimated and updated during detection: global prior, history
prior, and image prior. (See Section 3.2)

3. Object Proposals: Object proposals are sampled as the evolving particle
states and guided by the search space induced by estimated rectangular
superpixels. (See Section 3.3)

4. Asset Extraction: The proposed objects are classified, and the classifier
scores are used to update the priors, thus, guiding the sampling of object
proposals. (See Section 3.4)

3.1 Preprocessing

Rectification. The first step in our framework is image rectification. Existing
work handles this problem by calculating a homography starting from vanishing
points (VP) or using relative scale changes constraints [3]. Such approaches have
several drawbacks. First, they only transform vanishing lines to parallel, thus
only resolving affine transformations, and more constraints need to be added
to recover orthogonality and adequate aspect ratio. Second, slight discrepancies
in VP locations significantly affect the final rectification. Wu et al. [29] handle
this by a VP refinement technique. This brings us to the third disadvantage: the
computational cost of finding the VPs and the added cost of their refinement.

Our approach uses line segments without requiring VP detection. We seek the
best homography that vertically aligns the line segments vanishing to top/bottom,
and horizontally aligns those vanishing to right/left. To achieve this, we decom-
pose the full transformation H into a concatenation of two simpler transforma-
tions: vertical perspective Hv and horizontal perspective Hh depicted in Fig. 2.

H = HvHh (1)
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Fig. 2: Vertical perspective (left) and horizontal perspective (right) image trans-
formations with an example horizontal and vertical perspective transformation
applied to an urban image (see original image in Fig. 3-left).

We use the following parameters to define the matrices Hv and Hh: hori-
zontal (dl, dr) and vertical (du, dd) shifts of the image corners, as well as, image
width w and length l. With these parameters, we can completely model matrices
Hv (refer to Eq. 2) and Hh (refer to Eq. 3) shown below.

Hv =

1 + dr−dl

w
−dl

l dl
0 1 + dr−dl

w 0

0 dl−dr

wl 1

 (2) Hh =

1 + dd−du

l 0 0
−du

w 1 + dd−du

l du
dd−du

wl 0 1

 (3)

For vertical perspective, we use the following constraint to detect the line seg-
ments vanishing to the top/bottom: Under perspective transformation, the orien-
tations of the originally vertical segments changes linearly with their horizontal
position in the image. Fig. 3, shows a scatter plot of the segment orientations
as a function of the position of their midpoints. Using RANSAC line fitting, we
filter the lines that agree with this vertical linearity constraint. Now, given a set
of k line segments {δi}ki=1, we find the best parameters that transform these line
segments into vertical by minimizing the objective function below.

minimize
dl,dr

k∑
i=1

∣∣∣∣h1aih3ai
− h1bi
h3bi

∣∣∣∣ (4)

where ai and bi are the homogeneous coordinates of line segment δi’s end points.
Here, h1 is the first row of Hv, since we want the x-coordinates of the trans-
formed line segments to be equal, and we divide by h3, the third row of Hv,
since we are dealing with homogeneous coordinates.

For horizontal perspective, we first apply the vertical transformation Hv to
the original line segments and image corners resulting in new line segments δ′i,
image width w′ and length l′. Then similarly, we filter the transformed line
segments that agree with the horizontal linearity constraint and minimize for
(du, dd). To solve either optimization problem, we use sequential quadratic pro-
gramming. Once the four shift parameters are found, the homography is calcu-
lated using Eqs. 1, 2, and 3. Fig. 2 shows the result after applying the vertical
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Fig. 3: Segment orientations as a function of the x-position of their midpoints.
The line segment orientations vary slightly above 1000 to slightly below 900.
Outliers that are discarded by RANSAC are shown in red on the right.

and then the horizontal transformation for the original image shown in Fig. 3.

Rectangular Superpixels. Once images are rectified, the most prevalent as-
sets are rectangular elements structured repetitively along horizontal and verti-
cal directions. In fact, currently available urban parsing datasets are based on
rectangular boxes of various assets. Based on this observation, we extract super-
pixels using a rectangular grid at locations where image gradients are large in
magnitude. Our goal is a reduced search space Bs = {(xj , yj , sj , aj)} for asset
bounding box parameters where (xj , yj) is the location, sj is the scale, and aj is
the aspect ratio. We first sum the image gradient magnitudes along horizontal
and vertical directions and use the maxima to form a grid spanning the image.
The grid oversegments the image into dense rectangular regions. We then merge
color consistent regions to form the final superpixels. The top left corners of these
superpixels are used as candidate locations for assets as shown in Fig. 4. We only
consider bounding boxes that can be partitioned into superpixels. Finally, loose
thresholds on window sizes and aspect ratios are used to eliminate extremely
elongated and/or enlarged windows. We constrain scale to be between 0.05 and
0.2 and the aspect ratio to be between 0.25 and 4 in our implementation.

3.2 Prior Incorporation

The extracted search space comprises a large set of object proposals, a subset of
which needs to be evaluated by the classifier. We determine this subset adaptively
by a particle filter sampling technique. Our approach is adapted to the dataset
at hand by estimating the prior probabilities of the parameters and sampling
using the joint probabilities as weights. During our framework, we keep track of
12 prior distributions: 3 distributions for each of the 4 parameters.

1. Global Prior pg is estimated from the training database. This prior gives
us general information about the parameters. Window assets for example
have mean aspect ratio of less than 1 while for balconies it is greater than 1.

2. History Prior ph is updated by the detection history within an image
dataset. Facade structures differ from city to city, and learning dataset-
specific parameters helps in sampling based on the learned structure. Fig.
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(a) (b) (c) (d)

Fig. 4: A visualization of superpixels as regions (a) and superpixels’ top left
corners (b). Estimated history priors for x-locations (c) and y-locations (d) in
the ECP and Strasbourg datasets. By looking at the distributions, one can note
the difference in the structure of the two datasets.

4 shows the difference in the learned history prior for locations of window
assets in the ECP (taken in Paris) and the Strasbourg datasets.

3. Image Prior pi is updated by the detection scores in the current image.
This prior guides the parameters according to the detected windows in the
same image. As soon as new positive detections arise, the prior increases the
weights for its parameters. This suits the problem of asset detection very
well, since assets are usually repeated along aligned locations in the same
image and with similar sizes.

Prior Update as a Particle Filter. We estimate and update the global,
history, and image prior distributions used in generating the object proposals
from a set of given bounding box samples. The global prior is estimated only once
from the ground truth bounding boxes in the training set using kernel density
estimation. The history prior is also estimated using kernel density estimation,
but from the classified bounding boxes in the dataset. As for the image prior,
we update it by casting it in a particle filter framework.

Particle filtering is a general Monte Carlo (sampling) technique used to esti-
mate the state of a system that evolves over time. The general filtering problem
involves the estimation of the posterior distribution of state variables xt at time
t given all observations z1:t up to time t. The computation of the distribution
p(xt|z1:t) can be done recursively in two major steps: (1) the prediction step
which is computed using the previous state and all previous observations, and
(2) the update step in which the distribution is updated with the new observation
zt using Bayes’ rule.

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (5)

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1) (6)
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In general, Eqs. 5 and 6 are computationally intractable, hence particle fil-
tering can be viewed as an approximate method for system state estimation,
especially when the posterior state distribution is not Gaussian. Therefore, we
estimate the posterior distribution at time t with a weighted set of samples
{(xi

t, w
i
t), i = 1...N}, also called particles, and recursively update these particles

to obtain an approximation to the posterior distribution at the next time step.
The particle filter prediction (see Eq. 7) and update (see Eq. 8) steps are com-
bined to assign an importance weight for each sample.

xi
t ∼ p(xt|xi

t−1) (7) wi
t = wi

t−1p(zt|xi
t) (8)

In our case, the state xt ∈ R4 represents the four parameters defining an object
proposal (i.e. location, size, and aspect ratio). In other words, the particles are
sampled bounding boxes in the image, while the observations are manifestations
of particles in an image, namely image patches enclosed inside the particle’s
bounding box. The prediction step gives rise to the transition model of the par-
ticle filter and defines how the particles evolve in each iteration. Unlike many
other use cases of particle filtering where the transition model is simplistic and
assumed to be zero-mean Gaussian, we exploit the horizontally and vertically re-
peating patterns, which govern the spatial distribution of urban assets in facade
images, to define this spatial transition model. This probabilistic model is shown
in Eq. 9, where r = (rx, ry, 0, 0) denotes the estimated horizontal and vertical
repetition intervals, k = (kx, ky, 0, 0) is a random variable which denotes the
sampled number of repetitions, � is the element-wise multiplication operator,
and ν ∼ N(0, Σ) is additive Gaussian noise. Moreover, the update step gives
rise to the observation model p(zt|xi

t) and is taken to be the normalized score of
the asset classifier when it is applied to the observed image patch zt.

xt = xt−1 + kt−1 � rt−1 + ν (9)

By iterating through the aforementioned prediction and update steps, par-
ticles that manifest themselves as assets in an image maintain a higher weight
than those that are not, which in turn biases the sampling strategy to focus more
on the former particles in the next prediction iteration. As such, we use the as-
set content of an image to guide the particle sampling and, in turn, gradually
evolve the image prior. In Fig. 5, we show the evolution of three particle filters
on an example facade image. We first initialize the system state by probabilisti-
cally sampling bounding boxes using the learned priors. Starting from the initial
state in the first iteration, horizontal and vertical repetitions are estimated and
the particles evolve according to the previously described prediction step to pro-
duce the bounding boxes shown in Iteration 2. The particles keep evolving until
particle discovery converges (i.e. when previously covered states are repeated).

3.3 Guided Object Proposals

The particle filtering method can be viewed as an interleaving process between
object proposals and classification. The output of the classification at each time
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Fig. 5: The evolution of the particle filter across an image. At the first iteration,
particles are sampled around three initial states. The bounding boxes show the
sampled particles with the weights represented by the color map on the left.
Particles with higher weights are used more often in subsequent iterations.

step is fed back as weights to the particles, which are sampled based on the
updated weights. The sampled N particles (bounding boxes) are output as object
proposals and they are guided by the image and history priors. To guarantee
sample diversity at each time step, we combine the three priors using a user-
defined weighted sum as shown in Eq. 10 where we use wg = 0.3, wh = 0.3 and
wi = 0.4 in our implementation and we start with N = 60 particles.

p = wgp
g + whp

h + wip
i (10)

The repetition intervals are estimated at each time step by a voting scheme
using the absolute horizontal and vertical weighted distances calculated from the
sampled particles. The number of horizontal kx and vertical repetitions ky for
each particle are sampled from a range [kmin,kmax], using the prior probability of
the x-location and y-location generated by shifting the particle by a (rxkx, ryky)
translation. In our implementation, we use the range [-2,2]. Since we use multiple
iterations, it is still possible to sample very large grids.

The image and history priors characterize different time scales of the obser-
vation history, and thus need to be updated at different time steps. We update
the image prior ki times in the same image. The history prior however is up-
dated every kh images. Small ki and kh means we are getting more feedback from
the classifier, but at the cost of higher computation time. Increasing ki and kh
however decreases classifier feedback which takes us back to traditional proposal
methods. In our implementation, we choose ki = #proposals

20 and kh = 24.

3.4 Asset Classification

Given a set of object proposals, a linear SVM classifier is used to classify which
asset class each proposal belongs to, if any. We use aggregate channel features
[6] formed of 6 gradient orientations, 1 gradient magnitude, and 3 L-ab color
channels to compute the feature descriptors. Inspired by the work of [6], instead
of computing the exact features after resizing each object proposal patch to the
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Algorithm 1 Guided Asset Extraction

1: Train Classifier
2: Estimate Global Prior
3: for each image I0 ∈ Dataset do
4: I =Rectify(I0)
5: Bs =Rectangular Superpixels(I)
6: Sample Particles x1

1, ..., x
N
1

7: Compute Weights w1
1, ..., w

N
1

8: for t = 2 to T do
9: Predict States x1

t , ..., x
N
t

10: Update Weights w1
t , ..., w

N
t

11: Resample Particles
12: #proposals + = #particles
13: if processed ki proposals then
14: Update Image Prior
15: end if
16: end for
17: if processed kh images then
18: Update History Prior
19: end if
20: end for

Fig. 6: Final detections on random images from the eTrims, CMP, ECP, Graz,
London, and Strasbourg datasets (from left to right) with corresponding ground
truth (bottom). Both our algorithm and ground truth are configured to ignore
small windows.

classifier model size, we compute the channels on the full image and resize the
channels. This leads to 3× speedup without much loss in final precision.

The classifier is applied at each update step on all the sampled object pro-
posals. Its output is taken as final detection score for the currently classified
proposals and is used in the particle filtering weight assignment step. The over-
all pipeline of our framework is described in Algorithm 1.

4 Results

We implement the algorithms described in the paper in MATLAB using the
Parallel Computing Toolbox when possible and we use an Intel 3.1GHz processor
machine for testing. We used the Piotr toolbox [5] for superpixel estimation
and feature extraction and the LibLinear package [8] for the SVM classifier.
Datasets. We use the following datasets for evaluation: GRAZ50 [20], ECP [24],
eTrims [12], CMP [26] and two new datasets for London and Strasbourg that we
manually compiled comprising 800 images taken in the wild. The total dataset
size is 1392 images. We developed a user interface for rectifying and labeling
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Fig. 7: The rectification accuracy for a dataset of 100 images (left). For each
image we compute the pixel error compared to ground truth and report the
results as a histogram. On the right we show computation time for images of
different sizes.

facade images to obtain asset bounding boxes (e.g. for windows). The labeling
of ECP is pixel based, and does not label window parts that are occluded by
balconies as windows. Thus, we relabeled it to include the complete windows.
We also annotated the ground truth for London and Strasbourg, by marking
bounding boxes around urban assets (See Fig. 6 bottom).

We give an overview of the results below and more details in the supple-
mentary material. We show an evaluation of the homography estimation, the
object proposal recall rates, and PR curves for the final detection output. The
goal of our asset extraction pipeline is to extract as many useful assets per time
unit as possible, while maintaining a reasonable precision. Our results will show
that our framework is better suited to serve this goal than previous work.

4.1 Homography Estimation

We compare our homography estimation method against two variants of the
method by Wu et al. [29]: VP, a faster version using calculated VPs before re-
finement, and VP-refined, which uses the extracted VPs after refinement. To
quantitatively evaluate the accuracy, we manually annotate a dataset of 100
images. Ground truth is depicted as lines that should be transformed to hor-
izontal/vertical after rectification. The inconsistency of applied rectification is
calculated as the average pixel difference error of transformed lines compared to
the average correct line. Fig. 7-left shows that the VP method is significantly less
accurate than the other two approaches, and that our approach is comparable to
that of VP-refined. We also evaluate the average rectification speed. Fig. 7-right
shows that our rectification method is faster than both approaches especially
as the images grow in size. For 640 × 480 images, our method is 2 times faster
than VP and 18 times faster when VP refinement is applied. Fig. 8 shows a
comparison of the final output of the three methods on a sample image.

4.2 Object Proposals

We follow common practice to evaluate the quality of object proposals based on
recall of ground truth annotations. The recall rate defines the fraction of ground
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(a) Original Image (b) Ours (c) VP (d) VP-refined

Fig. 8: Rectification applied on original image in (a) using three different meth-
ods. Notice in the output of the VP method (c), alignment artifacts are present
in the right side of the image, which are fixed after refinement in (d).
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Fig. 9: Object proposals recall and detection results.

truth retrieved with respect to an intersection over union (IoU) threshold. We
use two metrics to evaluate the quality of proposal methods: (1) recall as the
IoU threshold is varied for a fixed number of proposals, and (2) recall as the
number of proposals is varied for a fixed IoU threshold. We evaluate the recall
rates on the urban dataset described earlier. We compare against two existing
proposal methods EdgeBoxes [33] and Geodesic [14]. We also evaluate the fol-
lowing proposal strategies (1) Uniform Sampling where we sample uniformly
from the reduced search space, (2) Ours Probabilistic where we sample based on
global prior only, (3) Ours Particle Filter where we sample using our particle
filter approach with interleaving object proposals and classification, and (4) Up-
per Bound which shows the recall upper bound due to the reduced search space
induced by our superpixel pre-process. Based on visual inspection, we choose
an IoU threshold of 0.7 as the most reasonable in practice and fix number of
proposals to 3000. For EdgeBoxes and Geodesic, we use the default parameters
and models provided in the authors’ implementations.

As shown in Fig. 9a and 9b, our approach provides the highest overall re-
call, competing with EdgeBoxes for more than 5000 proposals. The particle filter
transition model together with the interleaving strategy give rise to an adaptive
search space and thus high recall rates. In addition, the structure of urban assets
agrees well with the EdgeBoxes scoring function which uses object boundaries
estimates as features. Geodesic uses a segmentation scheme for proposing ob-
jects, and increasing the number of proposals doesn’t improve their recall much.
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Fig. 10: Recall and PR curves using 3000 proposals on the balconies dataset (left)
and for our prior combined with EdgeBoxes (right).

Fig. 10a also shows the recall rate of our method compared to EdgeBoxes and
Geodesic on the ECP and CMP datasets using balconies assets.

These recall rates evaluate the quantity rather than the quality of object
proposals as they do not include precision or accuracy of returned bounding
boxes. Our main concern in this pipeline is the final detection output and an
evaluation of the precision of retrieved detections after applying the classifier
on top of proposed bounding boxes. EdgeBoxes has high recall for ground truth
windows, but at the cost of an increase in the number of false positives as we
will show in the next section.

4.3 Asset Classification

We trained a Linear SVM classifier on a separate urban images dataset consist-
ing of 3000 positive window examples from different architectural types, and
randomly sampled negative examples making sure they have low overlap with
the ground truth. We use two metrics to evaluate the detection quality of the
proposals: (1) PR curves which show the precision of the classifier at different
recall rates for a fixed number of proposals and IoU threshold, and (2) average
precision (AP) as the number of proposals vary for a fixed IoU threshold. We
apply the same classifier on all shown proposal methods.

As shown in Fig. 9c and 9d, our method has the highest AP, while that of
EdgeBoxes gets lower than Geodesic after applying the classifier on top of the
proposals. The AP scores of the probabilistic method increases with the increase
in number of proposals but is still below our particle filter approach. This shows
that our interleaving strategy performs well by capturing the good proposals
earlier. We also show in Fig. 10b the AP scores for balconies assets.

To further show how the priors help get better proposals, we apply the prior
weights as a scoring function for the exhaustive space of proposals retrieved by
EdgeBoxes. Fig. 10 shows how adding the priors improves the recall and thus AP
of EdgeBoxes. In general, adding our adaptive priors to EdgeBoxes consistently
extends the recall of EdgeBoxes, while not affecting the precision much. This
means that the priors are reordering the proposals in such a way that better
proposals are getting higher score.
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Table 1: Running time (in seconds) to generate 3000 proposals.
Method Finding Proposals Asset Classification Total

Geodesic 0.18 4.32 4.5
EdgeBoxes 0.1 1.26 1.36
Ours Probabilistic 0.09 0.24 0.33
Ours Adaptive - - 1.1

4.4 Computational Cost

In this section, we evaluate the full pipeline comparing existing work for ob-
ject proposals with ours. Table 1 shows the average running time to generate
3000 proposals from 640×480 resolution images in the urban dataset, described
earlier. For our adaptive method, separating the computation time for object
proposals and classification is difficult as they are interleaved steps, while for
the other methods, the two steps are applied separately. As shown in Table 1,
our probabilistic method gives the highest computation speed while the adap-
tive method comes next. The primary cause for increase in computation time
is the prior update step. Since our MATLAB implementation is not optimized
for speed, we would expect a significant speedup from a C++ implementation.
Note that the running time for asset classification using Geodesic and EdgeBoxes
proposals is larger. This is related to the quality of proposals returned by these
methods (i.e. when providing more proposals that differ much in size/aspect ra-
tio from that of the model, the feature extraction step gets slower because the
proposals needs to be resized to fit the classification model). Our guided priors
however make sure that we get consistent window sizes and aspect ratios, which
give us the advantage of higher speeds. Fig. 6 shows final detection results using
our adaptive method on example images from each dataset.

5 Conclusion and Future Work

In this paper, we propose an efficient and effective framework for asset extraction
in an urban image dataset. Our main contributions are the interleaving of object
proposals with classification to improve overall retrieval results and a new and
fast image rectification method. Extensive experiments show that using such an
adaptive approach to detect urban assets helps build insight into how to guide
proposed image regions, especially in the presence of multiple similar objects in
the same image or across images. In future work, we would like to extend our
framework to the task of asset extraction in urban videos.
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