Capacity Constrained Blue-Noise Sampling on Surfaces

Sen Zhang^{a,b}, Jianwei Guo^c, Hui Zhang^{b,*}, Xiaohong Jia^d, Dong-Ming Yan^{c,e,*}, Jun-Hai Yong^b, Peter Wonka^e

^aDepartment of Computer Science and Technology, Tsinghua University, Beijing, 100084, China ^bSchool of Software, Tsinghua University, Beijing, 100084, China ^cNLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China ^dKLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China ^eVisual Computing Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia

Abstract

We present a novel method for high-quality blue-noise sampling on mesh surfaces under capacity constraints. Unlike the previous surface sampling approach that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation (CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach is a generalization of the previous 2D blue noise sampling technique using an interleaving optimization framework. We further extend this framework to handle multi-capacity constraints. We compare our approach with several state-of-the-art methods and demonstrate that our results are superior to previous work in terms of preserving the capacity constraints.

Keywords:

blue noise sampling, capacity constraints, centroidal Voronoi tessellation, power diagram

1 1. Introduction

Sampling is an essential technique in computer graphics, and it is a building block of various applications. One of the most important sampling techniques, generates so-called bluenoise patterns. The term "blue-noise" refers to any kind of noise with minimal low frequency components and no concentrated r spikes in energy [1]. The quality of a blue noise sampling can be evaluated by two one-dimensional functions that are derived from the power spectrum analysis [2]. One is the *radially averaged power spectrum*, and the second one is *anisotropy*. From a geometric point of view, blue-noise sampling aims to generate uniformly randomly distributed point sets in a given domain.

Blue-noise sampling in the Euclidean domain has been ex-Blue-noise sampling in the Euclidean domain has been ex-Broaches focus on generating point sets on mesh surfaces with Blue-noise properties. Such sampling has many applications in practice, e.g., rendering [4], solving some PDEs (e.g., water an-Broaches [5]), stippling [6], and object distribution [7].

¹⁹ The classical way of generating blue-noise point sets are ²⁰ Poisson-disk sampling and relaxation based methods, e.g., L-²¹ loyd iteration [8]. Although Poisson-disk sampling is fast and ²² is able to generate point sets with good blue-noise properties, it ²³ cannot explicitly control the number of sampling points, which

*Corresponding authors.

Email addresses: senzhang0815@163.com (Sen Zhang),

Figure 1: Results of multi-capacity constrained sampling. An earthen dragon and a ceramic Bunny. Both use 3k samples.

²⁴ is important for many applications. While Lloyd relaxation al²⁵ ways result in more regular patterns which reduces the blue²⁶ noise characteristics. This iterative algorithm has to be termi²⁷ nated before reaching the local minima to avoid regular pattern²⁸ s [9].

Balzer et al. [10] proposed a variant of the Lloyd iteration, called capacity-constrained Voronoi tessellation (CCVT), where "capacity" means that the size of the cells of the power diagram of weighted points should have the same size. This algorithm introduces more irregularity patterns and improves the randomness of the point set as well. However, the CCVT method needs a descritization of the sampling domain and uses a discrete optimizer to compute the final solution which is rinefficient. Chen et al. [7] proposed CapCVT, which combines Centroidal Voronoi Tessellation (CVT) and the capacity constrained Voronoi tessellation to improve the efficiency of the to CCVT algorithm. However, the CapCVT is not able to en-

jianwei.guo@nlpr.ia.ac.cn (Jianwei Guo),

huizhang@tsinghua.edu.cn (Hui Zhang), xhjia@amss.ac.cn (Xiaohong Jia), yandongming@gmail.com (Dong-Ming Yan),

yongjh@tsinghua.edu.cn (Jun-Hai Yong), pwonka@gmail.com (Peter Wonka)

⁴¹ force the exact capacity constraints. More recently, de Goes ⁴² et al. [11] proposed a practical algorithm for blue noise sam-⁴³ pling based on the theory proved by Aurenhammer et al. [12], ⁴⁴ which could enforce exact capacity constraints using an inter-⁴⁵ leaving optimization framework that iteratively optimizes the ⁴⁶ point positions and their associated weights (more details are ⁴⁷ given in Sec. 3.2). Such equal capacity tessellations also have ⁴⁸ general interests in many research filed, such as computational ⁴⁹ geometry [13] and architectural geometry [14].

In this paper, we generalize the above mentioned interleaving optimization framework for blue-noise sampling [11] to 3D mesh surfaces. We formulate the new objective function on mesh surfaces, and provide rigorous mathematic proofs of the gradient derivation. We demonstrate that our results exhibit the best quality in terms of the capacity constraints among all the state-of-the-art blue noise sampling techniques. Figure 1 shows two examples of our multi-capacity constrained sampling on surfaces. The contributions of this paper include:

- A new approach for computing blue-noise sampling on mesh surfaces under capacity constraints.
- A novel extension to handle multi-capacity constraints.
- The derivation of the gradient of the new formulation on mesh surfaces.

64 2. Related Work

⁶⁵ We briefly review the previous work on blue-noise sampling ⁶⁶ focusing on the approaches for surface sampling and their cor-⁶⁷ responding 2D approaches. For more details, please refer to ⁶⁸ recent survey papers [3, 15].

69 Surface Poisson-disk Sampling. Inspired by the technique of 70 dart-throwing, Cline et al. [16] first propose to generate Poisson-71 disk samples on surfaces by utilizing a hierarchical data struc-72 ture. Corsini et al. [17] present a new constrained Poisson-disk 73 sampling method, which carefully selects samples from a dense 74 point set pre-generated by Monte-Carlo sampling. The work of 75 Bowers et al. [18] proposes a parallel dart throwing algorithm 76 for sampling arbitrary surfaces. Geng et al. [19] generate ap-77 proximate Poisson disk distributions directly on surfaces based 78 on the tensor voting method. Ying et al. [20] propose another ⁷⁹ GPU-based approach by using the geodesic distance as metric. ⁸⁰ Then they further improve the maximal property of the Pois-⁸¹ son disk sampling in a parallel manner [21]. Peyrot et al. [22] 82 propose a feature sensitive dart-throwing method with more fo-83 cus on the complex shapes and sharp features. Medeiros et 84 al. [6] propose a hierarchical Poisson-disk sampling algorith-85 m on polygonal models, which is used for surface stippling and 86 non-photo realistic rendering. Yan and Wonka [23] propose a 87 gap analysis framework to achieve Maximal Poisson-disk Sam-⁸⁸ pling (MPS) on surfaces, and they also generalize MPS to adap-⁸⁹ tive sampling. Based on this, Guo et al. [24] use a subdivided ⁹⁰ mesh, instead of the common uniform 3D grid, to improve both ⁹¹ the sampling quality and the efficiency.

⁹² **Relaxation-based Sampling.** Relaxation-based methods itera-⁹³ tively reposition the samples in a random point set, where the

Figure 2: Illustration of the power diagram (left) and the regular triangulation (right) in 2D. The positive weights are shown in red and negative weights are shown in blue. The radius of each point \mathbf{x}_i equals to $\sqrt{|w_i|}$.

⁹⁴ mostly used optimization technique is Lloyd relaxation [8]. Fu ⁹⁵ and Zhou [25] extend the 2D dart-throwing approach of [26] to ⁹⁶ surfaces sampling, and then the Lloyd relaxation is applied for 97 high quality remeshing. Yan et al. [27] present an efficient al-⁹⁸ gorithm to compute the CVT for isotropic surface sampling and 99 remeshing. However, CVT tends to generate point distributions 100 with regular patterns that lack some blue-noise properties. X-¹⁰¹ u et al. [28] generalize the concept of CCVT [10] to surfaces, ¹⁰² which generates point sets exhibiting blue-noise properties. To 103 improve the performance of CCVT, Chen et al. [7] combine C-104 CVT with the CVT framework for blue-noise surface sampling. 105 de Goes et al. [11] generate the blue-noise point sets using opti-106 mal transport. Apart from Lloyd-based methods, there are some 107 other iterative approaches on surfaces. Chen et al. [4] introduce 108 bilateral blue-noise sampling which integrates the non-spatial ¹⁰⁹ features/properties into the sample distance measures. Yan et 110 al. [29] use the Farthest Point Optimization (FPO) [30] to gen-111 erate point sets with high quality of blue-noise properties while 112 avoiding regular structures.

113 3. Problem Statement

In this section, we first give the definitions of the power di-115 agram and the restricted power diagram on surfaces, and the 116 main theory that connects the power diagram and the capacity 117 constraint. Then, we generalize the formulation of 2D capacity 118 constrained blue-noise sampling to mesh surfaces. Finally, we 119 propose a novel extension for multi-capacity constrained sam-120 pling.

121 3.1. Definitions

Power Diagram. A power diagram [31] tessellates the Euclidean space Ω into a set of convex polytopes (e.g., polygons in 2D, and polyhedra in 3D), by a set of *n* weighted points $\{\mathbf{x}_i, w_i\}$, where each $\mathbf{x}_i \in \mathbb{R}^n$, called *site*, is associated with a scalar value w_i called *weight* of site \mathbf{x}_i . Each polytope (or power cell) V_i of \mathbf{x}_i contains the points that have smaller weighted distance to the site \mathbf{x}_i than to others:

$$V_i = \{ \mathbf{x} \in \Omega \mid d_w(\mathbf{x}_i, \mathbf{x}) < d_w(\mathbf{x}_j, \mathbf{x}), \forall j \neq i \}.$$

Figure 3: Illustration of the RPD and RRT on a sphere. The restricted power cells corresponding to each point is shown in random color. The boundary of RPC $V_{i|S}$ is marked with white color. A triangle in the input mesh (highlighted in yellow) is split into convex polygons and assigned to its incident cells.

¹²² To compute the weighted distance $d_w(\mathbf{x}_i, \mathbf{x})$, we adopt the power ¹²³ product $d_w(\mathbf{x}_i, \mathbf{x}) = \|\mathbf{x}_i - \mathbf{x}\|^2 - w_i$, here $\|\cdot\|$ denote the Euclidean 124 norm.

Then the dual of the power diagram is called the regular 125 126 triangulation. Figure 2 shows an example of the power diagram 127 and regular triangulation in a 2D square. Note that when the 128 weights of all the sites are the same, then the power diagram is 129 equivalent to the Voronoi diagram.

Restricted Power Diagram. If the input domain is a 3D surface S, and the set of the weighted points are sampled on S, the intersection between the power diagram and the surface Sis called the restricted power diagram (RPD), each intersected cell $V_{i|S}$ is called a restricted power cell on S, defined as

$$V_{i|S} = \{ \mathbf{x} \in S \mid \Pi(\mathbf{x}_i, w_i; \mathbf{x}, 0) < \Pi(\mathbf{x}_i, w_j; \mathbf{x}, 0), \forall j \neq i \}.$$

130 The dual structure is called restricted regular triangulation (R-131 RT) on surfaces. Figure 3 illustrates the concept of RPD and 132 RRT on a sphere.

134 and the capacity constraint has been proven by Aurenhammer, ¹³⁵ Hoffman and Aranov [12]: Given a point set $\mathbf{X} = {\mathbf{x}_i}$ and a set ¹³⁶ of corresponding positive numbers $\{m_i\}$, and a probability mea-¹³⁷ sure μ such that $\sum m_i = \int d\mu$, it is possible to find the weights ¹³⁸ w_i of a power diagram such that $\mu(V_i) = m_i$ and the optimal weights are obtained as the maximum of a concave function. 139

Note that Aurenhammer, Hoffman and Aranov make the re-140 ¹⁴¹ mark that the map defined by $\forall \mathbf{x} \in V_i, T(\mathbf{x}) = \mathbf{x}_i$ is an optimal ¹⁴² transport map with respect to the L_2 cost. The equivalence can 143 be also directly shown using Brenier's polar factorization the-144 orem [32]. The proof of convergence and an implementation 145 based on [12] is given by Mérigot [33]. A similar algorithm 146 was proposed by Gu et al. [34] recently. This remark has been ¹⁴⁷ used in several works in optimal transport [11, 35, 36, 37, 38]. 148 We refer the readers to the textbook [39] for more details on 149 this topic.

150 3.2. Formulation on Surfaces

In our setting, the goal is to compute a point set $\mathbf{X} = {\mathbf{x}_i}$ 152 on a give 3D surface that fulfills the capacity constraint, i.e., for 153 each point \mathbf{x}_i , we want to constrain the (weighted) area of the ¹⁵⁴ restricted power cell associated with \mathbf{x}_i .

Our target is to minimize the following objective function subject to the equal capacity constraints on surfaces, i.e.,

$$\mathcal{E}(X, W) = \sum_{i=1}^{n} \int_{V_{i|S}} \rho(\mathbf{x}) ||\mathbf{x} - \mathbf{x}_{i}||^{2} d\mathbf{x}$$

$$m_{i} = \int_{V_{i|S}} \rho(\mathbf{x}) d\sigma = m = \frac{m_{\gamma}}{n},$$
 (1)

where $m_{\gamma} = \int_{S} \rho(\mathbf{x}) d\sigma$ is a given constant. This optimization problem is usually solved by introducing Lagrange multipliers $\Lambda = \{\lambda_i\}_{i=1}^n$, and the objective function becomes

s.t.

Minimize
$$\mathcal{E}(X, W) + \sum_{i=1}^{n} \lambda_i (m_i - m)$$
 (2)

with respect to $\mathbf{x}_i, w_i, \lambda_i$. However, since an additional *n* variables λ_i add complexity to the optimization problem, it can be reformulated into a simple scalar function [11]:

$$\mathcal{F}(X,W) = \mathcal{E}(X,W) - \sum_{i=1}^{n} w_i(m_i - m), \qquad (3)$$

155 with respect to \mathbf{x}_i, w_i . By our appendix and [11], the optimiza-156 tion of (2) is equivalent to finding a stationary point of (3).

Note that the difference between our formulation and [11] is that we use the restricted power diagram on surfaces instead of the ordinary power diagram. We derive the gradient on surfaces for variables X and W. Surprisingly, we found that the gradients have the similar forms as their Euclidean formulation. The gradients of the energy $\mathcal{F}(X, W)$ are

$$\nabla_{w_i} \mathcal{F}(X, W) = m - m_i,$$

$$\nabla_{\mathbf{x}_i} \mathcal{F}(X, W) = 2m_i (\mathbf{x}_i - \mathbf{b}_i).$$

¹⁵⁷ where $\mathbf{b}_i = \frac{1}{m_i} \int_{V_{i|S}} \mathbf{x} \rho(\mathbf{x}) d\mathbf{x}$ is the corresponding weighted barycen-133 Optimal Transport. The relation between the power diagram 158 ter. However, the derivation on surfaces is more involved. Sim-159 ilar to [11], the objective function \mathcal{F} is a concave maximization ¹⁶⁰ problem when **X** is fixed, and it can be considered as a mini- $_{161}$ mization problem of the centroidal power diagram when W is 162 fixed. The formal proof and derivations are given in Appendix 163 B. Note that an alternative elegant proof was independently de-164 rived by Bruno Lévy in a recent paper [38].

165 3.3. Multi-Capacity Extension

The formulation discussed above considers only a single capacity value. In this paper, we further extend the sampling problem to multiple capacity constraints. Given a ratio θ_i for \mathbf{x}_i , the customized capacity can be given as $m_i^c = \theta_i m$. In order to keep the total capacity requirement, we require $\sum_{i=1}^{n} m_i^c = m_{\gamma}$. Thus the new energy can be written as

$$\mathcal{F}^{c}(X,W) = \mathcal{E}(X,W) - \sum_{i=1}^{n} w_{i}(m_{i} - m_{i}^{c}).$$

The gradient w.r.t. w_i is changed to be

$$\nabla_{w_i} \mathcal{F}^c(X, W) = m_i^c - m_i,$$

¹⁶⁶ and the gradient $\nabla_{\mathbf{x}_i} \mathcal{F}^c(X, W)$ remains unchanged.

Figure 4: The main steps of our algorithm. The top row shows the Restricted power diagram of each step and the bottom row shows the corresponding quadratic errors respect to the prescribed capacities $||m_i - m||^2$. The colder color means small error and the warmer color means high error. (a) Initial sampling after 3 steps of Lloyd iteration (for better visualization), (b) after weight optimization, (c) after vertex optimization, and (d) final result.

167 4. Implementation Details

The input of our algorithm is a triangular mesh surface S, 169 and the number of desired sampling points n. A density func-170 tion $\rho(\mathbf{x})$ is defined on mesh vertices and piecewise linearly in-171 terpolated over the triangles. In our implementation, we use the local feature size introduced in [40] as the density function, ¹⁷³ i.e., $lfs^2(\mathbf{x})$. But other density can also be used. There are three 174 main steps in our framework, i.e., initialization and interleaving 175 weight/vertex optimization. Figure 4 shows the main steps of 176 our pipeline.

177 4.1. Initial Sampling

The sampling points X are initialized randomly according to the density function. The initial power weights W are initialized 179 $_{180}$ to be 0. Before starting into optimization, we perform 3 ~ 5 181 steps of Lloyd iteration to get a better initial distribution. Other-¹⁸² wise, the optimization might get stuck in undesirable local min-²⁰⁶ 4.3. Vertex Optimization 183 ima quickly and it becomes difficult to find optimal weights. In 184 the case of multi-capacity sampling, we initialize each type of $_{185}$ capacity separately to ensure a better distribution. Figure 4(a) 186 shows the initialization result on a sphere model.

187 4.2. Weight Optimization

Before starting the weight optimization, all weights are reset to 0. Weight optimization makes every sampling point share a common capacity as much as possible when the positions of sampling points remain fixed. The Hessian matrix w.r.t. weight $H_{\mathcal{F}} = \nabla_w^2 \mathcal{F}(X, W)$ can be explicitly derived as (see Theorem 6 in Appendix):

$$[H_{\mathcal{F}}]_{ij} = \frac{\bar{\rho}_{ij}}{2} \sum_{l \in \mathcal{T}_{ij}} \frac{|e_{ij}^* \cap \tau_l|}{|e_{ij}|_{\tau_l}},$$
$$[H_{\mathcal{F}}]_{ii} = \sum_{j \in \Omega_i} [H_{\mathcal{F}}]_{ij},$$

¹⁸⁸ where $|e_{ij}|_{\tau}$ is the length of projection of e_{ij} onto the triangular 189 plane τ , \mathcal{T}_{ij} is the index set of the triangles in the mesh that

¹⁹⁰ intersect with the bisecting plane e_{ij}^* , and $\bar{\rho}_{ij}$ is the average val-¹⁹¹ ue of ρ over $e_{ij}^* \cap \mathcal{T}$. Newton iterations are used to optimize 192 weights. Note that the Hessian on surfaces is different from ¹⁹³ the 2D case, the edges of the restricted power diagram is not a ¹⁹⁴ single segment but a set of connected segments.

The derivation of the multi-capacity sampling is similar. ¹⁹⁶ The only difference is that the righthand side of the linear sys-¹⁹⁷ tem is changed to be $\nabla_{w_i} \mathcal{F}^c(X, W)$ instead of $\nabla_{w_i} \mathcal{F}(X, W)$.

During the iterations, the step size is adapted by a line search 198 ¹⁹⁹ with Armijo condition [41]. The weight optimization stop-200 s when the threshold is met. The threshold for weight opti-²⁰¹ mization is defined as $\sqrt{\sum_{i=1}^{n} (\nabla_{w_i} \mathcal{F}(X, W))^2} \leq \frac{\alpha_1}{n} m_{\gamma}^{\theta_1}$, where α_1 202 is a scaling coefficient accounting for the number of sampling ²⁰³ points and the density function ($\alpha_1 = 0.1, \theta_1 = 1.0$ in our exper-²⁰⁴ iments). Typically, 5 ~ 7 iterations can reduce the δ'_w within 205 the threshold.

207 Vertex optimization, which reduces the objective function $_{208} \mathcal{F}$ when the weight remains unchanged, can be seen as the pro-209 cess of finding a "centroidal power diagram" of the weighed 210 sampling points, which could be achieved by using either Lloy-²¹¹ d iteration [8] or quasi-Newton solvers [42].

During the optimization, the positions of the sampling points will be updated to their weighted barycenters, and then projecting \mathbf{b}_i to the input mesh S if Lloyd iteration is used. Otherwise, if a quasi-Newton solver is used, the gradient $\nabla_{\mathbf{x}_i} \mathcal{F}(X, W)$ should be constrained within the tangent plane of \mathbf{x}_i , i.e.,

$$\nabla_{\mathbf{x}_i|S} \mathcal{F}(X, W) = \nabla_{\mathbf{x}_i} \mathcal{F}(X, W) - [\nabla_{\mathbf{x}_i} \mathcal{F}(X, W) \cdot \mathbf{N}(\mathbf{x}_i)] \mathbf{N}(\mathbf{x}_i).$$

212 After each step of update, the vertices are then projected back to ²¹³ the input surface. Optimizing vertices only reduces the energy $\mathcal{F}(X, W)$, but might increase of capacity variance (see Figure 6 $_{215}$ in Section 5). Typically after 3 \sim 5 iterations, the requirement 216 of the threshold will be satisfied. We set the condition for vertex 217 optimization to $\sqrt{\sum_{i=1}^{n} \|\nabla_{\mathbf{x}_i} \mathcal{F}(X, W)\|^2} \leq \frac{\alpha_2}{n} m_{\gamma}^{\theta_2} (\alpha_2 = 0.1, \theta_2 = 0.1)$ ²¹⁸ 1.2 in our experiments).

219 4.4. Randomness Improvement

220 221 ing as most relaxation based methods, i.e., the restricted power 251 usually converges after 3-5 iterations. The total running times 222 cells form a regular hexagonal pattern after optimization. To 252 are 89.2 and 182.5 seconds for uniform and adaptive sampling, ²²³ overcome this problem, Gaussian noise is used to add random-²⁵³ respectively. More results are shown in Fig. 7. ²²⁴ ness in such regions to break regular patterns.

It is worth to point out that the local regular patterns of the 225 point distributions are detected and are broken up in a way that 226 is similar to [11]: we first measure the regularity for every point, 227 and then disturb the point and its one-ring neighbors in the regular regions. The main difference of our implementation is that the disturbances occur in the corresponding containing triangles ²³¹ on the surface instead of resampling randomly. Our procedure 232 ensures that the perturbed points still lie on the mesh.

Algorithm 1: Optimization algorithm

- 1 Initialize sampling point set **X** with *n* points;
- 2 Run 3 \sim 5 times Lloyd iterations;
- 3 Compute the threshold for weight optimization $\delta_w = \frac{\alpha_1}{n} m_{\gamma}^{\theta_1};$
- 4 Compute the threshold for vertex optimization $\delta_{\mathbf{x}} = \frac{\alpha_2}{n} m_{\gamma}^{\theta_2};$
- 5 repeat
- Set all power weights to be 0; 6
- Call WEIGHT-OPTIMIZATION; 7
- Optimize vertices and update RVD; 8
- Compute $\delta'_{\mathbf{x}} = \sqrt{\sum_{i=1}^{n} \|\nabla_{\mathbf{x}_i} \mathcal{F}(X, W)\|^2};$ 9
- until $(\delta'_{\mathbf{x}} \leq \delta_{\mathbf{x}});$ 10
- Call WEIGHT-OPTIMIZATION; 11
- Randomness improvement; 12
- **Function WEIGHT-OPTIMIZATION** 13
- repeat 14
- 15 Solve the concave problem of weight optimization;
- Update power weights and RVD; 16
- Compute $\delta'_{w} = \sqrt{\sum_{i=1}^{n} (\nabla_{w_i} \mathcal{F}(X, W))^2};$ 17
- 18 until $(\delta'_w \leq \delta_w);$

233 5. Experimental Results

In this section, we demonstrate some results of the proposed 234 235 method and compare our approach with several state-of-the-art 236 surface sampling algorithms in various aspects. In our imple-237 mentation, we use CGAL [43] for computing the 3D regular tri-238 angulation. We use the implementation of [27] for RPD compu-239 tation. Note that more recently, Bruno Lévy has released a new 240 open-source package, called Geogram [44], which contains an 241 improved version of the RVD computation libraray. Our ex-242 periments are conducted on a PC with i5-2320, 3.00GHz CPU, ²⁴³ 16GB memory and a 64-bit Ubuntu operating system.

244 Performance Analysis. Our framework is able to generate a 245 high quality blue-noise point set efficiently. We test our method 246 on a complicated Pegaso model as shown in Figure 5. The con-247 vergence behavior of the optimization procedure run on the Pe- 254 ²⁴⁸ gaso model is shown in Figure 6. In our implementation, we

249 set the number of iterations of weight optimization and vertex Since our optimization framework has the same shortcom- 250 optimization to 10 and 20 times, respectively. The optimization

Figure 5: Uniform (top) and adaptive (bottom) sampling on the Pegaso model. The number of sampling points is 10K in both tests. Left: sampled points, middle: quadratic error with respect to the prescribed capacities, and right: restricted power diagram. Different colors indicate different valences of each vertex in the dual restricted regular triangulation. Light green is valence 6 (v_6), orange is v_7 , blue is v_5 , dark blue is v_4 and brown is v_7 .

Figure 6: Illustration of the convergence of the capacity variance against the number of iterations. Each peak corresponds to a switch from the weight optimization to vertex position optimization.

Figure 8 compares the timing statistics of different approach-255 es. The time cost of CVT and CapCVT are evaluated by apply-

Figure 7: More sampling results. From top to bottom: uniform sampling of Venus and Elk, and adaptive sampling of Omotondo and Dragon. We use 10K samples for all the models. The time costs are 92.34s, 94.07s, 123.23s, and 125.45s, respectively. From left to right: sampled points and their corresponding RPDs; color-coded RPDs, where the color indicates different valences of each vertex in the dual restricted regular triangulation; quadratic error with respect to the prescribed capacities; and the power spectrum, the radial power and the normal anisotropy.

Figure 8: Comparison of the time cost of different methods using the Genus3 model. Left: uniform sampling. Right: adaptive sampling.

²⁵⁶ ing 100 L-BFGS iterations. Since MPS does not need iterative ²⁵⁷ optimization, it is the most efficient approach compared to the ²⁵⁸ other methods, while FPO is the most time consuming since it ²⁵⁹ optimizes each individual point once during each step of itera-²⁶⁰ tion. From this comparison, we can see that the performance of ²⁶¹ our method is comparative to the other optimization-based ap-²⁶² proaches, while we can generate results with minimum capacity ²⁶³ variances.

Randomness Improvement. We further analyze the effect of 264 the Gaussian noise introduced in Sec. 4.4 for randomness im-265 ²⁶⁶ provement. We show two examples in Fig. 9 and Fig. 10 for 267 both uniform and adaptive sampling, respectively. In each example, we first run our interleaving optimization framework un-²⁶⁹ til convergence. As we can see in the left column, both results 270 contains many hexagonal cells. Then we apply Gaussian noise 271 to break the regular patterns and run the optimization again. ²⁷² The right column in each Figure shows the final results with ²⁷³ more irregular patterns while keeping small capacity variances. 274 In the first example, the percentage of valence-6 points is re-275 duced from 80.55% to 54.95% after adding Gaussian noise. In 310 than other approaches. 276 the second example, the percentage of valence-6 points is re-277 duced from 75.51% to 50.53% after adding Gaussian noise.

Figure 9: Randomness improvement of the uniform sampling on the Sphere model. Left: results without adding Gaussian noise; right: results of adding Gaussian noise and further optimization.

Figure 10: Randomness improvement of the adaptive sampling on the Botijo model. Left: results without adding Gaussian noise; right: results of adding Gaussian noise and further optimization.

²⁷⁸ Evaluation and Comparison. We then evaluate our results in ²⁷⁹ terms of sampling irregularity, quadratic error with respect to

the prescribed capacities and the spectral property. The last column of Figure 11 and Figure 12 demonstrate the visual qualities of these criteria of uniform sampling and adaptive sampling, respectively. It is easy to see that our results present high irregularity and low capacity variation, as well as good blue-noise property.

Next, we compare the above criteria with several state-of-286 287 the-art techniques in Figure 11 and Figure 12, including maxi-288 mal Poisson-disk sampling (MPS) [23], farthest point optimiza-289 tion (FPO) [29], centoridal Voronoi tessellation (CVT) [27] and 290 capacity-constrained centroidal Voronoi tessellation (CapCVT) ²⁹¹ [7]. To make a precise comparison, we use the same densi-²⁹² ty function $\rho(\mathbf{x}) = 1/lf s^2(\mathbf{x})$ for all methods. The results of ²⁹³ CVT and CapCVT are generated after 100 LBFGS iterations. ²⁹⁴ The balance coefficient λ used in CapCVT is set to 50 to en-²⁹⁵ force better capacity constraints. Usually MPS has the maximal 296 variance, and FPO and CVT also have large values since these 297 methods do not have explicit control of the capacity constraints. ²⁹⁸ CapCVT is better since it tends to equalize the capacity values ²⁹⁹ using a penalty term in addition to CVT energy, which controls 300 the regularity of the point distribution. Our result exhibits the 301 lowest capacity variance among all the methods thanks to the 302 exact capacity formulation.

Figure 13 compares the capacity variances against the in-³⁰⁴ creasing number of points for all approaches. The relative ca-³⁰⁵ pacity variance is computed as $\frac{1}{m_{\gamma}}\sqrt{\frac{1}{n}\sum_{i=1}^{n}(m_i-m)^2}$. We use ³⁰⁶ the logarithmic coordinates for better visualization. From this ³⁰⁷ figure, we can see that capacity variances converge when in-³⁰⁸ creasing the number of sampling points for all sampling meth-³⁰⁹ ods. The magnitude of our method is several orders smaller ³¹⁰ than other approaches.

Figure 13: Comparison of the capacity variance against the increasing number of sample points. Left: uniform sampling. Right: adaptive sampling.

311 Feature Preserving. Our framework is able to handle sharp 312 features easily. We assume that the sharp features are given 313 as input. During the optimization, the points whose restricted 314 power cells are clipped with feature curves are project back to 315 the feature skeletons. Figure 14 shows an example of feature 316 preserving sampling and its spectral analysis. This simple ex-317 tension does not spoil the blue-noise property.

Multi-Capacity Constraints. Two examples of multi-capacity constraints are shown in Figure 1. Figure 14 shows the quadrat- ic error with respect to the prescribed capacities and the spectral analysis results of a two-capacity example on a sphere mod- el. This new extension keeps the variances small and maintains high blue-noise quality.

Figure 11: Comparison of the uniform sampling results. From left to right: results of MPS, FPO, CVT, CapCVT and ours. The top row shows the sampling results of each method. The second row shows the restricted Power diagram of the sampling points. The third row shows quadratic errors with respect to the prescribed capacities. The colors from blue to red indicate the errors from low to high. The fourth row is the power spectrum of the differential domain analysis [45] and the last row shows the radial power and the normal anisotropy of each method.

Figure 14: Spectral analysis of examples of feature preserving (top) and multicapacity sampling (bottom). The feature curves of the joint model are shown in green. Left: results of RPDs; middle: quadratic error with respect to the prescribed capacities; and right results of spectral analysis.

³²⁴ Limitations. One limitation of our algorithm is that we can-³²⁵ not guarantee the maximal sampling property as [23]. Gaps ³²⁶ can be detected if we draw a sphere at each vertex using the ³²⁷ shortest edge length as radius in uniform sampling case and us-³²⁸ ing the shortest incident edge length as radius in adaptive sam-³²⁹ pling case. Although our algorithm works well in practice, the ³³⁰ connection between the capacity constraint and the blue-noise ³³¹ property is still not well explained. We would like to address ³³² these issues as future works.

333 6. Conclusions

We present a new method for blue noise sampling on mesh surfaces under exact capacity constraints. The problem is formulated as an optimization problem on mesh surfaces. A closedform formula for gradient computation on surfaces has been derived and it has been proved that the gradient of the new formulation coincide with its Euclidean counterpart, thus can be

Figure 12: Comparison of the adaptive sampling results.

340 minimized efficiently using modern solvers. We also extend the 399 [17] Corsini M, Cignoni P, Scopigno R. Efficient and flexible sampling with ³⁴¹ presented sampling framework to handle multi-capacity con-³⁴² straints. We make a complete comparison of various criteria ³⁴³ between the state-of-the-art surface sampling approaches, and 344 we show that our results perform better than others when p-345 reserving capacity constraints. In the future, we would like to ³⁴⁶ investigate more properties of this sampling framework, and ap-347 ply it for more applications, such as remeshing.

348 Acknowledgements

We would like to thank anonymous reviewers for their in-349 ³⁵⁰ sightful comments and suggestions which greatly improve the 351 quality of the paper. We also thank Zhonggui Chen for provid-³⁵² ing the executable of CapCVT, and Bruno Lévy for sharing the ⁴¹⁷ [24] 353 Geex open-source platform with us. This work was partially ³⁵⁴ supported by the National Key Technologies R&D Program of 355 China (2015BAF23B03), the National Nature Science Founda-356 tion of China (61373070, 61372168, 11201463, and 61572502), 422 357 Tsinghua University Initiative Scientific Research Program

(2012Z02170), the Scientific Research Foundation for the Re-359 turned Overseas Chinese Scholars of State Education Ministry 360 of China, and the Open Funding Project of the State Key Lab-361 oratory of Virtual Reality Technology and Systems, Beihang 362 University (BUAA-VR-15KF-06).

363 References

- Wiki . https://en.wikipedia.org/wiki/colors_of_noise#blue_noise. 2015. [1] 364
- Ulichney R. Digital Halftoning. MIT Press; 1987. 365 [2]
- Lagae A, Dutré P. A comparison of methods for generating Poisson disk 366 [3] distributions. Computer Graphics Forum 2008;27(1):114-29. 367
- Chen J, Ge X, Wei LY, Wang B, Wang Y, Wang H, et al. Bilateral 368 [4] blue noise sampling. ACM Trans on Graphics (Proc SIGGRAPH Asi-369 370 a) 2013;32(6):216:1-216:11.
- 371 [5] Schechter H, Bridson R. Ghost SPH for animating water. ACM Trans on Graphics (Proc SIGGRAPH) 2012;31(4):1-8. 372
- 373 Medeiros E, Ingrid L, Pesco S, Silva C. Fast adaptive blue noise on polyg-[6] onal surfaces. Graphical Models 2014;76(1):17-29. 374
- Chen Z, Yuan Z, Choi YK, Liu L, Wang W. Variational blue noise sam-[7] 375 pling. IEEE Trans on Vis and Comp Graphics 2012;18(10):1784-96. 376
- 377 [8] Lloyd SA. Least squares quantization in PCM. IEEE Transactions on Information Theory 1982;28(2):129-37. 378
- Mitchell DP. Spectrally optimal sampling for distribution ray tracing. In: 379 [9] Proc. ACM SIGGRAPH. 1991, p. 157-64. 380
- Balzer M, Schlömer T, Deussen O. Capacity-constrained point distri-381 [10] butions: A variant of Lloyd's method. ACM Trans on Graphics (Proc 382 SIGGRAPH) 2009;28:1-8. 383
- [11] de Goes F, Breeden K, Ostromoukhov V, Desbrun M. Blue noise through 384 optimal transport. ACM Trans on Graphics (Proc SIGGRAPH Asia) 385 2012:31:171:1-171:12. 386
- Aurenhammer F, Hoffmann F, Aronov B. Minkowski-type theorems and 387 [12] least-squares partitioning. In: Symposium on Computational Geometry. 388 1992, p. 350-7. 389
- Hales TC. The honeycomb conjecture. Discrete & Computational Geom-390 131 etry 2001;25(1):1-22. 391
- 392 [14 Pottmann H, Asperl A, Hofer M, Kilian: A. Architectural Geometry. Bentley Institute Press; 2007. 393
- Yan DM, Guo J, Wang B, Zhang X, Wonka P. A survey of blue-noise 394 [15] sampling and its applications. Journal of Computer Science and Technol-395 ogy 2015;30(3):439-52. 396
- Cline D, Jeschke S, Razdan A, White K, Wonka P. Dart throwing on 397 [16] 398 surfaces. Computer Graphics Forum (Proc EGSR) 2009;28(4):1217-26.

- blue noise properties of triangular meshes. IEEE Trans on Vis and Comp 400 Graphics 2012:18(6):914-24 401
- Bowers J, Wang R, Wei LY, Maletz D. Parallel Poisson disk sampling 402 [18] 403 with spectrum analysis on surfaces. ACM Trans on Graphics (Proc SIG-404 GRAPH Asia) 2010:29.
- 405 [19] Geng B, Zhang H, Wang H, Wang G. Approximate Poisson disk sampling on mesh. SCIENCE CHINA Information Sciences 2013;56(9):1-12. 406
- 407 [20] Ying X, Xin SQ, Sun Q, He Y. An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. IEEE Trans on Vis and Comp 408 Graphics 2013:19(9):1425-37. 409
- 410 [21] Ying X, Li Z, He Y. A parallel algorithm for improving the maximal property of Poisson disk sampling. Computer-Aided Design 2014;46(9):37-411 44. 412
- Peyrot JL, Payan F, Antonini M. Direct blue noise resampling of meshes 413 [22] of arbitrary topology. The Visual Computer 2014; Accepted. 414
- Yan DM, Wonka P. Gap processing for adaptive maximal Poisson-disk 415 [23] sampling. ACM Trans on Graphics 2013;32(5):148:1-148:15. 416
- Guo J, Yan DM, Jia X, Zhang X. Efficient maximal Poisson-disk sampling and remeshing on surfaces. Computers & Graphics 2015;46(6-8):72-9.
- Fu Y, Zhou B. Direct sampling on surfaces for high quality remeshing. 419 [25] 420 In: ACM symposium on Solid and physical modeling. 2008, p. 115–24.
- 421 [26] Dunbar D, Humphreys G. A spatial data structure for fast Poissondisk sample generation. ACM Trans on Graphics (Proc SIGGRAPH) 2006;25(3):503-8. 423
- 424 [27] Yan DM, Lévy B, Liu Y, Sun F, Wang W. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Computer Graphics 425 Forum 2009;28(5):1445-54. 426
- 427 [28] Xu Y, Hu R, Gotsman C, Liu L. Blue noise sampling of surfaces. Computers & Graphics 2012;36(4):232-40. 428
- 429 [29] Yan DM, Guo J, Jia X, Zhang X, Wonka P. Blue-noise remeshing with farthest point optimization. Computer Graphics Forum (Proc SG-430 431 P) 2014:33(5):167–76.
- Schlömer T, Heck D, Deussen O. Farthest-point optimized point sets with 432 [30] maximized minimum distance. In: High Performance Graphics Proceed-433 ings. 2011, p. 135-42. 434
- 435 [31] Aurenhammer F. Power diagrams: Properties, algorithms and applications. SIAM J Comput 1987;16:78-96. 436
- 437 [32] Brenier Y. Polar factorization and monotone rearrangement of vectorvalued functions. Communications on Pure and Applied Mathematics 438 439 1991;44:375-417.
- Mérigot Q. A multiscale approach to optimal transport. Comput Graph 440 [33] Forum 2011;30(5):1583-92. 441
- 442 [34] Gu X, Luo F, Sun J, Yau ST. Variational principles for minkowski type problems, discrete optimal transport, and discrete monge-ampere equa-443 tions. arXiv preprint arXiv:13025472 2013;. 444
- Su Z, Sun J, Gu X, Luo F, Yau ST. Optimal mass transport for geometric 445 [35] modeling based on variational principles in convex geometry. Engineer-446 447 ing with Computers 2014;30(4):475-86.
- 448 [36] Mérigot Q, Oudet E. Discrete optimal transport: complexity, geometry and applications. Tech. Rep.: 2014. URL: 449 450
- http://hal.univ-grenoble-alpes.fr/hal-00980195. David Bourne SR. Centroidal power diagrams, Lloyd's algorithm and 451 [37] applications to optimal location problems. arXiv preprint arXiv:14092786 452 453
- 2014;URL: http://arxiv.org/abs/1409.2786. Lévy B. A numerical algorithm for L2 semi-discrete optimal transport in 454 [38]
- 3D. 2014. URL: https://hal.inria.fr/hal-01105021; no. 455
- Villani C. Optimal transport, old and new. Springer; 2009. 456 [39]
- 457 [40] Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm. In: Proc. ACM SIGGRAPH. 1998, p. 415-21. 458
- 459 [41] Nocedal J, Wright SJ. Numerical Optimization. Springer; 2006.
- 460 [42] Liu Y, Wang W, Lévy B, Sun F, Yan DM, Lu L, et al. On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM 461 Trans on Graphics 2009;28(4):101:1-17. 462
- 463 [43] CGAL, Computational Geometry Algorithms Library. 2015. 464 Http://www.cgal.org.
- Restricted voronoi diagrams for (re)-meshing surfaces 465 [44] Lévy B. 466 and volumes. In: Curves and Surfaces. 2014,Code download: 467 http://gforge.inria.fr/projects/geogram/.
- 468 [4.5] Wei LY, Wang R. Differential domain analysis for non-uniform sampling. ACM Trans on Graphics (Proc SIGGRAPH) 2011;30:50:1-8. 469

470 Appendix A. Reynolds Transport Theorem

The derivation of an integral function $\mathbf{f} = \mathbf{f}(\mathbf{x}, t)$ over the time-dependent region $\Omega(t)$ that has boundary $\partial \Omega(t)$ with respect to time *t* is in the following form:

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega(t)}\mathbf{f}\,\mathrm{d}\mathbf{V}=\int_{\Omega(t)}\frac{\partial\mathbf{f}}{\partial t}\,\mathrm{d}\mathbf{V}+\int_{\partial\Omega(t)}(\mathbf{v}^b\cdot\mathbf{n})\mathbf{f}\mathrm{d}\mathbf{A},$$

⁴⁷¹ where $\mathbf{n}(\mathbf{x}, t)$ is the outward-pointing unit-normal, \mathbf{x} is a point ⁴⁷² in the region and is the variable of integration, dV and dA are ⁴⁷³ volume and surface elements at \mathbf{x} , and $\mathbf{v}^b(\mathbf{x}, t)$ is the velocity of ⁴⁷⁴ the area element.

475 Appendix B. Gradient Derivation on Surfaces

In this appendix, we derive the gradient ∇_{w_i} and $\nabla_{\mathbf{x}_i}$ of the difference function. We assume that when applying a sufficiently multiple small perturbation to the weight w_i or the location of \mathbf{x}_i , only the difference function of the Voronoi regions $\{V_i | j \in \Omega_i\}$ will change.

We denote by e_{ij} the edge connecting the sites \mathbf{x}_i and \mathbf{x}_j , e_{ij}^* the bisecting plane of the weighted sites \mathbf{x}_i and \mathbf{x}_j , $|\cdot|$ the e_{ij} the bisecting plane of the weighted sites \mathbf{x}_i and \mathbf{x}_j , $|\cdot|$ the e_{ij} length of an edge, $|e_{ij}|_{\tau}$ the length of the projection of e_{ij} onto the triangle τ , \mathcal{T}_{ij} the index set of the triangles in the mesh that the intersect with the Voronoi face e_{ij}^* , and $\bar{\rho}_{ij}$ the average value of $e_{ij} \cap S$.

Let $m_i = \int_{V_{i|S}} \rho(\mathbf{x}) d\sigma$. Since for a fixed domain, the partition of the density function $\rho(\mathbf{x})$ into cells $V_{i|S}$ sums up to a constant, i.e.,

$$\sum_{i} m_i = m_{\gamma}, \tag{B.1}$$

we take derivative of (B.1) w.r.p to w_i and \mathbf{x}_i :

$$\nabla_{w_i} m_i + \sum_{j \in \Omega_i} \nabla_{w_i} m_j = 0$$

$$\nabla_{\mathbf{x}_i} m_i + \sum_{j \in \Omega_i} \nabla_{\mathbf{x}_i} m_j = 0$$
(B.2)

⁴⁸⁶ Figure B.15 illustrates the notations of the RVD used in the ⁴⁸⁷ following proof.

Figure B.15: Illustration of the notations of restricted power diagram. A triangle of input mesh is denoted as τ . The intersection of the triangle with a bisecting plane of two neighboring cells *i*, *j* is shown in white.

Lemma 1.

$$\nabla_{w_i} m_j = -\frac{\bar{\rho}_{ij}}{2} \sum_{l \in \mathcal{T}_{ij}} \frac{|e_{ij}^+ \cap \tau_l|}{|e_{ij}|_{\tau_l}}$$

Proof: By Reynolds' theorem, noticing that $\rho(\mathbf{x})$ is independent of (\mathbf{x}_i, w_i) , we have

$$\nabla_{w_i} m_j = \sum_{k \in \Omega_j} \sum_{l \in \mathcal{T}_{jk}} \int_{e_{jk}^* \cap \tau_l} \rho(\mathbf{x}) \mathbf{v}_{w_i} \cdot \mathbf{b} ds = -\sum_{l \in \mathcal{T}_{ji}} \int_{e_{ij}^* \cap \tau_l} \rho(\mathbf{x}) \mathbf{v}_{w_i} \cdot \mathbf{b} ds,$$
(B.3)

⁴⁸⁸ where Ω_j is the index set of the cells that are adjacent with $V_{j|S}$, ⁴⁸⁹ $\mathbf{v}_{w_l} = \nabla_{w_l} \mathbf{x}$ for those intersection points \mathbf{x} of the bisecting plane ⁴⁹⁰ e_{jk}^* and a mesh triangular τ_l (with normal \mathbf{n}_{τ_l} and a vertex \mathbf{p}_{τ_l}), ⁴⁹¹ \mathbf{b} is the outpointing normal at the boundary points.

Now we formulate \mathbf{v}_{w_i} by writing out the explicit representation of the intersection point **x**:

$$(\mathbf{x}_j - \mathbf{x}_i) \cdot (\mathbf{x} - \mathbf{c}_{ij}) = 0$$

$$(\mathbf{x} - \mathbf{p}_{\tau_l}) \cdot \mathbf{n}_{\tau_l} = 0,$$
(B.4)

where

$$\mathbf{c}_{ij} = \mathbf{x}_i + \frac{d_{ij}}{|e_{ij}|} (\mathbf{x}_j - \mathbf{x}_i), \quad d_{ij} = \frac{|e_{ij}|^2 + w_i - w_j}{2|e_{ij}|}$$

Taking the derivative ∇_{w_i} of (B.4) yields:

$$\nabla_{w_i} \mathbf{x} \cdot (\mathbf{x}_j - \mathbf{x}_i) = \frac{1}{2}$$

$$\nabla_{w_i} \mathbf{x} \cdot \mathbf{n}_{\tau_i} = 0$$
(B.5)

Noticing that the unit normal **b** is given by

$$\mathbf{b} = \frac{(\mathbf{x}_j - \mathbf{x}_i) - ((\mathbf{x}_j - \mathbf{x}_i) \cdot \mathbf{n}_{\tau_l})\mathbf{n}_{\tau_l}}{\|(\mathbf{x}_j - \mathbf{x}_i) - ((\mathbf{x}_j - \mathbf{x}_i) \cdot \mathbf{n}_{\tau_l})\mathbf{n}_{\tau_l}\|}$$
(B.6)

Hence

$$\nabla_{w_i} \mathbf{x} \cdot \mathbf{b} = \frac{1}{2 ||(\mathbf{x}_j - \mathbf{x}_i) - ((\mathbf{x}_j - \mathbf{x}_i) \cdot \mathbf{n}_{\tau_i})\mathbf{n}_{\tau_i}||} = \frac{1}{2 |e_{ij}|_{\tau_i}}.$$
 (B.7)

Substituting (B.7) back to (B.3) gives

$$\nabla_{w_i} m_j = -\sum_{l \in \mathcal{T}_{ij}} \frac{1}{2|e_{ij}|_{\tau_l}} \int_{e_{ij}^* \cap \tau_l} \rho(\mathbf{x}) ds = -\frac{\bar{\rho}_{ij}}{2} \sum_{l \in \mathcal{T}_{ij}} \frac{|e_{ij}^* \cap \tau_l|}{|e_{ij}|_{\tau_l}}.$$
(B.8)

Lemma 2.

$$\nabla_{\mathbf{x}_{i}}m_{j} = \sum_{l \in \mathcal{T}_{ij}} \frac{-\int_{e_{ij}^{*} \cap \tau_{l}} \rho(\mathbf{x}) \mathbf{x} ds}{|e_{ij}^{*}|_{\tau_{l}}} - \sum_{l \in \mathcal{T}_{ij}} \frac{|e_{ij}^{*} \cap \tau_{l}|}{|e_{ij}^{*}|_{\tau_{l}}} \bar{\rho}_{ij} \mathbf{m}_{ij}, \quad (B.9)$$

where

$$\mathbf{m}_{ij} = -\mathbf{x}_i + (1 - \frac{2d_{ij}}{|e_{ij}|})(\mathbf{x}_j - \mathbf{x}_i).$$

Proof. The derivation is similar to 1 the previous proof, hence we directly write out

$$\nabla_{\mathbf{x}_{i}}m_{j} = \sum_{l\in\mathcal{T}_{ij}} \int_{e_{ji}^{*}\cap\tau_{l}} \rho(\mathbf{x}) \mathbf{b} \mathbf{v}_{\mathbf{x}_{i}} ds = -\sum_{l\in\mathcal{T}_{ij}} \int_{e_{ij}^{*}\cap\tau_{l}} \rho(\mathbf{x}) \mathbf{b} \mathbf{v}_{\mathbf{x}_{i}} ds,$$
(B.10)

¹A slight difference here is that \mathbf{x}_i is now a vector. Taking the derivative of any vector $\mathbf{f} = (f_1, f_2, f_3)$ w.r.p. to $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3})$ gives a matrix, i.e., $\nabla_{\mathbf{x}_i}\mathbf{f} = (f_{jk})_{3\times 3}$, whose element $f_{jk} = \nabla_{x_{ik}f_j}$. Correspondingly, the vector dotproduct in (B.5) now becomes the matrix production

where $\mathbf{v}_{\mathbf{x}_i}$ now represents $\nabla_{\mathbf{x}_i} \mathbf{x}$ for those boundary point \mathbf{x} . The 494 Appendix B.2. New Functional formulation of these boundary point x has already been provided by equation (B.4). So we now take the derivative for (B.4):

$$(\mathbf{x}_j - \mathbf{x}_i)\nabla_{\mathbf{x}_i}\mathbf{x} = (\mathbf{x} - \mathbf{x}_i) + (1 - \frac{2d_{ij}}{|e_{ij}|})(\mathbf{x}_j - \mathbf{x}_i)$$

$$\mathbf{n}_{\tau_i}\nabla_{\mathbf{x}_i}\mathbf{x} = 0.$$
 (B.11)

The outpoint normal **b** still preserves the representation in (B.6). Hence

$$\mathbf{b}\nabla_{\mathbf{x}_i}\mathbf{x} = \frac{(\mathbf{x} - \mathbf{x}_i) + (1 - \frac{2d_{ij}}{|e_{ij}|})(\mathbf{x}_j - \mathbf{x}_i)}{|e_{ij}^*|_{\tau_l}}.$$
 (B.12)

~

Substituting (B.12) back to (B.10) gives

$$\nabla_{\mathbf{x}_{i}}m_{j} = \sum_{l\in\mathcal{T}_{ij}} \frac{-\int_{e_{ij}^{*}\cap\tau_{l}} \rho(\mathbf{x})\mathbf{x}ds - \mathbf{m}_{ij}\int_{e_{ij}^{*}\cap\tau_{l}} \rho(\mathbf{x})ds}{|e_{ij}^{*}|_{\tau_{l}}}$$

$$= \sum_{l\in\mathcal{T}_{ij}} \frac{-\int_{e_{ij}^{*}\cap\tau_{l}} \rho(\mathbf{x})\mathbf{x}ds}{|e_{ij}^{*}|_{\tau_{l}}} - \sum_{l\in\mathcal{T}_{ij}} \frac{|e_{ij}^{*}\cap\tau_{l}|}{|e_{ij}^{*}|_{\tau}} \bar{\rho}_{ij}\mathbf{m}_{ij},$$
(B.13)

where

$$\mathbf{m}_{ij} = -\mathbf{x}_i + (1 - \frac{2d_{ij}}{|e_{ij}|})(\mathbf{x}_j - \mathbf{x}_i).$$

492 Appendix B.1. Total Cost Change Rate

The total cost is defined by

$$\mathcal{E}(X, W) = \sum_{i} \int_{V_{ijs}} \rho(\mathbf{x}) ||\mathbf{x} - \mathbf{x}_{i}||^{2} d\mathbf{x}$$
(B.14)

Theorem 3.

$$\nabla_{\mathbf{x}_i} \mathcal{E} = 2m_i (\mathbf{x}_i - \mathbf{b}_i) + \sum_{j \in \Omega_i} (w_j - w_i) \nabla_{\mathbf{x}_i} m_j, \qquad (B.15)$$

where

$$\mathbf{b}_i = \frac{\int_{V_{i|S}} \mathbf{x} \rho(\mathbf{x}) d\mathbf{x}}{m_i}.$$

Proof. By B.12, B.13,

$$\nabla_{\mathbf{x}_{i}} \mathcal{E} = \int_{V_{i|s}} \nabla_{\mathbf{x}_{i}} (\rho(\mathbf{x}) ||\mathbf{x} - \mathbf{x}_{i}||^{2}) d\mathbf{x}$$

+ $\sum_{j \in i \cup \Omega_{i}} \int_{\partial V_{j|s}} \rho(\mathbf{x}) ||\mathbf{x} - \mathbf{x}_{i}||^{2} (\nabla_{\mathbf{x}_{i}} \mathbf{x} \cdot \mathbf{b}) ds$ (B.16)
= $2m_{i}(\mathbf{x}_{i} - \mathbf{b}_{i}) + \sum_{j \in \Omega_{i}} (w_{j} - w_{i}) \nabla_{\mathbf{x}_{i}} m_{j}$

Theorem 4.

$$\nabla_{w_i} \mathcal{E} = \sum_{j \in \Omega_i} (w_j - w_i) \nabla_{w_i} m_j, \qquad (B.17)$$

⁴⁹³ **Proof.** The proof is similar to above using Lemma 1.

We use the new energy functional

$$\mathcal{F}(X, W) = \mathcal{E}(X, W) - \sum_{i} w_{i}(m_{i} - m)$$

Theorem 5.

$$\nabla_{w_i} \mathcal{F}(X, W) = m - m_i$$

$$\nabla_{\mathbf{x}_i} \mathcal{F}(X, W) = 2m_i (\mathbf{x}_i - \mathbf{b}_i)$$
(B.18)

Proof. By Theorem 4 and by equation (B.2), we have

$$\nabla_{w_i} \mathcal{F}(X, W) = \nabla_{w_i} \mathcal{E}(X, W) - (m_i - m) - \sum_{j \in \Omega_i} (w_j - w_i) \nabla_{w_i} m_j$$

= $m - m_i$.
(B.19)

By Theorem 3 and by equation (B.2), we have

$$\nabla_{\mathbf{x}_i} \mathcal{F}(X, W) = \nabla_{\mathbf{x}_i} \mathcal{E}(X, W) - \sum_{j \in \Omega_i} (w_j - w_i) \nabla_{\mathbf{x}_i} m_j$$

= $2m_i (\mathbf{x}_i - \mathbf{b}_i)$ (B.20)

By (2), Lemma 1 and Theorem 5 we directly have 495

Theorem 6.

$$[H_{\mathcal{F}}]_{ij} = \frac{\bar{\rho}_{ij}}{2} \sum_{l \in \mathcal{T}_{ij}} \frac{|e_{ij}^* \cap \tau_l|}{|e_{ij}|_{\tau_l}}$$

$$[H_{\mathcal{F}}]_{ii} = \sum_{j \in \Omega_i} [H_{\mathcal{F}}]_{ij}.$$
(B.21)