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FUSED MULTIPLE GRAPHICAL LASSO∗

SEN YANG† , ZHAOSONG LU‡ , XIAOTONG SHEN§ , PETER WONKA† , AND

JIEPING YE¶

Abstract. In this paper, we consider the problem of estimating multiple graphical models
simultaneously using the fused lasso penalty, which encourages adjacent graphs to share similar
structures. A motivating example is the analysis of brain networks of Alzheimer’s disease using
neuroimaging data. Specifically, we may wish to estimate a brain network for the normal controls
(NC), a brain network for the patients with mild cognitive impairment (MCI), and a brain network
for Alzheimer’s patients (AD). We expect the two brain networks for NC and MCI to share common
structures but not to be identical to each other; similarly for the two brain networks for MCI
and AD. The proposed formulation can be solved using a second-order method. Our key technical
contribution is to establish the necessary and sufficient condition for the graphs to be decomposable.
Based on this key property, a simple screening rule is presented, which decomposes the large graphs
into small subgraphs and allows an efficient estimation of multiple independent (small) subgraphs,
dramatically reducing the computational cost. We perform experiments on both synthetic and real
data; our results demonstrate the effectiveness and efficiency of the proposed approach.
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1. Introduction. Undirected graphical models explore the relationships among
a set of random variables through their joint distribution. The estimation of undi-
rected graphical models has applications in many domains, such as computer vision,
biology, and medicine [12, 18, 51]. One instance is the analysis of gene expression data.
As shown in many biological studies, genes tend to work in groups based on their bi-
ological functions, and there exist some regulatory relationships between genes [6].
Such biological knowledge can be represented as a graph, where nodes are the genes,
and edges describe the regulatory relationships. Graphical models provide a useful
tool for modeling these relationships and can be used to explore gene activities. One
of the most widely used graphical models is the Gaussian graphical model (GGM),
which assumes the variables to be Gaussian distributed [2, 54]. In the framework of
the GGM, the problem of learning a graph is equivalent to estimating the inverse of
the covariance matrix (precision matrix), since the nonzero off-diagonal elements of
the precision matrix represent edges in the graph [2, 54].

In recent years many research efforts have focused on estimating the precision
matrix and the corresponding graphical model (see, for example, [2, 11, 17, 18, 24,
25, 28, 29, 32, 34, 38, 54]). Meinshausen and Bühlmann [34] estimated edges for
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each node in the graph by fitting a lasso problem [42] using the remaining variables
as predictors. Yuan and Lin [54] and Banerjee, el Ghaoui, and d’Aspremont [2]
proposed a penalized maximum likelihood model using �1 regularization to estimate
the sparse precision matrix. Numerous methods have been developed for solving this
model. For example, d’Aspremont, Banerjee, and el Ghaoui [9] and Lu [28, 29] studied
Nesterov’s smooth gradient methods [36] for solving this problem or its dual. Banerjee,
el Ghaoui, and d’Aspremont [2] and Friedman, Hastie, and Tibshirani [11] proposed
block coordinate ascent methods for solving the dual problem. The latter method
[11] is widely referred to as graphical lasso (GLasso). Mazumder and Hastie [32]
proposed a new algorithm called DP-GLasso, each step of which is a box-constrained
QP problem. Scheinberg and Rish [40] proposed a coordinate descent method for
solving this model in a greedy approach. Yuan [55] and Scheinberg, Ma, and Goldfarb
[39] applied the alternating direction method of multipliers (ADMM) [4] to solve this
problem. Li and Toh [24] and Yuan and Lin [54] proposed to solve this problem
using interior point methods. Wang, Sun, and Toh [46], Hsieh et al. [17], Olsen
et al. [38], and Dinh, Kyrillidis, and Cevher [10] studied the Newton method for
solving this model. The main challenge of estimating a sparse precision matrix for
the problems with a large number of nodes (variables) is its intensive computation.
Witten, Friedman, and Simon [49] and Mazumder and Hastie [31] independently
derived a necessary and sufficient condition for the solution of a single graphical lasso
to be block diagonal (subject to some rearrangement of variables). This can be used
as a simple screening test to identify the associated blocks, and the original problem
can thus be decomposed into a group of smaller sized but independent problems
corresponding to these blocks. When the number of blocks is large, it can achieve
massive computational gain. However, these formulations assume that observations
are independently drawn from a single Gaussian distribution. In many applications
the observations may be drawn from multiple Gaussian distributions; in this case,
multiple graphical models need to be estimated.

There are some recent works on the estimation of multiple precision matrices [8,
12, 13, 14, 21, 22, 35, 56]. Guo et al. [12] proposed a method to jointly estimate
multiple graphical models using a hierarchical penalty. However, their model is not
convex. Honorio and Samaras [14] proposed a convex formulation to estimate multiple
graphical models using the �1,∞ regularizer. Hara and Washio [13] introduced a
method to learn common substructures among multiple graphical models. Danaher,
Wang, and Witten [8] estimated multiple precision matrices simultaneously using a
pairwise fused penalty and grouping penalty. ADMM was used to solve the problem,
but it requires computing multiple eigendecompositions at each iteration. Mohan et
al. [35] proposed estimating multiple precision matrices based on the assumption that
the network differences are generated from node perturbations. Compared with single
graphical model learning, learning multiple precision matrices jointly is even more
challenging. Recently, a necessary and sufficient condition for multiple graphs to be
decomposable was proposed in [8]. However, such necessary and sufficient condition
was restricted to two graphs only when the fused penalty is used. It is not clear
whether this condition can be extended to the more general case with more than two
graphs, which is the case in brain network modeling.

There are several types of fused penalties that can be used for estimating multi-
ple (more than two) graphs such as the pairwise fused penalty and sequential fused
penalty [43]. In this paper we set out to address the sequential fused case first, because
we work on practical applications that can be more appropriately formulated using
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the sequential formulation. Specifically, we consider the problem of estimating multi-
ple graphical models by maximizing a penalized log likelihood with �1 and sequential
fused regularization. The �1 regularization yields a sparse solution, and the fused reg-
ularization encourages adjacent graphs to be similar. The graphs considered in this
paper have a natural order, which is common in many applications. A motivating ex-
ample is the modeling of brain networks for Alzheimer’s disease using neuroimaging
data such as Positron emission tomography (PET). In this case, we want to estimate
graphical models for three groups: normal controls (NC), patients of mild cognitive
impairment (MCI), and Alzheimer’s patients (AD). These networks are expected to
share some common connections, but they are not identical. Furthermore, the net-
works are expected to evolve over time, in the order of disease progression from NC to
MCI to AD. Estimating the graphical models separately fails to exploit the common
structures among them. It is thus desirable to jointly estimate the three networks
(graphs). Our key technical contribution is to establish the necessary and sufficient
condition for the solution of the fused multiple graphical lasso (FMGL) to be block
diagonal. The duality theory and several other tools in linear programming are used
to derive the necessary and sufficient condition. Based on this crucial property of the
FMGL, we develop a screening rule which enables efficient estimation of large multiple
precision matrices for the FMGL. The proposed screening rule can be combined with
any algorithms to reduce the computational cost. We employ a second-order method
[17, 23, 44] to solve the FMGL, where each step is solved by the spectral projected
gradient method [30, 50]. In addition, we propose an active set identification scheme
to identify the variables to be updated in each step of the second-order method, which
reduces the computation cost of each step. We conduct experiments on both synthetic
and real data; our results demonstrate the effectiveness and efficiency of the proposed
approach.

1.1. Notation. In this paper, � stands for the set of all real numbers, �n denotes
the n-dimensional Euclidean space, and the set of allm×nmatrices with real entries is
denoted by �m×n. All matrices are presented in bold format. The space of symmetric
matrices is denoted by Sn. IfX ∈ Sn is positive semidefinite (resp., definite), we write
X � 0 (resp., X � 0). Also, we write X � Y to mean X−Y � 0. The cone of positive
semidefinite matrices in Sn is denoted by Sn

+. Given matrices X and Y in �m×n,
the standard inner product is defined by 〈X,Y〉 := tr(XYT ), where tr(·) denotes the
trace of a matrix. X ◦ Y and X ⊗ Y mean the Hadamard and Kronecker product,
respectively, of X and Y. We denote the identity matrix by I, whose dimension
should be clear from the context. The determinant and the minimal eigenvalue of a
real symmetric matrix X are denoted by det(X) and λmin(X), respectively. Given a
matrix X ∈ �n×n, diag(X) denotes the vector formed by the diagonal of X; that is,
diag(X)i = Xii for i = 1, . . . , n. Diag(X) is the diagonal matrix which has the same
diagonal as X. vec(X) is the vectorization of X. In addition, X > 0 means that all
entries of X are positive.

The rest of the paper is organized as follows. We introduce the formulation of
the FMGL in section 2. The screening rule is presented in section 3. The proposed
second-order method is presented in section 4. The experimental results are shown in
section 5. We conclude the paper in section 6.

2. Fused multiple graphical lasso. Assume we are given K data sets, x(k) ∈
�nk×p, k = 1, . . . ,K, with K ≥ 2, where nk is the number of samples and p is the
number of features. The p features are common for all K data sets, and all

∑K
k=1 nk

samples are independent. Furthermore, the samples within each data set x(k) are
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identically distributed with a p-variate Gaussian distribution with zero mean and
positive definite covariance matrixΣ(k), and there are many conditionally independent
pairs of features; i.e., the precision matrix Θ(k) = (Σ(k))−1 should be sparse. For
notational simplicity, we assume that n1 = · · · = nK = n. Denote the sample
covariance matrix for each data set x(k) as S(k) with S(k) = 1

n (x
(k))Tx(k), and Θ =

(Θ(1), . . . ,Θ(K)). Then the negative log likelihood for the data takes the form of

K∑
k=1

(
− log det(Θ(k)) + tr(S(k)Θ(k))

)
.(2.1)

Clearly, minimizing (2.1) leads to the maximum likelihood estimate (MLE), Θ̂(k) =
(S(k))−1. However, the MLE fails when S(k) is singular. Furthermore, the MLE is
usually dense. The �1 regularization has been employed to induce sparsity, resulting
in the sparse inverse covariance estimation [2, 11, 53]. In this paper, we employ
both the �1 regularization and the fused regularization for simultaneously estimating
multiple graphs. The �1 regularization leads to a sparse solution, and the fused penalty
encourages Θ(k) to be similar to its neighbors. Mathematically, we solve the following
formulation:

min
Θ(k)�0,k=1,...,K

K∑
k=1

(
− log det(Θ(k)) + tr(S(k)Θ(k))

)
+ P (Θ),(2.2)

where

P (Θ) = λ1

K∑
k=1

∑
i�=j

|Θ(k)
ij |+ λ2

K−1∑
k=1

∑
i�=j

|Θ(k)
ij −Θ

(k+1)
ij |,

and λ1 > 0 and λ2 > 0 are positive regularization parameters. This model is referred
to as the fused multiple graphical lasso (FMGL).

To ensure the existence of a solution for problem (2.2), we assume throughout
this paper that diag(S(k)) > 0, k = 1, . . . ,K. Recall that S(k) is a sample covariance
matrix, and hence diag(S(k)) ≥ 0. The diagonal entries may, however, not be strictly
positive. But we can always add a small perturbation (say 10−8) to ensure that the
above assumption holds. The following theorem shows that under this assumption
the FMGL (2.2) has a unique solution. A rigorous proof is given in the appendix.

Theorem 2.1. Under the assumption that diag(S(k)) > 0, k = 1, . . . ,K, problem
(2.2) has a unique optimal solution.

3. The screening rule for FMGL. Due to the presence of the log determinant,
it is challenging to solve formulations involving the penalized log-likelihood efficiently.
The existing methods for single graphical lasso are not scalable to problems with a
large number of features because of the high computational complexity. Recent stud-
ies have shown that the graphical model may contain many connected components,
which are disjoint from each other, due to the sparsity of the graphical model; i.e., the
corresponding precision matrix has a block diagonal structure (subject to some rear-
rangement of features). To reduce the computational complexity, it is advantageous
to first identify the block structure and then compute the diagonal blocks of the pre-
cision matrix instead of the whole matrix. Danaher, Wang, and Witten [8] developed
a similar necessary and sufficient condition for fused graphical lasso with two graphs;
thus the block structure can be identified. However, it remains a challenge to derive
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the necessary and sufficient condition for the solution of FMGL to be block diagonal
for K > 2 graphs.

In this section, we first present a theorem demonstrating that FMGL can be
decomposable once its solution has a block diagonal structure. Then we derive a
necessary and sufficient condition for the solution of FMGL to be block diagonal for
an arbitrary number of graphs.

Let C1, . . . , CL be a partition of the p features into L nonoverlapping sets, with
Cl ∩ Cl′ = ∅ for all l = l′ and

⋃L
l=1 Cl = {1, . . . , p}. We say that the solution Θ̂

of FMGL (2.2) is block diagonal with L known blocks consisting of features in the
sets Cl, l = 1, . . . , L, if there exists a permutation matrix U ∈ �p×p such that each
estimation precision matrix takes the form of

Θ̂(k) = U

⎛⎜⎜⎝
Θ̂

(k)
1

. . .

Θ̂
(k)
L

⎞⎟⎟⎠UT , k = 1, . . . ,K.(3.1)

For simplicity of presentation, we assume throughout this paper that U = I.
The following decomposition result for problem (2.2) is straightforward. Its proof

is thus omitted.
Theorem 3.1. Suppose that the solution Θ̂ of FMGL (2.2) is block diagonal with

L known Cl, l = 1, . . . , L; i.e., each estimated precision matrix has the form (3.1) with

U = I. Let Θ̂l = (Θ̂
(1)
l , . . . , Θ̂

(K)
l ) for l = 1, . . . , L. Then we have

Θ̂l = arg min
Θl�0

K∑
k=1

(
− log det(Θ

(k)
l ) + tr(S

(k)
l Θ

(k)
l )

)
+ P (Θl), l = 1, . . . , L,(3.2)

where Θ
(k)
l and S

(k)
l are the |Cl| × |Cl| symmetric submatrices of Θ(k) and S(k),

respectively, corresponding to the lth diagonal block, for k = 1, . . . ,K, and Θl =

(Θ
(1)
l , . . . ,Θ

(K)
l ) for l = 1, . . . , L.

The above theorem demonstrates that if a large-scale FMGL problem has a block
diagonal solution, it can then be decomposed into a group of smaller sized FMGL
problems. The computational cost for the latter problems can be much cheaper. Now
one natural question is how to efficiently identify the block diagonal structure of the
FMGL solution before solving the problem. We address this question in the remaining
part of this section.

The following theorem provides a necessary and sufficient condition for the solu-
tion of the FMGL to be block diagonal with L blocks Cl, l = 1, . . . , L, which is a key
for developing an efficient decomposition scheme for solving FMGL. Since its proof
requires some substantial development of other technical results, we shall postpone
the proof until the end of this section.

Theorem 3.2. The FMGL (2.2) has a block diagonal solution Θ̂(k), k = 1, . . . ,K,
with L known blocks Cl, l = 1, . . . , L, if and only if S(k), k = 1, . . . ,K, satisfy the
following inequalities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|∑t
k=1 S

(k)
ij | ≤ tλ1 + λ2,

|∑t−1
k=0 S

(r+k)
ij | ≤ tλ1 + 2λ2, 2 ≤ r ≤ K − t,

|∑t
k=1 S

(K−t+k)
ij | ≤ tλ1 + λ2,

|∑K
k=1 S

(k)
ij | ≤ Kλ1

(3.3)
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for t = 1, . . . ,K − 1, i ∈ Cl, j ∈ Cl′ , l = l′.
One immediate consequence of Theorem 3.2 is that the conditions (3.3) can be

used as a screening rule to identify the block diagonal structure of the FMGL solution.
The steps for this rule are described as follows:

1. Construct an adjacency matrix E = Ip×p. Set Eij = Eji = 0 if S
(k)
ij , k =

1, . . . ,K, satisfy the conditions (3.3). Otherwise, set Eij = Eji = 1.
2. Identify the connected components of the adjacency matrix E (for example,

it can be done by calling the MATLAB function “graphconncomp”).
In view of Theorem 3.2, it is not hard to observe that the resulting connected

components are the partition of the p features into nonoverlapping sets. It then follows
from Theorem 3.1 that a large-scale FMGL problem can be decomposed into a group of
smaller sized FMGL problems restricted to the features in each connected component.
The computational cost for the latter problems can be much lower. Therefore, this
approach may enable us to solve large-scale FMGL problems very efficiently.

In the remainder of this section we provide a proof for Theorem 3.2. Before
proceeding, we establish several technical lemmas as follows.

Lemma 3.3. Given any two arbitrary index sets I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,
n − 1}, let Ī and J̄ be the complement of I and J with respect to {1, . . . , n} and
{1, . . . , n− 1}, respectively. Define

PI,J =
{
y ∈ �n : yI ≥ 0, yĪ ≤ 0, yJ − yJ+1 ≥ 0, yJ̄ − yJ̄+1 ≤ 0

}
,(3.4)

where J + 1 = {j + 1 : j ∈ J} and J̄ + 1 = {j + 1 : j ∈ J̄}. Then, the following
statements hold:

(i) Either PI,J = {0} or PI,J is unbounded.
(ii) 0 is the unique extreme point of PI,J .
(iii) Suppose that PI,J is unbounded. Then, ∅ = ext(PI,J ) ⊆ Q, where ext(PI,J )

denotes the set of all extreme rays of PI,J and

Q := {α(0, . . . , 0︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0)T ∈ �n : α = 0,m ≥ 0, 1 ≤ l ≤ n}.(3.5)

Proof. (i) We observe that 0 ∈ PI,J . If PI,J = {0}, then there exists 0 = y ∈ PI,J .
Hence, {αy : α ≥ 0} ⊆ PI,J , which implies that PI,J is unbounded.

(ii) It is easy to see that 0 ∈ PI,J and, moreover, that there exist n linearly
independent active inequalities at 0. Hence, 0 is an extreme point of PI,J . On the
other hand, suppose y is an arbitrary extreme point of PI,J . Then there exist n
linearly independent active inequalities at y, which, together with the definition of
PI,J , immediately implies y = 0. Therefore, 0 is the unique extreme point of PI,J .

(iii) Suppose that PI,J is unbounded. By statement (ii), we know that PI,J has
a unique extreme point. Using Minkowski’s resolution theorem (e.g., see [3]), we
conclude that ext(PI,J ) = ∅. Let d ∈ ext(PI,J ) be arbitrarily chosen. Then d = 0. It
follows from (3.4) that d satisfies the inequalities

dI ≥ 0, dĪ ≤ 0, dJ − dJ+1 ≥ 0, dJ̄ − dJ̄+1 ≤ 0,(3.6)

and moreover, the number of independent active inequalities at d is n−1. If all entries
of d are nonzero, then d must satisfy dJ − dJ+1 = 0 and dJ̄ − dJ̄+1 = 0 (with a total
number n − 1), which implies d1 = d2 = · · · = dn and thus d ∈ Q. We now assume
that d has at least one zero entry. Then, there exist positive integers k, {mi}ki=1, and
{ni}ki=1 satisfying mi ≤ ni < mi+1 ≤ ni+1 for i = 1, . . . , k − 1 such that

{i : di = 0} = {m1, . . . , n1} ∪ {m2, . . . , n2} ∪ · · · ∪ {mk, . . . , nk}.(3.7)
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One can immediately observe that

dmi = · · · = dni = 0, dj − dj+1 = 0, mi ≤ j ≤ ni − 1, 1 ≤ i ≤ k.(3.8)

We next divide the rest of proof into four cases.
Case (a): m1 = 1 and nk = n. In view of (3.7), one can observe that dmi−1−dmi =

0 and dni−1 − dni−1+1 = 0 for i = 2, . . . , k. We then see from (3.6) that, except for
the active inequalities given in (3.8), all other possible active inequalities at d are

dj − dj+1 = 0, ni−1 < j < mi − 1, 2 ≤ i ≤ k(3.9)

(with a total number
∑k

i=2(mi − ni−1 − 2)). Notice that the total number of inde-

pendent active inequalities given in (3.8) is
∑k

i=1(ni −mi + 1). Hence, the number
of independent active inequalities at d is at most

k∑
i=1

(ni −mi + 1) +

k∑
i=2

(mi − ni−1 − 2) = nk −m1 − k + 2 = n− k + 1.

Recall that the number of independent active inequalities at d is n − 1. Hence, we
have n−k+1 ≥ n−1, which implies k ≤ 2. Due to d = 0, we observe that k = 1 holds
for this case. Also, we know that k > 0. Hence, k = 2. We then see that all possible
active inequalities described in (3.9) must be active at d, which, together with k = 2,
immediately implies that d ∈ Q.

Case (b): m1 = 1 and nk < n. Using (3.7), we observe that dmi−1 − dmi = 0
for i = 2, . . . , k and dni − dni+1 = 0 for i = 1, . . . , k. In view of these relations and
an argument similar to that in case (a), one can see that the number of independent
active inequalities at d is at most

k∑
i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) + n− nk − 1 = n−m1 − k + 1 = n− k.

As in case (a), we can conclude from the above relation that k = 1 and d ∈ Q.
Case (c): m1 > 1 and nk = n. By (3.7), one can observe that dmi−1 − dmi = 0

for i = 1, . . . , k and dni − dni+1 = 0 for i = 1, . . . , k− 1. Using these relations and an
argument similar to that in case (a), we see that the number of independent active
inequalities at d is at most

m1 − 2 +

k∑
i=1

(ni −mi + 1) +

k∑
i=2

(mi − ni−1 − 2) = nk − k = n− k.

As in case (a), we can conclude from the above relation that k = 1 and d ∈ Q.
Case (d): m1 > 1 and nk < n. From (3.7), one can observe that dmi−1 − dmi = 0

for i = 1, . . . , k and dni − dni+1 = 0 for i = 1, . . . , k. By virtue of these relations and
an argument similar to that in case (a), one can see that the number of independent
active inequalities at d is at most

m1 − 2 +

k∑
i=1

(ni −mi + 1) +

k∑
i=2

(mi − ni−1 − 2) + n− nk − 1 = n− k − 1.

Recall that k ≥ 1 and the number of independent active inequalities at d is n − 1.
Hence, this case cannot occur.
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Combining the above four cases, we conclude that ext(PI,J ) ⊆ Q.
Lemma 3.4. Let PIJ and Q be defined in (3.4) and (3.5), respectively. Then,

∪{ext(PI,J ) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n− 1}} = Q.

Proof. It follows from Lemma 3.3(iii) that

∪{ext(PI,J) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n− 1}} ⊆ Q.

We next show that

∪{ext(PI,J) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n− 1}} ⊇ Q.

Indeed, let d ∈ Q be arbitrarily chosen. Then, there exist α = 0 and positive in-
tegers m1 and n1 satisfying 1 ≤ m1 ≤ n1 such that di = α for m1 ≤ i ≤ n1

and the rest of the di’s are 0. If α > 0, it is not hard to see that d ∈ ext(PI,J )
with I = {1, . . . , n} and J = {m1, . . . , n − 1}. Similarly, if α < 0, d ∈ ext(PI,J )
with I = ∅ and J being the complement of J̄ = {m1, . . . , n − 1}. Hence, d ∈
∪{ext(PI,J) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n− 1}}.

Lemma 3.5. Let x ∈ �n, λ1, λ2 ≥ 0 be given, and let

f(y) := xT y − λ1

n∑
i=1

|yi| − λ2

n−1∑
i=1

|yi − yi+1|.

Then, f(y) ≤ 0 for all y ∈ �n if and only if x satisfies the following inequalities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|∑k
j=1 xj | ≤ kλ1 + λ2,

|∑k−1
j=0 xi+j | ≤ kλ1 + 2λ2, 2 ≤ i ≤ n− k,

|∑k
j=1 xn−k+j | ≤ kλ1 + λ2,

|∑n
j=1 xj | ≤ nλ1

for k = 1, . . . , n− 1.
Proof. Let PI,J be defined in (3.4) for any I ⊆ {1, . . . , n} and J ⊆ {1, . . . , n− 1}.

We observe the following:
(a) �n = ∪{PI,J : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n− 1}}.
(b) f(y) ≤ 0 for all y ∈ �n if and only if f(y) ≤ 0 for all y ∈ PI,J , and every

I ⊆ {1, . . . , n} and J ⊆ {1, . . . , n− 1}.
(c) f(y) is a linear function of y when restricted to the set PI,J for every I ⊆

{1, . . . , n} and J ⊆ {1, . . . , n− 1}.
If PI,J is bounded, we have PI,J = {0} and f(y) = 0 for y ∈ PI,J . Suppose that PI,J

is unbounded. By Lemma 3.3 and Minkowski’s resolution theorem, PI,J equals the
finitely generated cone by ext(PI,J). It then follows that f(y) ≤ 0 for all y ∈ PI,J if
and only if f(d) ≤ 0 for all d ∈ ext(PI,J ). Using these facts and Lemma 3.4, we see
that f(y) ≤ 0 for all y ∈ �n if and only if f(d) ≤ 0 for all d ∈ Q, where Q is defined in
(3.5). By the definitions of Q and f , we further observe that f(y) ≤ 0 for all y ∈ �n

if and only if f(d) ≤ 0 for all

d ∈
⎧⎨⎩±(0, . . . , 0︸ ︷︷ ︸

m

, 1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0)T ∈ �n : m ≥ 0, 1 ≤ l ≤ n

⎫⎬⎭ ,
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which together with the definition of f immediately implies that the conclusion of
this lemma holds.

Lemma 3.6. Let x ∈ �n, λ1, λ2 ≥ 0 be given. The linear system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1 + λ1γ1 + λ2v1 = 0,

xi + λ1γi + λ2(vi − vi−1) = 0, 2 ≤ i ≤ n− 1,

xn + λ1γn − λ2vn−1 = 0,

−1 ≤ γi ≤ 1, i = 1, . . . , n,

−1 ≤ vi ≤ 1, i = 1, . . . , n− 1,

(3.10)

has a solution (γ, v) if and only if (x, λ1, λ2) satisfies the following inequalities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|∑k
j=1 xj | ≤ kλ1 + λ2,

|∑k−1
j=0 xi+j | ≤ kλ1 + 2λ2, 2 ≤ i ≤ n− k,

|∑k
j=1 xn−k+j | ≤ kλ1 + λ2,

|∑n
j=1 xj | ≤ nλ1

for k = 1, . . . , n− 1.
Proof. The linear system (3.10) has a solution if and only if the linear program

min
γ,v

{0Tγ + 0T v : (γ, v) satisfies (3.10)}(3.11)

has an optimal solution. The Lagrangian dual of (3.11) is

max
y

min
γ,v

{
xT y + λ1

n∑
i=1

yiγi + λ2

n−1∑
i=1

(yi − yi+1)vi : −1 ≤ γ, v ≤ 1

}
,

which is equivalent to

max
y

f(y) := xT y − λ1

n∑
i=1

|yi| − λ2

n−1∑
i=1

|yi − yi+1|.(3.12)

By the Lagrangian duality theory, problem (3.11) has an optimal solution if and only
if its dual problem (3.12) has optimal value 0, which is equivalent to f(y) ≤ 0 for
all y ∈ �n. The conclusion of this lemma then immediately follows from Lemma
3.5.

We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. For the sake of convenience, we denote the inverse of Θ̂(k)

as Ŵ(k) for k = 1, . . . ,K. By the first-order optimality conditions, we observe that
Θ̂(k) � 0, k = 1, . . . ,K, is the optimal solution of problem (2.2) if and only if it
satisfies

−Ŵ
(k)
ii + S

(k)
ii = 0, 1 ≤ k ≤ K,(3.13)

−Ŵ
(1)
ij + S

(1)
ij + λ1γ

(1)
ij + λ2υ

(1,2)
ij = 0,(3.14)

−Ŵ
(k)
ij + S

(k)
ij + λ1γ

(k)
ij + λ2(−υ

(k−1,k)
ij + υ

(k,k+1)
ij ) = 0, 2 ≤ k ≤ K − 1,(3.15)

−Ŵ
(K)
ij + S

(K)
ij + λ1γ

(K)
ij − λ2υ

(K−1,K)
ij = 0(3.16)
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for all i, j = 1, . . . , p, i = j, where γ
(k)
ij is a subgradient of |Θ(k)

ij | at Θ(k)
ij = Θ̂

(k)
ij and

υ
(k,k+1)
ij is a subgradient of |Θ(k)

ij −Θ
(k+1)
ij | with respect to Θ

(k)
ij at (Θ

(k)
ij ,Θ

(k+1)
ij ) =

(Θ̂
(k)
ij , Θ̂

(k+1)
ij ); that is, υ

(k,k+1)
ij = 1 if Θ̂

(k)
ij > Θ̂

(k+1)
ij , υ

(k,k+1)
ij = −1 if Θ̂

(k)
ij < Θ̂

(k+1)
ij ,

and υ
(k,k+1)
ij ∈ [−1, 1] if Θ̂

(k)
ij = Θ̂

(k+1)
ij .

Necessity. Suppose that Θ̂(k), k = 1, . . . ,K, is a block diagonal optimal solution
of problem (2.2) with L known blocks Cl, l = 1, . . . , L. Note that Ŵ(k) has the same

block diagonal structure as Θ̂(k). Hence, Ŵ
(k)
ij = Θ̂

(k)
ij = 0 for i ∈ Cl, j ∈ Cl′ , l = l′.

This together with (3.14)–(3.16) implies that for each i ∈ Cl, j ∈ Cl′ , l = l′, there
exist (γ

(k)
ij , v

(k,k+1)
ij ), k = 1, . . . ,K − 1, and γ

(K)
ij such that

S
(1)
ij + λ1γ

(1)
ij + λ2υ

(1,2)
ij = 0,

S
(k)
ij + λ1γ

(k)
ij + λ2(−υ

(k−1,k)
ij + υ

(k,k+1)
ij ) = 0, 2 ≤ k ≤ K − 1,

S
(K)
ij + λ1γ

(K)
ij − λ2υ

(K−1,K)
ij = 0,

−1 ≤ γ
(k)
ij ≤ 1, 1 ≤ k ≤ K,

−1 ≤ v
(k,k+1)
ij ≤ 1, 1 ≤ k ≤ K − 1.

(3.17)

Using (3.17) and Lemma 3.6, we see that (3.3) holds for t = 1, . . . ,K − 1, i ∈ Cl,
j ∈ Cl′ , l = l′.

Sufficiency. Suppose that (3.3) holds for t = 1, . . . ,K − 1, i ∈ Cl, j ∈ Cl′ ,
l = l′. It then follows from Lemma 3.6 that for each i ∈ Cl, j ∈ Cl′ , l = l′ there
exist (γ

(k)
ij , v

(k,k+1)
ij ), k = 1, . . . ,K − 1, and γ

(K)
ij such that (3.17) holds. Now let

Θ̂(k), k = 1, . . . ,K, be a block diagonal matrix as defined in (3.1) with U = I, where

Θ̂l = (Θ̂
(1)
l , . . . , Θ̂

(K)
l ) is given by (3.2) for l = 1, . . . , L. Also, let Ŵ(k) be the inverse

of Θ̂(k) for k = 1, . . . ,K. Since Θ̂l is the optimal solution of problem (3.2), the
first-order optimality conditions imply that (3.13)–(3.16) hold for all i, j ∈ Cl, i = j,

l = 1, . . . , L. Notice that Θ̂
(k)
ij = Ŵ

(k)
ij = 0 for every i ∈ Cl, j ∈ Cl′ , l = l′. Using this

fact and (3.17), we observe that (3.13)–(3.16) also hold for all i ∈ Cl, j ∈ Cl′ , l = l′.
It then follows that Θ̂(k), k = 1, . . . ,K, is an optimal solution of problem (2.2). In

addition, Θ̂(k), k = 1, . . . ,K, is block diagonal with L known blocks Cl, l = 1, . . . , L.
The conclusion thus holds.

3.1. Extension to other regularizations. We show how to establish a similar
necessary and sufficient condition for general fused regularization (i.e., graph fused
regularization). Denote G = (V,E) as an undirected graph, where the nodes are
V = {1, . . . ,K} and E is a set of edges. Assume that there is no redundancy in E
(i.e., if (u, v) ∈ E, (v, u) /∈ E). Then we define the graph fused regularization by

P (Θ) = λ1

K∑
k=1

∑
i�=j

|Θ(k)
ij |+ λ2

∑
i�=j

∑
(u,v)∈E

|Θ(u)
ij −Θ

(v)
ij |.(3.18)

Clearly, the sequential fused and pairwise fused regularization are special cases of the
graph fused regularization. The graph fused regularization is decomposable based
on the connected components of the given graph G. Without loss of generality, we
assume that G has only one connected component, which means that there exists an
edge across any two-set partition of V . The technique used in the sequential fused
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case can be extended to the case of graph fused regularization. The key is to prove
results similar to those in Lemmas 3.3 and 3.4 for graph fused regularization.

Denote G = {G1, G2, . . . , GM} as the set of subgraphs in graph G such that each
subgraph Gm has only one connected component. For example, a fully connected
graph with 3 nodes has 7 such subgraphs. According to the assumption that G has
only one connected component, we have G ∈ G. Let V = {V1, V2, . . . , VM}, where Vm

represents the nodes of subgraph Gm. Then we have the following results.
Lemma 3.7. Given an undirected graph G = (V,E), where the nodes are V =

{1, . . . , n} and E is a set of edges of size |E|. Given any two arbitrary index sets
I ⊆ {1, . . . , n}, J ⊆ {1, . . . , |E|}, let Ī and J̄ be the complement of I and J with
respect to {1, . . . , n} and {1, . . . , |E|}, respectively. Define

PI,J = {y ∈ �n : yI ≥ 0, yĪ ≤ 0, yu − yv ≥ 0 ∀(u, v) ∈ EJ ,

yu − yv ≤ 0 ∀(u, v) ∈ EJ̄} ,
(3.19)

where EJ and EJ̄ denote the sets of edges whose indexes are in J and J̄ , respectively.
Then, the following statements hold:

(i) Either PI,J = {0} or PI,J is unbounded.
(ii) 0 is the unique extreme point of PI,J .
(iii) Suppose that PI,J is unbounded. Then, ∅ = ext(PI,J ) ⊆ Q, where

Q :=

{
αd ∈ �n : α = 0, di =

{
1, i ∈ Vm,
0, i /∈ Vm,

∀Vm ∈ V
}
.(3.20)

(iv) ∪{ext(PI,J) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , |E|}} = Q.
The proof is given in the appendix. After we obtain the set of all extreme rays,

the remaining steps can be proved in the same manner as in the fused case. Let
|E\Vm

| be the number of edges across Vm and its complement, and let |Vm| be the
number of nodes in Vm. Then the necessary and sufficient condition for graph fused
regularization is∣∣∣∣∣∣

|Vm|∑
k=1

S
(uk)
ij

∣∣∣∣∣∣ ≤ |Vm|λ1 + |E\Vm
|λ2, uk ∈ Vm, ∀Vm ∈ V .(3.21)

The complexity of verifying the necessary and sufficient condition for an arbitrary
graph is exponential due to all possible subgraphs with only one connected component.
Exploring the structure of the given graph may reduce redundancy of the conditions
(3.21). We defer this to future work.

3.2. Screening rule for general structured multiple graphical lasso (SMGL).
We consider the following general SMGL:

min
Θ(k)�0,k=1,...,K

K∑
k=1

(
− log det(Θ(k)) + tr(S(k)Θ(k))

)
+

∑
i�=j

φ(Θij),(3.22)

where Θij = (Θ
(1)
ij , . . . ,Θ

(K)
ij )T ∈ �K and φ(x) is a convex regularization that en-

courages estimated graph models to have a certain structure. Besides fused and graph
regularizations, there are other examples including but not limited to the following:

• Overlapping group regularization:

φ(x) = λ1‖x‖1 + λ2

g∑
i=1

‖xGi‖2,
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whereGi, i = 1, . . . , g, are g groups such that
⋃g

i=1 Gi = {1, . . . ,K}. Different
groups may overlap.

• Tree structured group regularization:

φ(x) =

d∑
i=1

ni∑
j=1

wi
j‖xGi

j
‖2,

where wi
j is a positive weight and the groups Gi

j , j = 1, . . . , ni, i = 1, . . . , d,
exhibit a tree structure [26].

Theorem 3.8. The SMGL (3.22) has a block diagonal solution Θ̂(k), k =
1, . . . ,K, with L blocks Cl, l = 1, . . . , L, if and only if 0 is the optimal solution
of the following problem:

min
x

1

2
‖x+ Sij‖22 + φ(x)(3.23)

for i ∈ Cl, j ∈ Cl′ , l = l′.
The proof can be found in the appendix. Theorem 3.8 can be used as a screening

rule for the SMGL. If (3.23) has a closed form solution as in the case of tree structured
group regularization [26], the screening rule results in an exact block diagonal struc-
ture. However, if (3.23) does not have a closed form solution, the screening rule may
not identify an exact block diagonal structure due to numerical error. Although the
identified structure may be inexact, it can still be used to find a good initial solution,
as shown in [16]. An interesting future direction is to study the error bound between
the identified and exact block diagonal structures.

4. Second-order method. The screening rule proposed in section 3 is capable
of partitioning all features into a group of smaller sized blocks. Accordingly, a large-
scale FMGL (2.2) can be decomposed into a number of smaller sized FMGL problems.

For each block l we need to compute its individual precision matrixΘ
(k)
l by solving the

FMGL (2.2) with S(k) replaced by S
(k)
l . In this section, we show how to solve those

single block FMGL problems efficiently. For simplicity of presentation, we assume
throughout this section that the FMGL (2.2) has only one block; that is, L = 1.

We now propose a second-order method to solve the FMGL (2.2). For simplicity
of notation, we let Θ := (Θ(1), . . . ,Θ(K)) and use t to denote the Newton iteration

index. Let Θt = (Θ
(1)
t , . . . ,Θ

(K)
t ) be the approximate solution obtained at the tth

Newton iteration.
The optimization problem (2.2) can be rewritten as

min
Θ�0

F (Θ) :=

K∑
k=1

fk(Θ
(k)) + P (Θ),(4.1)

where

fk(Θ
(k)) = − log det(Θ(k)) + tr(S(k)Θ(k)).

In the second-order method, we approximate the objective function F (Θ) at the
current iterate Θt by a “quadratic” model Qt(Θ):

min
Θ

Qt(Θ) :=
K∑

k=1

qk(Θ
(k)) + P (Θ),(4.2)



928 S. YANG, Z. LU, X. SHEN, P. WONKA, AND J. YE

where qk is the quadratic approximation of fk at Θ
(k)
t ; that is,

qk(Θ
(k)) =

1

2
tr(W

(k)
t D(k)W

(k)
t D(k)) + tr((S(k) −W

(k)
t )D(k)) + fk(Θ

(k)
t )

with W
(k)
t = (Θ

(k)
t )−1 and D(k) = Θ(k) − Θ

(k)
t . Suppose that Θ̄t+1 is the optimal

solution of (4.2). Then we obtain the Newton search direction

D = Θ̄t+1 −Θt.(4.3)

We shall mention that the subproblem (4.2) can be suitably solved by the non-
monotone spectral projected gradient (NSPG) method (see, for example, [30, 50]). It
was shown by Lu and Zhang [30] that the NSPG method is locally linearly convergent.
Numerous computational studies have demonstrated that the NSPG method is very
efficient, though its global convergence rate is so far unknown. When applied to (4.2),
the NSPG method requires solving proximal subproblems in the form of

proxαP (Zr) := argmin
Θ

1

2
‖Θ− Zr‖2F + αP (Θ),(4.4)

where r represents the rth iteration in NSPG, ‖Θ − Zr‖2F =
∑K

k=1 ‖Θ(k) − Z
(k)
r ‖2F ,

Zr = Θr−αGr, and G
(k)
r = S(k)−2W

(k)
t +W

(k)
t Θ

(k)
r W

(k)
t . Denote R = Θr−Θr−1

and ᾱ =
∑K

k=1 tr(R
(k)W

(k)
t R(k)W

(k)
t )/

∑K
k=1 ‖R(k)‖2F . Then α is given by α =

max(αmin, min(1/ᾱ, αmax)), where [αmin, αmax] is a given safeguard [30, 50].
By the definition of P (Θ), it is not hard to see that problem (4.4) can be decom-

posed into a set of independent and smaller sized problems,

min
Θ

(k)
ij

,k=1,...,K

1

2

K∑
k=1

(Θ
(k)
ij − Z

(k)
r,ij)

2 + α1

K∑
k=1

|Θ(k)
ij |+ α2

K−1∑
k=1

|Θ(k)
ij −Θ

(k+1)
ij |(4.5)

for all i > j, (α1, α2) = α(λ1, λ2), and for i = j, α1, α2 = 0, j = 1, . . . , p. Prob-
lem (4.5) is known as the fused lasso signal approximator, which can be solved very
efficiently and exactly [7, 27]. In addition, these smaller problems are independent
from each other and thus can be solved in parallel.

Given the current search direction D = (D(1), . . . ,D(K)) that is computed above,
we need to find a suitable step length β ∈ (0, 1] to ensure a sufficient reduction in

the objective function of (2.2) and positive definiteness of the next iterate Θ
(k)
t+1 =

Θ
(k)
t + βD(k), k = 1, . . . ,K. In the context of the standard (single) graphical lasso,

Hsieh et al. [17] have shown that a step length satisfying the above requirements
always exists. We can similarly prove that the desired step length also exists for the
FMGL (2.2) (the poof is similar to that in [17] and is thus omitted).

Lemma 4.1. Let Θt = (Θ
(1)
t , . . . ,Θ

(K)
t ) be such that Θ

(k)
t � 0 for k = 1, . . . ,K,

and let D = (D(1), . . . ,D(K)) be the associated Newton search direction computed

according to (4.2). Suppose D = 0.1 Then there exists a β̄ > 0 such that Θ
(k)
t +

βD(k) � 0 and the sufficient reduction condition

F (Θt + βD) ≤ F (Θt) + σβδt(4.6)

1It is well known that if D = 0, then Θt is the optimal solution of problem (2.2).
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holds for all 0 < β < β̄, where σ ∈ (0, 1/2) is a given constant and

δt =

K∑
k=1

tr((S(k) −W
(k)
t )D(k)) + P (Θt +D)− P (Θt).(4.7)

By virtue of Lemma 4.1, we can adopt the well-known Armijo backtracking line

search rule [44] to select a step length β ∈ (0, 1] so that Θ
(k)
t + βD(k) � 0 and

(4.6) holds. In particular, we choose β to be the largest number of the sequence
{1, 1/2, . . . , 1/2i, . . .} that satisfies these requirements. We can use the Cholesky fac-

torization to check the positive definiteness ofΘ
(k)
t +βD(k), k = 1, . . . ,K. In addition,

the associated terms log det(Θ
(k)
t + βD(k)) and (Θ

(k)
t + βD(k))−1 can be efficiently

computed as a byproduct of the Cholesky decomposition of Θ
(k)
t + βD(k).

4.1. Active set identification. Given the large number of unknown variables
in (4.2), it is advantageous to minimize (4.2) in a reduced space. In the case of a
single graph (K = 1), problem (4.2) degenerates to a lasso problem of size p2. Hsieh
et al. [17] proposed a strategy to determine a subset of variables that are allowed to
be updated in each Newton iteration for single graphical lasso. Specifically, the p2

variables in single graphical lasso are partitioned into two sets, including a free set F
and an active set A, based on the gradient at the start of each Newton iteration, and
then the minimization is performed only on the variables in F . We call this technique
“active set identification” in this paper. Due to the sparsity of the precision matrix,
the size of F is usually much smaller than p2. Moreover, it has been shown in the single
graph case that the size of F will decrease quickly [17]. The active set identification
can thus improve the computational efficiency. This technique was also successfully
used in [20, 37, 38, 52]. We show that active set identification can be extended to the
FMGL based on the results established in section 3.

Denote the gradient of fk at the tth iteration by G̃
(k)
t = S(k) − W

(k)
t , and its

(i, j)th element by G̃
(k)
t,ij . Then we have the following result.

Lemma 4.2. For Θt in the tth iteration, define the active set A as

A = {(i, j)|Θ(1)
t,ij = · · · = Θ

(K)
t,ij = 0 and G̃

(1)
t,ij , . . . , G̃

(K)
t,ij satisfy the inequalities

below} :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|∑u
k=1 G̃

(k)
t,ij | < uλ1 + λ2,

|∑u−1
k=0 G̃

(r+k)
t,ij | < uλ1 + 2λ2, 2 ≤ r ≤ K − u,

|∑u
k=1 G̃

(K−u+k)
t,ij | < uλ1 + λ2,

|∑K
k=1 G̃

(k)
t,ij | < Kλ1

(4.8)

for u = 1, . . . ,K − 1.
Then, the solution of the following problem is D(1) = · · · = D(K) = 0:

min
D

Qt(Θt +D) such that D
(1)
ij = · · · = D

(K)
ij = 0, (i, j) /∈ A.(4.9)

Proof. Consider problem (4.9), which can be reformulated to

min
D

K∑
k=1

(
1

2
vec(D(k))TH

(k)
t vec(D(k)) + vec(G̃

(k)
t )T vec(D(k))

)
+P (Θt +D)

s.t. D
(1)
ij = · · · = D

(K)
ij = 0, (i, j) /∈ A,

(4.10)
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where H
(k)
t = W

(k)
t ⊗ W

(k)
t . Because of the constraint D

(1)
ij = · · · = D

(K)
ij = 0,

(i, j) /∈ A, we consider only the variables in the set A. According to Lemma 3.6, it is
easy to see that DA = 0 satisfies the optimality condition of the following problem:

min
DA

K∑
k=1

vec(G̃
(k)
t,A)

Tvec(D
(k)
A ) + P (DA).

Since
∑K

k=1 vec(D
(k))TH

(k)
t vec(D(k)) ≥ 0, the optimal solution of (4.9) is given by

D(1) = · · · = D(K) = 0.
Lemma 4.2 provides an active set identification scheme to partition the variables

into the free set F and the active set A. Lemma 4.2 shows that when the variables in
the free set F are fixed, no update is needed for the variables in the active set A. The
resulting second-order method with active set identification for solving the FMGL is
summarized in Algorithm 1.

Algorithm 1: Proposed Second-Order Method for FMGL.

Input: S(k), k = 1, . . . ,K, λ1, λ2

Output: Θ(k), k = 1, . . . ,K

Initialization: Θ
(k)
0 = (Diag(S(k)))−1;

while Not Converged do
Determine the sets of free and fixed indices F and A using Lemma 4.2.
Compute the Newton direction D(k), k = 1, . . . ,K, by solving (4.2) and
(4.3) over the free variables F .

Choose Θ
(k)
t+1 by performing the Armijo backtracking line search along

Θ
(k)
t + βD(k) for k = 1, . . . ,K.

end

return Θ(k), k = 1, . . . ,K;

4.2. Convergence. Convergence of proximal Newton-type methods has been
studied in previous literature [5, 17, 23, 41, 44]. Under the assumption that the sub-
problems are solved exactly, a local quadratic convergence rate can be achieved when
the exact Hessian is used (i.e., the proximal Newton method) [17, 23, 44]. When
an approximate Hessian is used (i.e., the proximal quasi-Newton method), the local
convergence rate is linear or superlinear [23, 44]. We show that the FMGL algo-
rithm (with active set identification) falls into the proximal quasi-Newton framework.
Denote the approximate Hessian by

H̃
(k)
t =

(
H

(k)
t,F

H
(k)
t,A

)
,(4.11)

whereH
(k)
t,J is the submatrix of the exact HessianH

(k)
t with variables in J . Using H̃

(k)
t

instead, the subproblem (4.2) can be decomposed into the following two problems:

min
DJ

K∑
k=1

(
1

2
vec(D

(k)
J )TH

(k)
t,J vec(D

(k)
J ) + vec(G̃

(k)
t,J )Tvec(D

(k)
J )

)
+P (Θt,J +DJ ), J = F , A.

(4.12)
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Consider the problem with respect to the variables in A:

min
DA

K∑
k=1

(
1

2
vec(D

(k)
A )TH

(k)
t,Avec(D

(k)
A ) + vec(G̃

(k)
t,A)

Tvec(D
(k)
A )

)
+P (Θt,A +DA),

which is equivalent to problem (4.10). According to the definition of the active set

A, it follows from Lemma 4.2 that the optimal solution is D
(k)
A = 0, k = 1, . . . ,K.

Thus, the FMGL in Algorithm 1 is a proximal quasi-Newton method. The global
convergence to the unique optimal solution is therefore guaranteed [23].

In the case when the subproblems are solved inexactly (i.e., inexact FMGL), we
can adopt the following adaptive stopping criterion proposed in [5, 23] to achieve the
global convergence:

‖Mτ q̄(Θ̄)‖ ≤ ηt‖Mτ f̄(Θt)‖, QH
t (Θ̄)−QH

t (Θt) ≤ ζ(Lt(Θ̄)− Lt(Θt)),(4.13)

for some τ > 0, where Θ̄ is an inexact solution of the subproblem, ηt ∈ (0, 1) is a
forcing term, ζ ∈ (σ, 1/2), Lt(Θ) is defined by

Lt(Θ) = f̄(Θt) + vec(∇f̄ (Θ))T vec(Θ−Θt) + P (Θ),

and the composite gradient step Mτ f̄(Θ) is defined by

Mτ f̄(Θ) =
1

τ

(
Θ− proxτP (Θ− τ∇f̄(Θ))

)
.

The functions q̄(Θ) and f̄(Θ) are defined by

q̄(Θ) =

K∑
k=1

qHk (Θ(k)), f̄(Θ) =

K∑
k=1

fk(Θ
(k)).

The superscript in QH
t and qHk represents the “quadratic” approximate functions

Qt and qk using the approximate Hessian in (4.11) rather than the exact Hessian.
According to the definition of A (i.e., DA = 0 and Θt,A = 0), the adaptive stopping
criterion in (4.13) can only be verified over the variables in the free set F . Following
[5], the sufficient reduction condition in the line search of inexact FMGL uses Lt(Θt+
βD)− Lt(Θt) instead of βδt in (4.6).

Although the global convergence of inexact proximal Newton-type (including
Newton and quasi-Newton) methods is guaranteed, it is still challenging to prove a
convergence rate for inexact proximal quasi-Newton methods such as inexact FMGL
where an approximate Hessian is used. The local convergence rate of the inexact prox-
imal Newton method has been studied in [5, 23]. However, those proofs require the
Hessian to be exact, which is not the case in inexact FMGL. It is worth noting that
Jiang, Sun, and Toh [19] and Scheinberg and Tang [41] have recently shown a sublin-
ear global convergence rate for inexact proximal quasi-Newton methods. In order to
have such global convergence rate, the method in [19] requires stricter conditions on
the approximate Hessian, while the method in [41] uses a prox-parameter updating
mechanism instead of line search for acceptance of iterates [41]. It is difficult to apply
their techniques to our method, since the conditions in [19, 41] for the global conver-
gence rates may not hold for inexact FMGL. The property of the selected active set A
and the special structure of the approximate Hessian may be the key to establishing
a faster local convergence rate for inexact FMGL. We defer these analyses to future
work.
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5. Experimental results. In this section, we evaluate the proposed algorithm
and screening rule on synthetic datasets and two real datasets: ADHD-200 [33] and
FDG-PET [48] images. The experiments are performed on a PC with a quad-core
Intel 2.67GHz CPU and 9GB memory.

5.1. Simulation. We conduct experiments to demonstrate the effectiveness of
the proposed screening rule and the efficiency of our FMGL method. The following
algorithms are included in our comparisons:

• FMGL: the proposed second-order method in Algorithm 1.
• ADMM: the ADMM method.
• FMGL-S: FMGL with screening.
• ADMM-S: ADMM with screening.

Both FMGL and ADMM are written in MATLAB, and they are available online.2

Since both methods involve solving (4.4), which involves a double loop, we implement
the subroutine for solving (4.4) in C for a fair comparison.

The synthetic covariance matrices are generated as follows. We first generate K
block diagonal ground truth precision matrices Θ(k) with L blocks, and each block

Θ
(k)
l is of size (p/L) × (p/L). Each Θ

(k)
l , l = 1, . . . , L, k = 1, . . . ,K, has random

sparsity structures. We control the number of nonzeros in each Θ
(k)
l to be about

10p/L so that the total number of nonzeros in the K precision matrices is 10Kp.
Given the precision matrices, we draw 5p samples from each Gaussian distribution to
compute the sample covariance matrices. The fused penalty parameter λ2 is fixed to
0.1, and the �1 regularization parameter λ1 is selected so that the total number of
nonzeros in the solution is about 10Kp.

5.1.1. Convergence. We first explore the convergence behavior of FMGL with
different stopping criteria in NSPG. Three stopping criteria are considered:

• 1E-6: stop when the relative error
max{‖Θ(k)

r −Θ
(k)
r−1

‖∞}
max{‖Θ(k)

r−1
‖∞} ≤ 1e-6.

• Exact: the subproblems are solved accurately as in [23]. (More precisely,

NSPG stops when
max{‖Θ(k)

r −Θ
(k)
r−1

‖∞}
max{‖Θ(k)

r−1
‖∞} ≤ 1e-12).

• Adaptive: stop when the adaptive stopping criterion (4.13) is satisfied. The
forcing term ηk is chosen as in [23].

We plot the relative error of objective value versus Newton iterations and computa-
tional time on a synthetic dataset (K = 5, L = 1, p = 500) in Figure 1. We observe
from Figure 1 that the exact stopping criterion has the fastest convergence with re-
spect to Newton iterations. Considering computational time, the adaptive criterion
has the best convergence behavior. Although the criterion 1E-6 has almost the same
convergence behavior as the exact criterion in the first few steps, FMGL with this
constant stopping criterion converges slower when the approximated solution is close
enough to the optimal solution. We also include the convergence of ADMM in Figure
1. We can see that ADMM converges much more slowly than does FMGL.

5.1.2. Screening. We conduct experiments to show the effectiveness of the pro-
posed screening rule. NSPG is terminated using the adaptive stop criterion. FMGL
is terminated when the relative error of the objective value is smaller than 1e-5, and
ADMM stops when it achieves an objective value equal to or smaller than that of
FMGL. The results presented in Table 1 show that FMGL is consistently faster than

2http://www.yelab.net/software/MGL/

http://www.yelab.net/software/MGL/
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Fig. 1. Convergence behavior of FMGL with three stopping criteria (exact, adaptive, and 1E-6)
and ADMM.

Table 1

Comparison of the proposed FMGL and ADMM methods with and without screening in terms
of average computational time (seconds). FMGL-S and ADMM-S are FMGL and ADMM with
screening, respectively. p stands for the dimension, K is the number of graphs, L is the number
of blocks, and λ1 is the �1 regularization parameter. The fused penalty parameter λ2 is fixed to
0.1. ‖Θ‖0 represents the total number of nonzero entries in ground truth precision matrices Θ(k),
k = 1, . . . , K, and ‖Θ∗‖0 is the number of nonzeros in the solution.

Data and parameter setting Computational time
p K L ‖Θ‖0 λ1 ‖Θ∗‖0 FMGL-S FMGL ADMM-S ADMM
500

2

5

9848 0.08 9810 0.44 4.13 13.30 100.79
1000 20388 0.088 19090 2.25 17.88 57.44 617.88
500

5
24866 0.055 23304 0.97 12.23 32.40 286.98

1000 50598 0.054 44030 5.16 50.95 174.91 1595.91
500

10
49092 0.051 45474 2.33 24.35 63.75 458.51

1000 100804 0.046 84310 10.27 111.78 302.86 2966.72

500
2

10

9348 0.07 9386 0.32 4.87 6.82 105.01
1000 19750 0.08 20198 0.76 17.93 25.62 674.28
500

5
23538 0.055 22900 0.77 14.96 15.09 256.33

1000 49184 0.054 45766 1.92 53.96 64.31 1314.18
500

10
47184 0.051 47814 1.66 52.32 29.86 455.43

1000 98564 0.046 94566 4.44 126.26 128.52 2654.24

ADMM. Moreover, the screening rule can achieve great computational gain. The
speedup with the screening rule is about 10 and 20 times for L = 5 and 10, respec-
tively.

5.2. Real data.

5.2.1. ADHD-200. Attention Deficit Hyperactivity Disorder (ADHD) affects
at least 5–10% of school-age children with annual costs exceeding 36 billion/year
in the United States. The ADHD-200 project has released resting-state functional
magnetic resonance images (fMRI) of 491 typically developing children and 285 ADHD
children, aiming to encourage research on ADHD. The data used in this experiment
is preprocessed using the NIAK pipeline and downloaded from neurobureau.3 More
details about the preprocessing strategy can be found in the same website. The dataset

3http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline

http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline
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Fig. 2. Comparison of FMGL with three stopping criteria and ADMM in terms of objective
value curve on the ADHD-200 dataset. The dimension p is 2834, and the number of graphs K is 3.

we choose includes 116 typically developing children (TDC), 29 ADHD-Combined
(ADHD-C), and 49 ADHD-Inattentive (ADHD-I). There are 231 time series and 2834
brain regions for each subject. We want to estimate the graphs of the three groups
simultaneously. The sample covariance matrix is computed using all data from the
same group. Since the number of brain regions p is 2834, obtaining the precision
matrices is computationally intensive. We use this data to test the effectiveness of
the proposed screening rule. λ1 and λ2 are set to 0.6 and 0.015. The comparison
of FMGL with three stopping criteria and ADMM in terms of the objective value
curve is shown in Figure 2. The result shows that FMGL converges much faster than
ADMM. To obtain a solution of precision 1e-5, the computational times of FMGL
(Adaptive), FMGL (1E-6), FMGL (Exact), and ADMM are 252.78, 855.86, 1269.75
and 5410.48 seconds, respectively. However, with the screening, the computational
times of FMGL-S (Adaptive), FMGL-S (1E-6), FMGL-S (Exact), and ADMM-S are
reduced to 4.02, 12.51, 19.55, and 80.52 seconds, respectively, demonstrating the
superiority of the proposed screening rule. The obtained solution has 1443 blocks.
The largest one including 634 nodes is shown in Figure 3.

The block structures of the FMGL solution are the same as those identified by the
screening rule. The screening rule can be used to analyze the rough structures of the
graphs. The cost of identifying blocks using the screening rule is negligible compared
to that of estimating the graphs. For high-dimensional data such as ADHD-200, it is
practical to use the screening rule to identify the block structure before estimating the
large graphs. We use the screening rule to identify block structures on ADHD-200
data with varying λ1 and λ2. The size distribution is shown in Figure 4. We can
observe that the number of blocks increases, and the size of blocks decreases, when
the regularization parameter value increases.

5.2.2. FDG-PET. In this experiment, we use FDG-PET images from 74 Alzhei-
mer’s disease (AD), 172 mild cognitive impairment (MCI), and 81 normal control (NC)
subjects downloaded from the Alzheimer’s disease neuroimaging initiative (ADNI)
database [48]. The different regions of the whole brain volume can be represented
by 116 anatomical volumes of interest (AVOI), defined by automated anatomical
labeling (AAL) [45]. Then we extracted data from each of the 116 AVOIs and derived
the average of each AVOI for each subject. The 116 AVOIs can be categorized into
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Fig. 3. A subgraph of ADHD-200 identified by FMGL with the proposed screening rule. The
grey edges are common edges among the three graphs; the red, green, and blue edges (see color
online) are the specific edges for TDC, ADHD-I, and ADHD-C, respectively.
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Fig. 4. The size distribution of blocks (in the logarithmic scale) identified by the proposed
screening rule. The color represents the number of blocks of a specified size. (a) λ1 varies from 0.5
to 0.95 with λ2 fixed to 0.015. (b) λ2 varies from 0 to 0.2 with λ1 fixed to 0.55.

10 groups: prefrontal lobe, other parts of the frontal lobe, parietal lobe, occipital
lobe, thalamus, insula, temporal lobe, corpus striatum, cerebellum, and vermis. More
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Fig. 5. The average number of stable edges detected by FMGL and GLasso in NC (left), MCI
(middle), and AD (right) of 500 replications. Sample size varies from 20% to 100% with a step of
10%.
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Fig. 6. Brain connection models with 265 edges: NC (left), MCI (middle), and AD (right). In
each figure, the diagonal blocks are prefrontal lobe, other parts of frontal lobe, parietal lobe, occipital
lobe, temporal lobe, corpus striatum, cerebellum, and vermis, respectively.

details about the categories can be found in [45, 47]. We remove two small groups
(thalamus and insula) containing only 4 AVOIs in our experiments.

To examine whether FMGL can effectively utilize the information of common
structures, we randomly select g percent samples from each group, where g varies
from 20 to 100 with a step size of 10. For each g, λ2 is fixed to 0.1, and λ1 is adjusted
to make sure that the number of edges in each group is about the same. We perform
500 replications for each g. The edges with probability larger than 0.85 are considered
as stable edges. The results showing the numbers of stable edges are summarized in
Figure 5. We can observe that FMGL is more stable than GLasso. When the sample
size is too small (say 20%), there are only 20 stable edges in the graph of NC obtained
by GLasso. But the graph of NC obtained by FMGL still has about 140 stable edges,
illustrating the superiority of FMGL in stability.

The brain connectivity models obtained by FMGL are shown in Figure 6. We can
see that the number of connections within the prefrontal lobe significantly increases
and the number of connections within the temporal lobe significantly decreases from
NC to AD, which is supported by previous findings [1, 15]. The connections between
the prefrontal and occipital lobes increase from NC to AD, and connections within
cerebellum decrease. We can also find that the adjacent graphs are similar, indicat-
ing that FMGL can identify the common structures but also keep the meaningful
differences.
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6. Conclusion. In this paper, we have considered simultaneously estimating
multiple graphical models by maximizing a fused penalized log likelihood. We have
derived a set of necessary and sufficient conditions for the FMGL solution to be
block diagonal for an arbitrary number of graphs. A screening rule has been devel-
oped to enable the efficient estimation of large multiple graphs. The second-order
method is employed to solve the FMGL, which is shown to be equivalent to a prox-
imal quasi-Newton method. The global convergence of the proposed method with
an adaptive stopping criterion is guaranteed. An active set identification scheme has
been proposed to identify the variables to be updated during the Newton iterations,
thus reducing the computation. Numerical experiments on synthetic and real data
demonstrate the efficiency and effectiveness of the proposed method and the screening
rule. We plan to further explore the convergence properties of the second-order meth-
ods when the subproblems are solved inexactly. Due to the active set identification
scheme, the proposed second-order method is suitable for warm-start techniques. A
good initial solution can further speed up the computation. As part of future work,
we plan to explore how to efficiently find a good initial solution to further improve
the efficiency of the proposed method. One possibility is to use divide-and-conquer
techniques [16].

Appendix A. Supporting proofs.

A.1. Uniqueness of the FMGL solution. To prove Theorem 2.1, we first es-
tablish a technical lemma regarding the existence of a solution for a standard graphical
lasso problem.

Lemma A.1. Let S ∈ Sp
+ and Λ ∈ Sp be such that Diag(S) + Λ > 0 and

diag(Λ) ≥ 0. Consider the problem

min
X�0

− log det(X) + tr(SX) +
∑
ij

Λij |Xij |︸ ︷︷ ︸
f(X)

.(A.1)

Then the following statements hold:
(a) Problem (A.1) has a unique optimal solution.
(b) The sublevel set L = {X � 0 : f(X) ≤ α} is compact for any α ≥ f∗, where

f∗ is the optimal value of (A.1).
Proof. (a) Let U = {U ∈ Sp : Uij ∈ [−1, 1] ∀i, j}. Consider the problem

max
U∈U

{log det(S+Λ ◦U) : S+Λ ◦U � 0} .(A.2)

We first claim that the feasible region of problem (A.2) is nonempty, or equiva-
lently, there exists Ū ∈ U such that λmin(S + Λ ◦ Ū) > 0. Indeed, one can observe
that

max
U∈U

λmin(S+Λ ◦U) = max
t,U∈U

{t : Λ ◦U+ S− tI � 0}
= min

X
0
max
t,U∈U

{t+ tr(X(Λ ◦U+ S− tI))}

= min
X
0

⎧⎨⎩tr(SX) +
∑
ij

Λij |Xij | : tr(X) = 1

⎫⎬⎭ ,(A.3)

where the second equality follows from the Lagrangian duality since its associated
Slater condition is satisfied. Let Ω := {X ∈ Sp : tr(X) = 1, X � 0}. By the
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assumption Diag(S) +Λ > 0, we see that Λij > 0 for all i = j and Sii +Λii > 0 for
every i. Since Ω ⊂ Sp

+, we have tr(SX) ≥ 0 for all X ∈ Ω. If there exists some k = l
such that Xkl > 0, then

∑
i�=j Λij |Xij | > 0, and hence

tr(SX) +
∑
ij

Λij |Xij | > 0 ∀X ∈ Ω.(A.4)

Otherwise, one hasXij = 0 for all i = j, which, together with the facts that Sii+Λii >
0 for all i and tr(X) = 1, implies that for all X ∈ Ω,

tr(SX) +
∑
ij

Λij |Xij | =
∑
i

(Sii +Λii)Xii ≥ tr(X)min
i
(Sii +Λii) > 0.

Hence, (A.4) again holds. Combining (A.3) with (A.4), one can then see that
maxU∈U λmin(S + Λ ◦ U) > 0. Therefore, problem (A.2) has at least a feasible
solution.

We next show that problem (A.2) has an optimal solution. Let Ū be a feasible
point of (A.2), and

Ω̄ := {U ∈ U : log det(S+Λ ◦U) ≥ log det(S+Λ ◦ Ū), S+Λ ◦U � 0}.

One can observe that {S+Λ ◦U : U ∈ U} is compact. Using this fact, it is not hard
to see that log det(S+Λ ◦U) → −∞ as U ∈ U and λmin(S+Λ ◦U) ↓ 0. Thus there
exists some δ > 0 such that

Ω̄ ⊆ {U ∈ U : S+Λ ◦U � δI},

which implies that

Ω̄ = {U ∈ U : log det(S+Λ ◦U) ≥ log det(S+Λ ◦ Ū), S+Λ ◦U � δI}.

Hence, Ω̄ is a compact set. In addition, one can observe that problem (A.2) is equiv-
alent to

max
U∈Ω̄

log det(S+Λ ◦U).

The latter problem clearly has an optimal solution and so does problem (A.2).
Finally, we show that X∗ = (S+Λ◦U∗)−1 is the unique optimal solution of (A.1),

where U∗ is an optimal solution of (A.2). Since S+Λ ◦U∗ � 0, we have X∗ � 0. By
the definitions of U and X∗, and the first-order optimality conditions of (A.2) at U∗,
one can have

U∗
ij =

⎧⎨⎩
1 if X∗

ij > 0,
β ∈ [−1, 1] if X∗

ij = 0,
−1 otherwise.

It follows that Λ ◦ U∗ ∈ ∂(
∑

ij Λij |Xij |) at X = X∗, where ∂(·) stands for the
subdifferential of the associated convex function. For convenience, let f(X) denote
the objective function of (A.1). Then we have

−(X∗)−1 + S+Λ ◦U∗ ∈ ∂f(X∗),



FUSED MULTIPLE GRAPHICAL LASSO 939

which, together with X∗ = (S +Λ ◦U∗)−1, implies that 0 ∈ ∂f(X∗). Hence, X∗ is
an optimal solution of (A.1), and moreover, it is unique due to the strict convexity of
− log det(·).

(b) By statement (a), problem (A.1) has a finite optimal value f∗. Hence, the
above sublevel set L is nonempty. We can observe that for any X ∈ L,

1

2

∑
ij

Λij |Xij | = f(X)−
[
− log det(X) + tr(SX) +

1

2

∑
ij

Λij |Xij |︸ ︷︷ ︸
f(X)

]

≤ α− f∗,(A.5)

where f∗ := inf{f(X) : X � 0}. By the assumption Diag(S) + Λ > 0, one has
Diag(S) + Λ/2 > 0. This together with statement (a) yields f∗ ∈ �. Notice that
Λij > 0 for all i = j. This relation and (A.5) imply that Xij is bounded for all X ∈ L
and i = j. In addition, it is well known that det(X) ≤ X11X22 · · ·Xpp for all X � 0.
Using this relation, the definition of f(·), and the boundedness of Xij for all X ∈ L
and i = j, we have that for every X ∈ L,∑

i

− log(Xii) + (Sii + Λii)Xii ≤ f(X)−
∑
i�=j

(SijXij + Λij |Xij |)

≤ α−
∑
i�=j

(SijXij + Λij |Xij |) ≤ δ(A.6)

for some δ > 0. In addition, notice from the assumption that Sii + Λii > 0 for all i,
and hence

− log(Xii) + (Sii + Λii)Xii ≥ 1 + min
k

log(Skk + Λkk) =: σ

for all i. This relation together with (A.6) implies that for every X ∈ L and all i,

− log(Xii) + (Sii + Λii)Xii ≤ δ − (p− 1)σ,

and hence Xii is bounded for all i and X ∈ L. We thus conclude that L is bounded.
In view of this result and the definition of f , it is not hard to see that there exists
some ν > 0 such that λmin(X) ≥ ν for all X ∈ L. Hence, one has

L = {X � νI : f(X) ≤ α}.
By the continuity of f on {X : X � νI}, it follows that L is closed. Hence, L is
compact.

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1. Since λ1 > 0 and diag(S(k)) > 0, k = 1, . . . ,K, it follows

from Lemma A.1 that there exists some δ such that for each k = 1, . . . ,K,

− log det(Θ(k)) + tr(S(k)Θ(k)) + λ1

∑
i�=j

|Θ(k)
ij | ≥ δ ∀Θ(k) � 0.

For convenience, let h(Θ) denote the objective function of (2.2), and Θ̄ = (Θ̄(1), . . . ,
Θ̄(K)) an arbitrary feasible point of (2.2). Let

Ω =
{
Θ = (Θ(1), . . . ,Θ(K)) : h(Θ) ≤ h(Θ̄), Θ(k) � 0, k = 1, . . . ,K

}
,

Ωk =

⎧⎨⎩Θ(k) � 0 : − log det(Θ(k)) + tr(S(k)Θ(k)) + λ1

∑
i�=j

|Θ(k)
ij | ≤ δ̄

⎫⎬⎭
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for k = 1, . . . ,K, where δ̄ = h(Θ̄) − (K − 1)δ. Then it is not hard to observe that
Ω ⊆ Ω̄ := Ω1 × · · · × ΩK . Moreover, problem (2.2) is equivalent to

min
Θ∈Ω̄

h(Θ).(A.7)

In view of Lemma A.1, we know that Ωk is compact for all k, which implies that Ω̄ is
also compact. Notice that h is continuous and strictly convex on Ω̄. Hence, problem
(A.7) has a unique optimal solution and so does problem (2.2).

A.2. Proof of Lemma 3.7.
Proof. (i) and (ii) can be proved in a similar way as used for Lemma 3.3.
(iii) Similar to Lemma 3.3, we can show that ext(PI,J ) = ∅. Next we show

that ∪{ext(PI,J ) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , |E|}} ⊆ Q. Denote GJ and GJ̄ as the
subgraphs with edges only in EJ and EJ̄ , respectively. Accordingly, GJ represents
the set of all possible subgraphs with only one connected component in GJ , and VJ

denotes the corresponding node sets of GJ . Then we have VJ ∪ VJ̄ ⊆ V . Moreover,
∪{VJ ∪ VJ̄ , J ⊆ {1, . . . , |E|}} = V .

Let d ∈ ∪{ext(PI,J ) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , |E|}}. Then d = 0, and the
number of independent active inequalities at d is n− 1. It is clear that the maximum
number of independent active inequalities restricted to the nodes in Vm ∈ V is |Vm|,
which is achieved when di = 0 for all i ∈ Vm. If di = 0 for all i ∈ Vm, Vm = ∅, it is not
hard to show that the maximum number of independent active inequalities restricted
to Vm is |Vm| − 1, which is achieved when di = dj for all i, j ∈ Vm. Suppose that
there exist two nonempty and nonoverlapping sets Vl and Vm such that di = dj = 0
for all i, j ∈ Vl and di = dj = 0 for all i, j ∈ Vm. We consider the following two
cases: (a) there is no edge across Vl and Vm. In this case, the maximum number of
independent active inequalities is |Vm| − 1 + |Vl| − 1 + n − |Vm| − |Vl| = n − 2. (b)
di = dj , i ∈ Vl, j ∈ Vm; thus inequalities from the edges across Vl and Vm are inactive.
In this case, the maximum number of independent active inequalities is |Vm| − 1 +
|Vl|−1+n−|Vm|−|Vl| = n−2. This is a contradiction to the definition of extreme ray
d. Combining the arguments above, we show that all nodes in V with a nonzero value
in d form a set in V . Therefore, ∪{ext(PI,J ) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , |E|}} ⊆ Q.

(iv) Let d ∈ Q be arbitrarily chosen. Then, there exist α = 0 and a Vm ∈ V
such that di = α, i ∈ Vm, and the rest of di’s are 0. If α > 0, it is not hard
to see that d ∈ ext(PI,J ) with I = {1, . . . , n} and J such that EJ = {(u, v) :
u, v ∈ Vm, (u, v) ∈ E} ∪ {(u, v) : u ∈ Vm, v ∈ V̄m, (u, v) ∈ E}, where V̄m is
the complement of Vm. If α < 0, d ∈ ext(PI,J ) with I = ∅ and J such that
EJ = {(u, v) : u, v ∈ Vm, (u, v) ∈ E} ∪ {(u, v) : u ∈ V̄m, v ∈ Vm, (u, v) ∈ E}.
Hence, d ∈ ∪{ext(PI,J ) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , |E|}}. Combining this with (iii),
we have ∪{ext(PI,J ) : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , |E|}} = Q.

A.2.1. Proof of Theorem 3.8.
Proof. By the first-order optimality conditions, Θ̂(k) � 0, k = 1, . . . ,K, is the

optimal solution of problem (3.22) if and only if it satisfies

−Ŵ
(k)
ii + S

(k)
ii = 0, 1 ≤ k ≤ K,(A.8)

−Ŵij + Sij + ∂φij = 0,(A.9)

for all i, j = 1, . . . , p, i = j, where Ŵij = (Ŵ
(1)
ij , . . . ,Ŵ

(K)
ij )T , Sij = (S

(1)
ij , . . . ,S

(K)
ij )T ,

and ∂φij is a subgradient of φ(Θij) at Θij = Θ̂ij .
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Suppose that Θ̂(k), k = 1, . . . ,K, is a block diagonal optimal solution of prob-

lem (3.22) with L known blocks Cl, l = 1, . . . , L. Ŵ
(k)
ij = Θ̂

(k)
ij = 0 for i ∈ Cl, j ∈

Cl′ , l = l′. This together with (A.9) implies that for each i ∈ Cl, j ∈ Cl′ , l = l′ there
exists a ∂φij such that

Sij + ∂φij = 0,

which directly shows that 0 is the optimal solution of (3.23). Sufficiency can be proved
in a way similar to that used for Theorem 3.2.
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