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Abstract—In this paper, we propose a robust framework for
building extraction in visible band images. We first get an initial
classification of the pixels based on an unsupervised presegmen-
tation. Then, we develop a novel conditional random field (CRF)
formulation to achieve accurate rooftops extraction, which incor-
porates pixel-level information and segment-level information for
the identification of rooftops. Comparing with the commonly used
CRF model, a higher order potential defined on segment is added
in our model, by exploiting region consistency and shape feature
at segment level. Our experiments show that the proposed higher
order CRF model outperforms the state-of-the-art methods both
at pixel and object levels on rooftops with complex structures and
sizes in challenging environments.

Index Terms—Buildings, rooftops conditional random field
(CRF), shadows.

I. INTRODUCTION

EXTRACTED rooftops from remote sensing images play
a prominent role in widespread applications, such as ur-

ban planning, 3-D city modeling, and flight simulation. While
enormous advances have been made on building detection over
the last years [1], it remains a challenging task to develop
generic and robust algorithms. This is because the appearance
of rooftops varies due to many factors, e.g., lighting conditions,
a variety of reflections, diversity of image resolution, and image
quality.

Most existing approaches identify rooftops by exploring
image features based on several simplifying assumptions. As
man-made objects, rooftops are often decomposed into simple
geometric parts, with uniform color distribution within a single
rooftop, and high contrast with surroundings [2]. While the
effectiveness of all these properties has been demonstrated in
prior work [3], the problem lies in the uncertainty of both the
features and assumptions. On one hand, the assumptions are not
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always true for each rooftop. For example, many methods as-
sume that rooftops have rectangle shape (see [4]–[6]), wherein
conflicts with complicated building structures may be observed
in real imagery.

David Marr’s theory of vision [7] viewed typical visual
recognition processing as a bottom-up hierarchy in which in-
formation is processed sequentially with increasing complexity.
When this approach is applied to rooftops, lower level informa-
tion tells us where objects are, and higher level information tells
us which objects form a rooftop. Superpixels were introduced
by Ren and Malik [8] in order to cluster pixels into atomic
regions with homogeneous size and shape. Our work is based
on the idea that these regions need not be atomic, but they are
still useful in guiding image segmentation.

Based on those observations, we propose a novel rooftop
extraction method using a higher order conditional random field
(HCRF). The basic idea of our approach is to combine the high-
level information (obtained from segments by presegmenting
the aerial image) and the low-level information (pixels in the
image) by using HCRF during the extraction. Existing methods,
which only utilize segments or pixels, have several weaknesses:
1) segment-based methods tend to be highly sensitive to the
accuracy of the initial segments, which is also a challenging
question; 2) pixel-based methods fail to capture the global
structure information across the whole image. For example,
roads usually can be ruled out due to their long and thin shape;
however, pixel-based methods do not have any knowledge
about this, and thus, sometimes parts of road are mislabeled
as rooftops. Another problem of pixel-based methods is that
the commonly used standard conditional random field (CRF)
models (see details in Section III-A4) often produce overly
smooth segmentation results, which will merge closely spaced
rooftops together. Moreover, existing methods (see [9]–[11])
suffer from incorrect shadows and vegetation detection before
rooftops extraction, particularly when only RGB information
is available. We demonstrate how to use segments to extract
shadows and vegetation robustly.

We demonstrate the effectiveness of our approach on the
SZTAKI-INRIA benchmark [12] and show that our higher
order model improves pixel-level, as well as object-level, ac-
curacy without any training data. Our contributions include the
following.

• We propose a novel HCRF-based method, which incor-
porates both pixel-and segment-level information for the
segmentation of rooftops. High accuracy is achieved by
exploiting color features at the pixel level, along with re-
gion consistency and shape features at the segment level.
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• We present a simple but robust shadows and vegetation
extraction method based on the proposed framework.

II. PRIOR WORK

A significant amount of work has been done on extracting
buildings from aerial and satellite images due to the widespread
use of rooftop footprints in geospatial applications. We refer the
reader to [1] for a detailed discussion. Here, we only review the
most relevant work.

One popular way of extracting buildings is exploring their
shapes. It is observed that rooftops have more regular shapes,
which usually are rectangular or combinations of several rect-
angles. Based on this, Liu et al. [4] applied multiresolution
segmentation on fused images, extracting rectangular building
roofs by reconstruction and multiscale classification from the
roof polygon primitives. Cui et al. [5] used Hough trans-
formation to extract perpendicular and parallel lines, which
comprise the structure of a building. Then, region information
is incorporated to construct a building structural graph, and
the boundary of buildings is finally extracted from a cycle
detection on the graph. Liu et al. [6] proposed a general
semiautomatic rectilinear rooftop extraction method based on
localized multiscale object-oriented segmentation and model
matching. Shape-based approaches heavily rely on the accuracy
and completeness of the extracted contour of rooftops. This,
however, is also a difficult problem, and some of the methods
[5], [6] assume that the rooftops in one image have the same
orientation, which is not always true either. Müller and Zaum
[13] found homogeneous roof candidate regions by seeded
region growing. This initial segmentation then becomes the
basis of several following steps. However, building extraction
based solely on an initial segmentation tends to suffer from the
accuracy of the initial segmentation.

Instead of classifying the shapes of rooftops directly, some
researchers try to detect the rooftops based on their strong cor-
ners and edges. Martinez Fonte et al. [14] revealed that corner
detectors could provide distinctive information on the type of
structure in a satellite image, but they did not provide a com-
plete process to extract rooftops from satellite image using cor-
ners. Sirmacek and Ünsalan [15] utilized scale invariant feature
transform (SIFT) and graph theoretical tools to extract build-
ings from urban area. However, their method needs specific
building templates for the subgraph matching. Then, in [16],
they further proposed to build their extraction based on local
feature vectors, which might lead to false positives when redun-
dant local features appear in the image. Katartzis and Sahli [17]
constructed hypothesis graph based on the edges of buildings
and then used a Markov random field model to describe the de-
pendencies between available hypotheses with regard to a glob-
ally consistent interpretation. However, the detection of edges
is sensitive to the resolution and noise of the image. Nosrati and
Saeedi [18] proposed to use edge definitions and their relation-
ships with each other to create a set of potential vertices. Then,
polygonal rooftops are extracted by studying the relationship
between these potential vertices. The method lacks the ability of
capturing nonpolygonal curved rooftops. Cote and Saeedi [11]
further developed an automatic rooftop detection method in

nadir color aerial imagery by combining corners and variational
level set evolution method. The corners are assessed using
multiple color-invariant spaces, and then, rooftop outlines are
produced from selected corners through level set curve evolu-
tion. Their method cannot distinguish rooftops from other struc-
tures with salient boundaries in the image, and the selection of
parameters tends to lack robustness under varying resolutions.

Shadows are another significant feature of buildings. Several
authors use shadows for hypothesis verification and height es-
timation [19]–[23] after an initial building detection step. Liow
and Pavlidis [24] used shadows for hypothesis verification.
They first extracted line segments, and regions that lie next
to shadows were considered for building hypothesis. To get
the final rooftop, a region growing algorithm is used to find
other edges of the rooftops. However, this edge-based method
often suffers from the ambiguity between edges produced by
strong ridges of gable and hip roofs and actual edges of build-
ing. Sirmacek and Ünsalan [25] used invariant color features
to extract information from shadows and then determine the
illumination direction and verify building location based on
shadows. Finally, a rectangle fitting method is used to align
a rectangle with the canny edges of the image. This method
is sensitive to the edge quality and limited to rectangular
buildings. Akcay and Aksoy [9] first proposed using shadows
and directional spatial constraints to detect candidate building
regions. However, the building regions are selected by clus-
tering the candidate patches from an initial oversegmentation,
which might not be correct in each patch. Recently, Ok et al.
[10] have adopted the idea of using shadows and directional
spatial constraints and proposed to extract the final rooftop
using CRF optimization at pixel level. They dilated the shadows
along the opposite of light direction in a certain distance to
obtain a region of interest (ROI) for each rooftop. Then, they
ran CRF in each ROI to label pixels inside it as rooftops or non-
rooftops. This ROI-based method can break one rooftop into
separated pieces when the shadows of buildings are incomplete
due to clutter or vegetation near the buildings. To overcome
this problem, in [1], they further proposed to run a multilabel
CRF segmentation over the whole image after getting an initial
segmentation following the method in [10]. Since the initial
segmentation is estimated based only on shadows, the accuracy
of method in [10] notably decreases when extracting shadows
is not reliable. Femiani and Li [26] and Femiani et al. [27]
extended this graph-based approach by showing how additional
sources of geospatial data can be used to guide the shadow-
based segmentation, as well as by verifying that extracted
features cast shadows and resegmenting the image until a set of
rooftops are extracted that are consistent with visible shadows.
Different from the CRF at pixel level, Wegner et al. [28] tried
to run CRF at higher level by constructing the graph of CRF
on image segments instead of image pixels. Benedek et al.
[12] integrated different local features into object-level features
and then adopted Markov random field at object level. These
two methods run stochastic object extraction merely on higher
level, which impairs accuracy at pixel level. By contrast, in
this paper, we proposed a novel HCRF model, which combines
both pixel- and segment-level information during the stochastic
object extraction process. Comparing with pixel-level-based
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Fig. 1. Overview of the proposed method. (a) Starting from an aerial image, we (b) decompose the input data into segments. Then, (c) vegetation (green) and
shadows (black) are extracted, and (d) probable rooftops are selected from the segments. Finally, (e) an accurate segmentation for the rooftops is provided by using
an HCRF optimization process. Correct results are shown in green, false positives are shown in blue, and false negatives are shown in red.

methods [1], [10], [27], a new higher order potential defined
at the segment level is added in our model, which enables it to
encode high-level structure, and thus improves the robustness
of extraction, and unlike those methods [12], [28] that merely
run stochastic object extraction at segment level, pixel-level
information is also taken into account in our model, which
improves the accuracy of extraction.

III. SEGMENTATION ALGORITHM

The proposed method takes as input a remote sensing image
with only RGB information. The goal is to extract rooftops
from a single image as accurately as possible without any
user interaction. The main idea of our approach is to integrate
pixel- and segment-level information for extraction of rooftops
through the proposed novel HCRF model. The whole method
consists of the following key steps.

1) First, the given image will be segmented into several
patches by unsupervised clustering [see Fig. 1(b)].

2) Based on the segments from the first step, we will extract
vegetation and shadows [see Fig. 1(c)].

3) Remaining unlabeled patches will be classified into prob-
able rooftops and probable nonrooftops depending on
shape, size, compactness, and shadows [see Fig. 1(d)].

4) A higher order multilabel CRF segmentation is performed
to get final results [see Fig. 1(e)].

A. Algorithm

1) Initial Presegmentation: To obtain high-level informa-
tion, we first decompose the image into basic elements that
preserve the relevant structure of the objects in the image. We
aim to cluster pixels into perceptually homogeneous regions,
which should ideally correspond to different real-world ob-
jects in the aerial image (e.g., trees, roads, and rooftops). To
achieve this type of decomposition, we use Gaussian mixture
model (GMM) clustering method to segment the image into
homogeneous regions. GMM assumes the underlying data to
belong to a mixture of Gaussian distributions. Specifically, the
probability density function is expressed as a weighted sum of
M component Gaussian densities, i.e.,

p(x|λ) =
M∑
i=1

ωig(x|μi, σi) (1)

where ωi represents the mixture weight; and μi, σi denote the
mean vector and the covariance matrix for each component,

Fig. 2. Comparisons between the proposed shadow extraction method and
two other typical methods. (a) Original image. (b) Our result. (c) Result of [33].
(d) Result of [34]. White areas represent the detected shadows.

respectively. Despite its simplicity, GMMs with a relatively
small number of mixture components have proven to be excel-
lent performer in modeling natural image patches [29]. During
our experiment, we found that M = 10 works well on most of
our data sets. We use a full-covariance GMM for the initial
segmentation, following the guidance in [30]. In practice, we
first convert the RGB channel of an aerial image into Lab
color space [31]. A median filter is used to reduce the noise in
the image before the segmentation, and then, the expectation-
maximization algorithm [32] is used to fit the mixture model.

2) Extract Shadows and Vegetation From GMM Labels:
Compared with rooftops and ground, shadows and green veg-
etation have significant features that can be identified in the
aerial imagery more easily. Extraction of shadows and vege-
tation can help to rule out those regions that are not likely to
be rooftops. Shadows are also a strong clue of the existence
of buildings nearby, which can be used to localize probable
rooftops. Although a lot of work has been done on extracting
shadows (see [33] and [34]) and vegetation (see [35] and
[36]) from remote sensing images, the methods of [1] and
[10] require near infrared (NIR) to achieve high performance,
and the accuracy decreases significantly if there is only RGB
channel. One failure case of two typical shadows extraction
methods is shown in Fig. 2. It is hard for an automatic approach
to select an optimal threshold only at pixel level due to the noise
and other dark regions such as roads.

Based on the preceding observations, we propose a robust
and automatic shadows extraction method by utilizing the
presegmentation result from Section III-A1. Given an image
I and label class L = 1, 2, . . . , 10, each pixel is assigned a
label Li from L in Section III-A1, and all of the pixels are
classified into ten classes. We select the mean intensity of the
class with the lowest mean intensity as the initial threshold
to identify shadows. For vegetation, we use the color index
proposed in [35] instead of intensity. This initial threshold is
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Fig. 3. How to remove nonprobable rooftops step by step. (a) Original image. (b) Shadows and vegetation are removed. (c) Remaining blobs are further removed
depending on their size, eccentricity, and compactness. (d) Final probable rooftops after pruning out the blobs in (c) using shadows and light direction information.
(e) Ground truth of rooftops.

sufficient to extract most of the shadows and vegetation, but it
is not sufficient to recover all of them using a global threshold
due to noise and variation of the appearance of shadows and
vegetation. To overcome this problem, we further improve the
shadows extraction result by performing multilabel graph cut
[1], starting from the initial shadow and vegetation mask.

3) Extracting Probable Rooftops: Usually, probable roof-
tops can be localized from shadows and light direction follow-
ing the methods in [10]. The basic idea is generating ROI by
shifting the shadows in the opposite of light direction through
a certain distance, and then, the probability of each pixel in
that ROI belonging to a rooftop is determined according to
some rules. The efficiency of this shadow-based method has
experimental support in [10], but it still has some limitations
due to the use solely of shadows. First, not all of the shadows are
cast by rooftops; there are other items (e.g., walls, fences, and
high trees) that will cast shadows that are similar to the shadows
cast by rooftops. This makes it difficult to exclude by simply
using thickness of shadows or the distance from shadows to
vegetation. Second, in some cases, there are no visible shadows
in the aerial image.

It has been observed in [4], [5], and [11] that man-made
objects rooftops possess quite regular shapes, which is a well-
discriminating feature to distinguish rooftops from other ob-
jects. Inspired by the work of Cote and Saeedi [11], we propose
to roughly classify the segments that are not shadows and
vegetation into probable rooftops and probable nonrooftops
depending on shape, shadows, and light direction. Since ini-
tial classification may assign the same label to disconnected
regions, we relabel the GMM presegmentation result into
4-connected components based on their initial labels. We chose
4-connected components rather than 8-connected components
to reduce the chance that two diagonally adjacent rooftops that
touch at a corner would be accidentally merged into a single
component. Then, the following steps are used to determine
which blobs (components) belong to probable rooftops.

1) Size: Blobs with very small size or very large size are not
likely to be rooftops; we empirically set the area range for
rooftops to [Smin, Smax].

2) Eccentricity: The eccentricity of each blob is defined as the
ratio of the minor axis length and the major axis length of
the ellipse that has the same second moments as the blob.
The value ranges from zero to one, and we only select the
blobs with eccentricity value greater than τe as probable
rooftops to discard excessively elongated blobs.

3) Compactness: The compactness is defined as

c = 4A/P 2 (2)

where A and P represent the area and the perimeter of
blob, respectively; we only keep the blobs with compact-
ness greater than τc as probable rooftops.

We want to emphasize that we do not require that each
connected component is classified correctly in this step; the
next steps of our algorithm are able to discard the mislabeled
rooftops and recover the missing rooftops as long as the ma-
jority of the probable rooftops are correct. We will discuss the
selection of these thresholds in Section IV-D.

We prune out the probable rooftops further, on condition
that light direction is available. For each remaining blob that
belongs to probable rooftops, we check its neighboring blobs in
the light direction. If no shadows are found, we remove this blob
from probable rooftops. Fig. 3 gives one example of removing
nonprobable rooftops following the preceding steps.

4) Segmentation Based on HCRF: The final rooftop extrac-
tion can be formulated as a multilabel segmentation problem,
and we adopt the commonly used CRF model to solve it effec-
tively. The commonly used standard CRF model is expressed
as the sum of unary and pairwise potentials as

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E
ψij(xi, xj) (3)

where V denotes the set of all image pixels, E is the
8-neighboring pixel pairwise set connecting the pixels i, j ∈ V ,
and xi denotes the label taken by pixel i of the image; then,
a segmentation over the image is defined as every possible
assignment of x.

The unary potentials ψi(xi) are the negative log of the
likelihood of label xi being assigned to pixel i, and the pairwise
potential ψi,j is a smoothness term to enable neighboring pixels
to take the same label. In our case, we want to segment an
aerial image into four classes: shadows, vegetation, rooftops,
and unknown (see Fig. 4). Thus, the corresponding label set
is xi ∈ {0, 1, 2, 3}. Considering that we have already obtained
an initial classification of the pixels through the above steps,
we can estimate the unary potentials of each pixel from the
classification result. We model the distribution of each class
using GMM with different components (M ); for each class,
the parameters of GMM are initialized by fitting the pixels
belonging to that class according to the initial classification
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Fig. 4. Structure of a high-order CRF. Blue dots in the right image represent
the pixels in the bottom left image, and purple dots represent segment formed by
pixels shown in the middle image in the left. In our experiment, each pixel will
be classified into four classes: shadows (black), vegetation (green), rooftops
(black), and unknown (gray).

Fig. 5. Effectiveness of adding hard constraint from shadows. (a) Original
image. (b) Result using ground truth data as the initial mask for multilabel graph
cut. (c) Hard constraint obtained from our method. (d) Our result.

result. Then, unary potentials ψi(xi) are deduced from the
GMM of each class.

However, this is not sufficient to capture all of the rooftops,
particularly when there are rooftops that have similar color with
the background region. An example is shown in Fig. 5(b); the
rooftops marked by red color have a higher probability belong-
ing to unknown class since they have the same appearance as
the dominant component of unknown part, i.e., the roads. Thus,
the following segmentation will miss those rooftops even if they
have been correctly classified as probable rooftops in previous
steps. Fig. 5(b) depicts such a failure case; we use ground truth
to initialize the classification, but we still lose those rooftops in
the final result. To overcome this problem, we propose to assign
a high probability to those proposed rooftops that are adjacent
to shadows on one or more directions. Specifically, for each
probable rooftops R obtained from previous steps, if shadows

Fig. 6. Comparisons between common CRF and high-order CRF. (a) Original
image. (b) Segments obtained from GMM presegmentation. (c) and (d) Final
segmentation results of common CRF and HCRF, respectively. Rooftops, shad-
ows, vegetation, and unknown are represented by white, black, green, and gray,
respectively. Notice the differences indicated by arrows. Red arrows indicate the
improvement by utilizing feature-based consistency potential, and blue arrow
indicates the improvement by utilizing region-based consistency potential.

S can be found in the neighboring part of R, we assume that
pixels Rh should be part of rooftops, where

Rh =
(
S ⊕ v(−L,d)

)
∩R (4)

where ⊕ denotes the morphological binary dilation operator,
structure element v(L,dF ) is a line segment with one end at the
origin of the structure element and the other end a distance d
opposite the light direction L, and d is the maximum of the
width and height of R’s bounding box.

For the pairwise potentials, which encode dependencies be-
tween neighboring pixels, we typically define ψij(xi, xj) in the
form of a contrast-sensitive Potts model, i.e.,

ψij(xi, xj) =

{
0, if xi = xj

θλ exp
(
−θβ‖Ii − Ij‖2

)
, otherwise

(5)

where Ii and Ij denote the color vectors of pixels i and j,
respectively; and xi and xj denote the labels taken by pixels i
and j, respectively. For our application, we use Lab color space
for illumination uniformity. θβ is learned from the image using
the way in [37]. θλ controls the balance between fitting term
(unary potentials) and smoothness term (pairwise potentials).

The standard pairwise potentials in the CRF model tend to
introduce oversmooth segmentation due to their inability to
encode high-level structures. This limitation causes undesirable
rooftops extraction result, particularly when rooftops are close
to each other and the background between rooftops has low
contrast. Notice the area indicated by red arrows in Fig. 6(c);
multiple rooftops are merged into one single rooftop, which
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reduces the object-level accuracy significantly. In order to
alleviate this problem, we propose to utilize the new developed
HCRF to avoid the ambiguities by incorporating high-level
context. The HCRF model extends (3), by adding an additional
term defined over higher order cliques, i.e.,

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E
ψij(xi, xj) +

∑
c∈C

ψc(xc). (6)

Here, C represents a set of image segments obtained from
Section III-A1, and ψc denotes high-order potentials defined on
segment c. Fig. 4 illustrates how to construct the HCRF model
from pixels and segments. Notice that the aim of our multilabel
segmentation is to extract rooftops as accurately as possible;
we will explain how to specialize the definition of high-order
potentials for this goal.

• Region-Based Consistency Potential. This potential en-
forces the pixels in one segment c to take the same
label. Hence, high-level structure information, captured
by the presegmentation, can be taken into account during
the optimization. The region indicated by blue arrows in
Fig. 6(c) illustrates how we can benefit from high-level
structures. As shown in Fig. 6(c), the mislabeled rooftops
(point by the blue arrow) are a small portion of one
single segment [see Fig. 6(b)]. However, the remaining
parts of this segment are labeled as nonrooftops, leading
to inconstant labels in one segment. The region-based
consistency potential is designed to penalize for inconsis-
tency of labels in one segment, so that mislabeled rooftops
can be effectively removed, as shown in Fig. 6(d). We
define the region-based consistency potential ψr

c (xc) as

ψr
c (xc) =

{
λr
k, if xi = lk, ∀i ∈ c

λr
max, otherwise

(7)

where λr
k ≤ λr

max, and L = {l1, l2, . . . , lk} form the label
set taken by all of the pixels. In our case, L = {0, 1, 2, 3}.

• Feature-Based Consistency Potential. We assume that the
quality of each blob as a rooftop can be evaluated based
on several features. It has been discussed in Section III
that shape of blobs is a discriminating feature for iden-
tifying rooftops. Suppression of very small segment is
particularly useful in removing those tiny and thin pieces
between neighboring rooftops. These are normally de-
tected as rooftops due to the shrink bias, caused by the
smoothing term in the CRF model, as shown in the region
indicated by red arrows in Fig. 6(c). We also evaluate the
quality using the intensity variance in each blob, since
rooftops tend to not have too much intensity variation.
Combining these features, the feature-based consistency
potential ψf

c (xc) is defined as

ψf
c (xc)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if xi={0, 1, 3}, ∀i∈c

λf
max, if xi=2, ∀i∈c and |c|≤θs

θh exp
(
−θασ

2
c

)
· λf

max, if xi=2, ∀i∈c and |c|>θs

λf
max, otherwise

(8)

where |c| is the area of segment c, θs denotes the area
threshold that segments with area less than it will be
given a high cost λf

max to be rooftops, σc is the standard
deviation of the intensity of pixels inside c, and its impact
is controlled using weight coefficients θh and θα.

While it is hard to ensure that each of the segments matches
the objects exactly, we adopt the robust form of the high-
order potentials [38] to allow some pixels in one segment to
take different labels. Then, the final high-order potentials are
written as

ψc(xc)=min

{
mink∈L

(
(|c|−nk(xc))·

λmax−λk

Q
+λk

)
, λmax

}
(9)

where nk(xc) denotes the number of pixels in segment c,
which takes label k, Q is a truncation parameter, which controls
how many pixels in one segment can take different labels and
satisfies the constraint 2Q < |c|, λmax = max(λr

max, λ
f
max),

and λk = max(ψr
c (xc), ψ

f
c (xc)). During our experiments, we

set Q = 0.1|c| and λr
max = λf

max = 2 ·max{ψi(xi)}, where
ψi(xi) is defined in (6). We finally solve (9) using the im-
plementation of the expansion and swap move algorithms de-
scribed in [38] for its excellent computational performance.

IV. EVALUATION

We implemented our algorithm in Python, first testing our
approach on the SZTAKI-INRIA Building Detection Bench-
mark [12] and our own data set. Then, we analyze the sensitivity
of important parameters used in our algorithm and discuss the
limitations of the proposed method.

A. Evaluation on the SZTAKI-INRIA Benchmark

The SZTAKI-INRIA Benchmark [12] is an excellent re-
source for benchmarking building extraction algorithms. It
contains the rectangular footprints of 665 buildings in nine
aerial or satellite images taken from Budapest and Szada (both
in Hungary), Manchester (U.K.), Bodensee (Germany), and
Normandy and Cot d’Azur (both in France), as well as man-
ually annotated ground truth data. Two data sets (Budapest and
Szada) are aerial images, and the remaining four data sets are
satellite images acquired from Google Earth. All of the images
contain only RGB information.

We perform quantitative evaluation both at object and pixel
levels. We use the common measures of precision, i.e., P ,
recall, i.e., R, and the F-score, i.e., F1, to measure pixel level
accuracy, where

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 =
2PR

P +R
. (12)

Here, TP stands for true positives and refers to the number
of pixels assigned as rooftop in both ground truth and seg-
mentation result. FP stands for false positives and refers to the
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TABLE I
NUMERICAL OBJECT-LEVEL AND PIXEL-LEVEL COMPARISONS BETWEEN STATE-OF-THE-ART BUILDING DETECTION METHODS

AND THE PROPOSED METHOD (HCRF) WITH THE BEST RESULTS IN BOLD. FOR THE EVALUATION OF THE

SIFT METHOD, THE MANCHESTER DATA SET IS IGNORED DUE TO WEAK PERFORMANCE

Fig. 7. Comparisons between the proposed method and the state-of-the-art methods. The results of state-of-the-art methods are from [12]. White circles represent
missing or false objects, and black rectangles represent true positive objects. For the Gabor method, only the building center is extracted. (a) Original image.
(b) Gabor [16]. (c) EV [25]. (d) SM [13]. (e) MRF [17]. (f) MPP [12]. (g) Proposed HCRF. (h) Ground truth.

number of pixels assigned as rooftop in result but not in ground
truth. FN stands for false negatives and refers to the number of
pixels assigned as rooftop in ground truth but not in result. The
F-score F1 captures both precision and recall into a single
metric that gives each an equal importance. We evaluate the
object-level performance by counting the missing and falsely
labeled rooftops (MO and FO, respectively). Then, we use the
same formula to calculate the F-score at object level [10].

Table I lists the numerical object-level and pixel-level com-
parisons with SIFT [15], Gabor [16], MRF [17], EV [25], SM
[13], MPP [12], and the proposed HCRF method. We show that
our method outperforms the best of the state-of-the-art methods
(MPP) by 6% at pixel level and 1% percent at object level.

Fig. 7 gives qualitative comparison results on the
BUDAPEST data set. The Gabor [16] method fails to capture
dark buildings due to the false gradient directions. Without
training data, the EV [25] method can only extract red rooftops
and lacks the ability to deal with the color diversity of rooftops

in different regions, resulting in high MO. The SM [13]
technique obtains relatively high precision, at the cost of a
rather low recall, as shown in Fig. 7(d). This is because, if one
building is missing during the filtering of initial segmentation,
there is no way to then recover it in the following steps.

We then discuss random-field-based methods, i.e., MRF [17]
and MPP [12]. Compared with the deterministic decision rules
used in the preceding methods, the probabilistic model is able
to describe dependencies between multiple hypotheses and find
a globally optimal segmentation based on specific data likeli-
hood. However, since the MRF technique constructs hypothesis
graph based on the edges of buildings, which is sensitive to the
resolution and noise of the image, from Fig. 7(e), we can see
that they still miss 10 out of 41 buildings. We want to point
out that local descriptors such as edges and corners are more
sensitive to variation on resolution, image quality, and noise due
to the absence of high-level information. By combining features
at different levels, this method improves both MO and FO a lot,
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as shown in Fig. 7(f). However, they also run the stochastic
object extraction process only at object level, which impairs
accuracy at pixel level, as listed in Table I. Another limitation
of MPP is the requirement of ground truth data for each image
to determine the roof color filtering threshold.

Our method surpasses all of the above methods, as shown
in Fig. 7(g). We accomplish this through several key strate-
gies. First, we use GMM to perform the presegmentation and
extract shadows and vegetation based on the presegmentation.
Despite its simplicity, experiments reveal that it is robust to
give reasonable presegmentation result on different data sets.
Detailed analysis can be found in Section IV-D. Second, we
employ HCRF to achieve a global optimal segmentation. The
results confirm that the combination of pixel-level feature and
segment-level feature might solve the dilemma between pixel-
level accuracy and object-level accuracy efficiently.

One more challenging example is shown in Fig. 8(l). The
test region contains buildings with complex shapes and varying
sizes; the proposed method still gives high-quality extraction
result with 0.92 precision, 0.82 recall, and F-score of 0.87.

B. Comparison With the Standard CRF Method

We compare our method with the automated detection
method proposed in [1], which uses standard CRF model at
pixel level. Since their method requires NIR band, we use
another data set taken from Tempe, AZ, USA, as shown in
Fig. 9. The 512 × 512 image has RGB, NIR information,
and a resolution of 0.6 m per pixel. The method of Ok [1]
fails to capture most of the rooftops with 0.65 precision, 0.41
recall, and F-score of 0.51 (upper row) and 0.85 precision,
0.39 recall, and F-score of 0.54 (bottom row), as shown in
Fig. 9(d). Our approach achieves a much better result, as shown
in Fig. 9(e) with 0.81 precision, 0.65 recall, and F-score of 0.72
(upper row) and 0.89 precision, 0.68 recall, and F-score of 0.77
(bottom row). The method of Ok deduces directional constraint
for rooftops from shadows in their first step. They only will
use the most reliable shadows in order to reduce the false
positive rooftops. This, however, will miss a lot of rooftops,
leading to a low recall. Some of the missing rooftops are hard
to recover, even through a global multilabel graph cut in the
second step. Our method obtains the initial candidate rooftops
by classifying the presegmentation results. Shadows only pro-
vide supplementary evidence to filtering the initial rooftops
furthermore. This noticeably improves the recall, as shown in
Fig. 9(c), the downside being more false positive rooftops. We
show that the proposed HCRF, which incorporates the features
both from pixel and segment levels, further eliminates most
mislabeled rooftops. This is achieved while maintaining high
precision and recall, as shown in Fig. 9(e).

To better illustrate the advantage of the HCRF method,
we give the result of our method only using standard CRF
in Fig. 9(b). We list the performance values of applying our
methods on the benchmark only using standard CRF in Table II.
Comparing with HCRF, standard CRF generates oversmoothed
results with higher recall but at the cost of dramatic drop in
precision.

C. Comparison With the Nonshadow-Based Method

The proposed method has the advantage that it can produce
competitive result even without using shadows. We demonstrate
the robustness of our method and compare with the state-of-
the-art nonshadow-based method [11] in Fig. 10. The data
are an aerial image taken from San Diego, CA, USA, with a
resolution of 0.23 m per pixel. Affected by clouds, it is hard
to detect distinct shadows in the image. We use source code
(provided by the author) to produce the result of Cote and
Saeedi, using the parameters suggested in their papers. For
fairness, we remove rooftops touch image border from our final
result as they did. Since the boundaries of rooftops are blurred
in this image, we do not consider the pixels lying within 2
pixels around the boundary of ground truth when calculating
the numerical performance. Our method surpasses the method
of Cote and Saeedi [11], with 0.94 precision, 0.86 recall, and
F-score of 0.90 (upper row) and 0.90 precision, 0.90 recall, and
F-score of 0.90 (bottom row) compared with 0.71 precision,
0.61 recall, and F-score of 0.65 and 0.81 precision, 0.79 recall,
and F-score of 0.80, respectively. This is not surprising, since
the final CRF-based segmentation in our method can help to
correct the misclassified presegmentation. The method of Cote
and Saeedi, on the other hand, suffers from presegmentation
having similar shape with rooftops, but which do not belong to
any rooftops.

To reveal how shadows information affects the overall perfor-
mance, we run our method without using shadows information
and give the numerical result in Table II. As mentioned in Fig. 5,
using shadows information is important to reduce the number
of missing rooftops. According to the performance values in
Table II, we observed that using shadows information was able
to improve the overall performances by 2%.

D. Parameter Settings

Table III lists the default settings of the parameters used in
the proposed method. Fig. 11(a)–(d) illustrates the effects of
choosing different values for extracting probable rooftops. We
select the default values of these thresholds through analyzing
statistics on real-world data. As we point out in Section III-A3,
the purpose of introducing these thresholds is to rule out the
segments that most unlikely belong to rooftops. As long as most
of the rooftops are kept during this step, the proposed method
achieves high performance. As proven in these figures, when
the parameters vary around the default values, there is only
slight change in the final F-score.

We then discuss the sensitivity of the component number M
of the GMM used in Section III-A1. The effect of parameter
variation on the data set MANCHESTER image is shown in
Fig. 11(e). As we increase M from 5 to 15, the precision keeps
increasing since the boundaries between different objects be-
come more accurate. However, if M becomes too large, it leads
to oversegmentation of the image, breaking one rooftop into a
multitude of small pieces. The result being a decreased recall. A
large M also increases the cost of time spent on segmentation
and final HCRF optimization. During our experiment, we set
M = 10 for all of the data sets.
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Fig. 8. Gallery of our results on the benchmark data set and our own data set. The images are taken from the Bodensee, Normandy, Cot d’Azur, and Manchester
data sets, respectively. The last image is taken from Casa Grande area. Correct results (TP) are shown in green, false positives are shown in blue, and false negatives
are shown in red.

Another important parameter is the weighting coefficients
θλ, as defined in (5), which control the smoothness of seg-
mentation. Fig. 11(f) shows the segmentation accuracy of
both standard CRF and high-order CRF at different smooth-

ing weights θλ. The standard CRF is much more sensitive
to the changes of smoothing weight; when θλ increases, the
segmentation tends to be oversmooth. This improves the recall,
but at the cost of significant drop in precision. In contrast,
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Fig. 9. Comparisons with the standard CRF method [1]. (a) Original image. (b) and (c) Results of our method using standard CRF model and HCRF model, where
rooftops, shadows, vegetation, and unknown are represented by white, black, green, and gray colors, respectively. (d) Buildings extracted using the method in [1].
(e) Buildings extracted using our HCRF method. Correct results (TP) are shown in green, false positives are shown in blue, and false negatives are shown in red.

TABLE II
NUMERICAL OBJECT LEVEL AND PIXEL LEVEL OF APPLYING OUR APPROACH USING STANDARD CRF (PROP.CRF), APPLYING OUR APPROACH

WITHOUT SHADOWS INFORMATION (PROP.HCRF W/O SHADOWS), AND THE PROPOSED METHOD (HCRF) WITH THE BEST RESULTS IN BOLD

Fig. 10. Comparisons with the nonshadow-based method [11]. (a) Original
image. (b) Buildings extracted using the method in [11]. (c) Our result. Correct
results (TP) are shown in green, false positives are shown in blue, and false
negatives are shown in red.

with higher term in the CRF model, our approach exhibits
high robustness, and the performance of our high-order CRF
remains stable when θλ varies from 1 to 10. This is because

TABLE III
PARAMETER SETTINGS FOR THE PROPOSED APPROACH

the higher term constraints efficiently alleviate the oversmooth
segmentation among rooftops close to each other, as explained
in Section III-A4. In our experiment, we use a constant θλ = 2
in (5).

For the coefficients used for calculating the higher order po-
tential, as defined in (7)–(9), we use θs = 10 m2, θh = 0.5, and
θα = 12. θs = 10 m2 is used to suppress very small segments
between neighboring rooftops caused by the smoothing term;
as shown in Fig. 11(i), noticeable improvement is observed
when θs varies from 0 to 2 m2. When θs keeps growing, the
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Fig. 11. Pixel-based performance in the case of different parameter settings. (a) Effects of compactness threshold (τc). (b) Effects of eccentricity threshold (τe).
(c) and (d) Effects of minimum and maximum rooftop sizes (Smin, Smax). (e) Effects of GMM component number (M). (f) Effects of weighting coefficients
(θλ); solid line denotes HCRF, and dash line denotes CRF. (g)–(i) Effects of coefficients in high-order potential (θα, θh, θs).

performance values stay stable and consistent. This is because
the eliminated regions are relatively small; most of the areas
are around 0–2 m2. In our experiments, we choose the op-
timal value of θs the same as Smin for both robustness and
performance. Considering the parameters θα and θh, which are
used to control the effect of higher order potential, we follow
the guidelines in [38], using θα = 12 and θh = 0.5. Although
these values are learned from close-range data sets, we found

in our experiments that they are also valid for our data sets and
give satisfactory results. We further explore using other values;
however, simply changing one parameter affects the overall
performance less than 1%, as shown in Fig. 11(g) and (h). We
plan to perform grid search for combination of these parameters
to find the optimal parameter setting in the future.

Finally, regarding the GMM component numbers used for
calculating the unary potential in Section III-A4, as revealed in
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[1], we set the optimal component numbers of shadows, vege-
tation, rooftops, and unknown to 2, 2, 8, and 8, respectively.

E. Limitations

There are several limitations to our approach for rooftop
extraction. First, although the proposed shadows and vegetation
extraction method works well on most of the data sets, it fails
to capture all of the shadows and vegetation correctly in several
cases. If the illumination within shadow region is not constant
due to changes in reflectance, some of the shadows will be
mislabeled as rooftops. Such a failure case is shown in Fig. 8(f).
Considering that some of the shadows have the same intensity
as the dark rooftops in this case, additional information besides
color should be taken into account to detect the shadows cor-
rectly. We plan to explore a new way to solve this problem in the
future. Very dark objects such as road and water regions would
be mislabeled as shadows using the method in Section III-A2,
which will also introduce errors when adding hard constraint
from shadows. In complicated urban regions, rooftops vary in
height, and the shadows of one rooftop may be cast onto another
roof, which will cause incorrect holes in the extracted rooftops.
We extract the vegetation based on the greenness; thus, if there
are green rooftops in the image, our method will mislabel them
as vegetation in Section III-A2 and cannot recover them in the
final extracted rooftops.

Second, the presegmentation fails to represent the shape of
rooftops in the case of large noise, low contrast, and similar
color with background region. As shown in Fig. 8(h), several
rooftops are missing due to the low image quality. Those
rooftops are identified as nonrooftops in Section III-A3 because
the GMM segmentation generates wrong segments for them,
and the final HCRF-based segmentation fails to recover them
either since they have the similar color with the roads. We
notice that most of the methods listed in Table I give weak
performance on this data set.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new framework for
building extraction in remote sensing images. Our method
incorporates pixel- and segment-level information for the iden-
tification of rooftops. Based on the segments obtained from an
unsupervised segmentation, the proposed method automatically
extracts vegetation, shadows, and probable rooftops. Then, an
HCRF segmentation is used to achieve accurate rooftop extrac-
tion, by exploiting color features at the pixel level and region
consistency and shape features at the segment level. We test
our method on a variety of data sets, and the results reveal that
the proposed HCRF segmentation improves the performance of
rooftop extraction, both at pixel and object levels. Furthermore,
the framework is efficient to deal with rooftops of complex
shapes, without requirement of user prelabeled ground truth
data. In the future, we plan to explore the use of associative
hierarchical CRFs to further improve the accuracy or to incor-
porate spatial information during the initial GMM segmentation
to better deal with noise and blurry in the image. We also plan to
use our segmentation results to guide the remote sensing image
compression.
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