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Figure 1: Polyhedral patterns on a knot. Top: three polyhedral patterns tiling a knot and optimized by our framework. All examples
are combinatorially equivalent to a semi-regular pattern (3, 4, 6, 4). Bottom: each of the three solutions is induced by a choice of strip
decomposition and corresponding affine symmetries. For each model, we show the strip decomposition (left) with the pattern in the plane
colored by yellow and blue strips. We show the deformed pattern upon mapping to a cylinder, suggesting the feasible symmetries (right). The
different colors encode different choices of symmetries. For instance, blue faces are symmetric with respect to the barycenter.

Abstract

We study the design and optimization of polyhedral patterns, which
are patterns of planar polygonal faces on freeform surfaces. Working
with polyhedral patterns is desirable in architectural geometry and
industrial design. However, the classical tiling patterns on the plane
must take on various shapes in order to faithfully and feasibly ap-
proximate curved surfaces. We define and analyze the deformations
these tiles must undertake to account for curvature, and discover
the symmetries that remain invariant under such deformations. We
propose a novel method to regularize polyhedral patterns while main-
taining these symmetries into a plethora of aesthetic and feasible
patterns.
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1 Introduction

Architects and engineers are constantly pushing design boundaries
by exploring new building shapes and modeling their appearances.
Advances in architectural geometry have made it possible for many
buildings to be shaped as freeform surfaces. To conform to construc-
tion constraints, such designs are often rationalized with meshes
that have planar faces. These faces are then realized with common
materials, such as wood (see Fig. 3) or glass.

Symmetric tessellation patterns have often been used in art, architec-
ture, and product design for their aesthetic merits. However, the use
of these patterns was restricted to planar surfaces, such as windows,
walls, or floors. Notable examples are Arabesques, stained-glass pat-
terns, and mosaics [Abas et al. 1995; Lu and Steinhardt 2007]. Here,
we seek to enrich architectural design by meshing freeform surfaces
with tessellation patterns. Examples of those are in Figures 1 and 2.

There are several key challenges in designing polyhedral patterns
on curved freeform surfaces. Simply placing a given pattern on
such a surface (e.g., by a parametrization) and optimizing for tile
planarity without any regularization of tile shapes is bound to fail;
planarity alone is severly underconstrained, and the process is apt
to degenerate to solutions with zero-length edges or foldovers (see
Figure 4). Moreover, an arbitrary choice of tile-shape regularization
with commonly used measures, such as face or angle distortion,
Laplacian smoothness, or edge-length preservation, might clash with
the planarity constraint, resulting in over-constrained optimization.
As a consequence, either the mesh is not planarized, or the desired
regularity is not satisfied. (Figures 27 and 28 show examples.)

Our solution to the problem is to study explicit constructions of poly-
hedral patterns that approximate surfaces with varying Gaussian cur-
vature. We observe curvature-invariant regularities, namely different
types of symmetries. We introduce a theoretical study of polyhedral
patterns that explains our choice of regularizers, and which leads
to an objective function that is neither over- nor under-constrained.



Figure 2: Cladding an interior space with a polyhedral pattern
using wooden panels. The pattern transforms smoothly from positive
to negative curvature regions.

Figure 3: A planar-hexagonal pavilion constructed with wooden
panels [Krieg et al. 2014].

We show a set of results that demonstrate, for the first time, the
computation of such patterns on surfaces that satisfy both planarity
and regularity constraints. We focus on semi-regular patterns (see
Figure 5), which are patterns comprising regular polygons.

Our contributions are:

• An analysis of surface approximation with polyhedral patterns
by describing tile shape deformations, in order to accommodate
for curvature. Consequently, we show how different strip
decompositions result in a variety of patterns.

• Affine symmetries that are curvature-invariant. We construct a
family of regularizers encoding such symmetries: e.g., sym-
metries with respect to axes passing through vertices, edge
midpoints, or face barycenters, and reflective symmetries with
respect to planes.

• A variety of polyhedral patterns that have not been demon-
strated before.

2 Previous Work

Approximation with polyhedral meshes can be achieved with varia-
tional shape approximation [Cohen-Steiner et al. 2004]. However,
the resulting unstructured mesh is built to satisfy required approxi-
mation accuracy and does not follow a prescribed pattern.

Most previous works that focused on polyhedral mesh creation tar-
geted planar quad (PQ) meshes. PQ meshes play a central role in dis-
crete differential geometry [Sauer 1970; Bobenko and Suris 2008],
and have attracted considerable interest in recent years, cf. [Liu et al.
2006; Liu et al. 2011; Zadravec et al. 2010], as their design is a core
problem in architectural geometry.

Planar hexagonal (PH) meshes have also been studied, but to a lesser
extent. The simplest way to produce them is by taking the dual of

Figure 4: Under- and over-constrained optimization illustrated on
a quad mesh. The initial mesh is aligned with the parameter lines
on a bilinear surface. The task is to planarize it. Left: Using mesh
polyline smoothness as a regularizer results in an over-constrained
problem, and acceptable planarity is not achieved (red color). Mid-
dle: Dropping the regularizer leads to an under-constrained problem,
where the faces are perfectly planar, yet their appearance is chaotic
and unaesthetic. Right: Using our regularizer, based on affine sym-
metries (with respect to edge midpoints), yields an aesthetically
pleasing pattern with planar quads.

triangle meshes [Zimmer 2014; Li et al. 2014] or remeshing triangle
meshes by parametrization and deformation [Vaxman and Ben-Chen
2015]. They are problematic in several aspects: the face shapes
have to change considerably and even become concave in negatively
curved areas. In addition, they have to transition smoothly between
regions of negative and positive Gaussian curvature. We present a
systematic way to regularize patterns between different curvature
regions, including PH meshes as a special case.

Special polyhedral patterns appear as by-products with circle-
packing meshes [Schiftner et al. 2009] and special hexagonal support
structures [Jiang et al. 2014]. However, these papers do not consider
polyhedral patterns in a systematic way; aesthetics and regularity
largely come from the structures the patterns have been derived
from.

Numerical optimization schemes for computing polyhedral surfaces
include the alternating least-squares approach of [Poranne et al.
2013], the local-global projection method of [Bouaziz et al. 2012],
the augmented Lagrangian algorithm of [Deng et al. 2015], and the
guided projection method of [Tang et al. 2014]. Our computations
are based on the latter approach, but are distinct from all the other
aforementioned works by the novel use of local affine symmetries
as regularizers, which are able to adapt to freeform geometry, and
by the study of the curvature-dependent appearance of polyhedral
patterns.

Triangle meshes are trivial polyhedral meshes. Regularizing them
for face and edge repetitivity is the aim of [Singh and Schaefer 2010]
and [Huard et al. 2014]. These meshes also appear in triangle-based
point folding structures [Zimmer et al. 2012]. Our symmetry-based
regularizers can also be used for triangle mesh optimization.

3 Geometry of Polyhedral Patterns

Creating polyhedral patterns first and foremost poses a theoretical
challenge, since we do not possess the knowledge of how such
patterns behave in different curvature regions. We have an under-
standing of planar-quad meshes as given by [Liu et al. 2006]. If the
network of polylines that is characteristic of quad meshes follows
conjugate directions, it is possible to achieve a mesh with smooth
polylines. Unfortunately, this is not possible for any orientation
of quads (see auxiliary material for a theoretical proof), and there
has been no suggestion for what could be done in this case. An
analysis is provided for feasible planar hexagonal tile shapes by [Li
et al. 2014]. However, the description is particular for hexagons in
principal directions, and the generalization to semi-regular patterns



(a) (34, 6) (b) (3, 4, 6, 4) (c) (3, 6, 3, 6) (d) (3, 12, 12) (e) (4, 6, 12) (f) (4, 8, 8)

(g) (34, 6)∗ (h) (3, 4, 6, 4)∗ (i) (3, 6, 3, 6)∗ (j) (3, 12, 12)∗ (k) (4, 6, 12)∗ (l) (4, 8, 8)∗

Figure 5: Several patterns used in this paper: selected semi-regular patterns (top row; labels correspond to the valences of faces around a
vertex) and their duals (bottom row). In our results, patterns (a) - (e) and (g) - (j) are derived from a hex-mesh, patterns (f) and (l) from a quad
mesh, and pattern (k) from a triangle mesh.

is not obvious.

In the following, we provide an analysis of feasible planar tile shapes
in different curvature regions, for the general case of semi-regular
tilings. In Section 6, we utilize the insights gained from this analysis,
to establish a set of symmetries that remain invariant in each curva-
ture region. We consequently use these symmetries as regularizers
in our planarization algorithm.

We base our geometric constructions on semi-regular patterns,
which are tilings that can be derived in the plane by altering ei-
ther of the three regular tilings: triangle, square, or hexagonal grids.
Semi-regular tilings are characterized by several properties: First,
the neighborhood of any vertex is perfectly similar to the neighbor-
hood of any other. Second, such tiles constitute an orthogonal circle
pattern: every tile has a circumcircle, and the dual segments between
neighboring tile (circle) centers are orthogonal to the primal edge
they share. This property is important when we discuss construction
by lifting. We depict a range of semi-regular tilings that we employ
in Figure 5. We denote tilings using vertex configuration shorthand
by numbering the degree of faces around each vertex and using pow-
ers for multiples, e.g., a pure hexagonal pattern is 63. We use the
term “tile” to indicate a single face of the tiling, and either “tiling”
or “pattern” to indicate the entire set. We often refer to the dual
pattern as the pattern that is made by connecting dual face centers
of adjacent primal tiles. Tilings that are not semi-regular exhibit
several of these properties, and our consequent optimization results
in interesting polyhedral patterns as well.

3.1 Discretization of osculating paraboloids

We construct some explicit embeddings of polyhedral patterns on
surfaces to study necessary deformations in tile shapes. Such defor-
mations are the result of fitting planar patterns with given connec-
tivities onto curved surfaces, while constraining each tile to remain
planar. Our purpose is to derive the invariants of the required defor-
mations, focusing on symmetries they fix. An understanding of such
invariant symmetries serves as a guide to predicting the resulting
pattern shapes expected within our optimization process.

We locally approximate the original surface, S, to a second-order
in a point, p ∈ S, with an osculating paraboloid, S2. Assuming
the z direction is parametrized to be in the direction of the normal,
the formula defining the paraboloid is 2z = κ1x

2 + κ2y
2, where

κ1, κ2 are the principal curvatures, and the x and y axes are the

respective principal directions. The paraboloids are characterized
as either elliptic (both curvatures are nonzero and have the same
sign), hyperbolic (different nonzero signs), or cylindrical (one of
the curvatures is zero). In case that κ1 = κ2 = 0, the osculating
paraboloid is a plane, and we do not need to deal further with this
trivial case.

We consider discretizations of paraboloids by polyhedral patterns
characterized by two properties: First, they are inscribed, which
means the vertices of the pattern lie exactly on the paraboloid. Sec-
ond, we have normal adherence. Assuming that the supporting
plane to the inscribed tile encloses a well-defined small patch of
the paraboloid, then there must be a point within the patch whose
tangent plane is parallel to the supporting plane. Both properties can
be generally relaxed, but it is cogent to study the pattern symmetry
and regularity emerging from these most restrictive requirements.

Lifting The analysis we give for tiling surfaces relies on lift-
ing planar tiles onto paraboloids (see Figure 7). We then ex-
plore the tile shapes and topologies for which the lifting pro-
duces polyhedral patterns (preserving tile planarity). Given the
paraboloid S2, the vertices are lifted (bijectively) by the function
(x, y) →

(
x, y, κ1x

2 + κ2y
2
)
. The intersection of the supporting

plane of the tile and the paraboloid is a conic, related to the Dupin
indicatrix. The projection of the conic down to the plane is again a
planar conic, endowed with required properties that we next detail.
Moreover, the conic on the paraboloid is an affine image of the planar
tile. See Figure 6 for an example.

Figure 6: Lifting. Top: a circle lifted to an
ellipse in a rotational paraboloid. Bottom: a
hyperbola lifted to a hyperbolic paraboloid.

Consistent tilings Polyhedral patterns on paraboloids are syn-
onymous with consistent structures that are pivotal to our framework
and that govern the deformations induced on tiles for consistent ap-
proximation of paraboloids. Assume that there are two neighboring
tiles, i, j. Their centers are defined by looking at the centers of the
conics on the paraboloid and projecting them down on the tiling
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Figure 7: Lifting consistent tilings to paraboloids. Under the in-
duced metric in the plane, the dual edge cij and the primal edge
pij are conjugate. Both vectors are orthogonal in the rotational
paraboloid case (left).

plane, producing ci, cj . The intersection points between them are
the projected common vertices, pi,pj . We define the primal vector
pij = pj −pi, and the dual vector cij similarly. Next, we consider
the metric induced by the paraboloid: 〈a,b〉 := κ1xaxb + κ2yayb.
The lift of a planar tiling into a paraboloid is polyhedral if and only
if:

1. Conjugacy: the primal and dual vectors are conjugate. i.e.,
they are orthogonal with respect to the metric (〈pij , cij〉 = 0).

2. Bisection: The dual edge bisects the primal edge.

We call a tiling that obeys both properties consistent. For complete-
ness, we include a proof in the Appendix. Consistency brings about
several key consequences:

• If the paraboloid is a rotational-symmetric canonical
paraboloid 2z = x2 + y2, then the duals and the primals
are in fact also Euclidean orthogonal, as we demand from the
original tilings.

• If the paraboloid is cylindrical, then either the dual or the
primal must be in the direction of the ruling (the direction of
zero curvature). That means that the tiling has to comprise
strips of faces that are parallel to the ruling direction.

• If the paraboloid is hyperbolic, the dual and the primal can
be identical (in asymptotic directions). We can potentially
produce degenerate and concave tiles in this manner.

3.2 Fitting tiles to paraboloids

Given a planar tiling and a paraboloid of any shape, we next wish
to deform the tiling on the plane, such that the lifting produces a
polyhedral pattern. This should be done while keeping the shapes of
the tiles as symmetric and as regular as possible and with minimal
deformation. It is worth noting at this point that we use this construc-
tion for a theoretical, rather than a direct algorithmic, purpose; it is a
general and arbitrary way to observe which symmetries are invariant
within the deformation, and to motivate our use of such symmetries
in pattern optimization for general surfaces, locally approximated as
paraboloids. We initiate this analysis by considering the canonical
rotational paraboloid Sr : 2z = x2 + y2. We take any semi-regular
tiling on the plane. Without any deformation, the circular faces of the
semi-regular tiling are then projected into ellipses in the paraboloid,
which are planar by definition. We thus obtain a natural polyhedral
pattern embedded in Sr for every semi-regular pattern.

Tiling cylindrical paraboloids Without loss of generality, we
assume that our cylinder is defined by Sc : z = κ2y

2, κ2 > 0. By
the rule of conjugacy, the tiling must comprise strips that are parallel
to the ruling direction, ŷ, to consistently tile the cylinder. In light of
this, and opting to deform the tiling as little and as symmetrically
as possible, we do the following: decompose the tiling into strips
of faces that are parallel to the rulings. The lines between dual

Figure 8: Deforming and lifting. Top: the paraboloid tilings. Bot-
tom: top view of the tiling. Left to right: original (fit to the canonical
paraboloid), anisotropic elliptic, cylindrical, and hyperbolic.

conic centers of the same strips are denoted as dual rulings, and the
sequence of intersection edges bounding two strips are denoted as
primal rulings. Next, fix all the tile (dual) centers and deform all
(primal) vertices orthogonally to the ruling until they are on a parallel
primal ruling. The actual position of the primal ruling is set as the
ruling that is closest to the original primal vertices (see Figure 8
for a depiction of this process). Denote the original position of any
primal vertex as pi, and the deformation vector for a cylindrical
pattern as uc,i. Then, ŷ · uc,i = 0.

Tiling elliptic and hyperbolic paraboloids To unify our defor-
mation setting and make it fit all types of paraboloids, we rephrase
our construction for a cylindrical paraboloid in a local and continu-
ous manner: we deform the primal edges of an initial tiling so that
the (constant) dual and the primal are conjugate according to the
induced metric, and the deformation is done according to the choice
of strip decomposition, as in the cylindrical case. Suppose again that
the chosen direction of the dual strip is ŷ. We then need to find the
deformation vector ui of vertex pi so that for each primal edge pij
and dual edge cij we get 〈pj + uj − pi − ui, cij〉 = 0, according
to the metric. Furthermore, we constrain ui = −uj for symme-
try. Since ui = −uj are orthogonal to ŷ, it is straightforward to
compute the actual deformation.

Discussion Our deformation process is obviously invariant to
scale. More accurately, it only pertains to the ratio of κ1 and κ2

and not their sizes. In addition, it is evident that tiles with more
than 4 vertices must become non-convex in order to be inscribed in
negatively curved regions; this is expected, since the conic in which
the tile is inscribed is a hyperbola.

The deformation orthogonal to the chosen strip direction is the
only one possible for tilings such as 63. However, by constraining
the consistency, and by conforming to the aesthetic request that
the repeating faces of the same type must stay congruent, some
tilings may in fact allow more degrees of freedom in deformation
possibilities. This works only to our advantage.

Violating consistency The deformations we defined maintain
conjugacy and bisection for most semi-regular patterns, but not for
some. For example, consider the (4, 6, 12) example in Figure 9: by
fixing all the dual vertices, our deformation would violate bisection
between some of the quads and the 12-sided faces. This is caused
by the special structure of the (4, 6, 12) pattern, for which the dual
centers of the hexes and the oblique quads cannot conform to straight
rulings should they stay fixed. Our correction is simple: allow the
centers of the hexes to deform as well, so that they line up with the
(fixed) centers of the oblique quads.



Figure 11: Different strip decompositions increase the available types of polyhedral patterns. With the three strip decompositions shown in
Figure 10, we obtain hexagon patterns approximating a cyclide with different appearances.

Figure 9: The dual centers of the (4, 6, 12) pattern do not corre-
spond to possible rulings if fixed upon deformation. Allowing the
hex (pink) centers to deform fixes this problem.

3.3 Strip decompositions

Our explicit construction provides a canonical way to approximate
paraboloids, by relying on a single possible choice for defining strips.
In the following, we explore other possible constructed solutions, by
choosing different alignments, corresponding to decomposing the
patterns into different strips.

Decomposable patterns Essentially, strip decomposition is a
combinatorial refinement of the original pattern. A feasible strip
decomposition is a collection of disjoint dual strings (trees with
2-valence nodes; see Figure 10 for examples). Since a strip decom-
position assigns primal vertices to dual vertices, it is actually a strip
decomposition of the dual pattern as well. Regular quads, hexagons,
(34, 6), (3, 4, 6, 4), (4, 6, 12), (4, 8, 8) and their dual patterns have
infinitely many strip decompositions. However, patterns such as
(3, 6, 3, 6), (3, 12, 12) and their duals cannot be decomposed to
strips by definition.

Figure 10: Different strip decompositions for regular hexagons.
The three decompositions from the left correspond to the ones shown
in Figure 11. In addition, the transformation corresponding to the
decomposition second from the left is shown in Figure 12.

Deformations and symmetries The practical meaning of choos-
ing strips is to contrast a chosen strip direction with the principal
directions of the paraboloid. Choosing a strip means choosing a
dual axis for every consequent pair of faces, and forcing the primal
vertices to move in directions that are orthogonal to the strip axis. In
other words, we constrain a plane of symmetry that is orthogonal to
the tile, and passes through its center.

However, as we explain above, the principal directions may mandate
(e.g., if they are rulings), that the surface forms lines of primal ver-
tices along such rulings. At any rate, the tile must also be inscribed
to a conic of the same nature. The canonical choice of strips is where
the dual axis is aligned with the rulings (see Figure 10 left). However,
other choices may produce interesting patterns due to the mismatch
between the constrained symmetry and the rulings (see Figure 12),
and they may potentially form invalid configurations. Such configu-
rations arise when the strips are along the asymptotic directions of
the surface, i.e., where the dual direction is self conjugate.

General patterns Not all patterns can be decomposed to strips.
For instance, the tri-hex pattern (3, 6, 3, 6) cannot be decomposed.
Such patterns cannot therefore comply to the normal adherence
and cannot be made consistent by deformation. However, as our
algorithm requires consistency only for the theoretical analysis, we
still utilize these patterns in practice, just without any guarantees.
Figures 17 and 23 provide examples.

3.4 Regularizers Motivated by Symmetries

Ideally, we would like to achieve the described symmetric and pla-
nar tile shapes for meshes initially tiled with semi-regular convex
patterns. However, general meshes are not paraboloids, and they
have a variety of strip decompositions and varying curvature regions.
Not wanting to be particular for every pattern, we instead opt for
the most general way to make any type of semi-regular pattern de-
form properly. Our point is to utilize what remains invariant under
curvature-based tile deformations, rather then what deforms. There-

Figure 12: Transformation of the regular hexagon pattern from a
rotational paraboloid (left) via a parabolic cylinder (middle) to a
hyperbolic paraboloid (right) with the strip decomposition shown in
Figure 10, second from left.
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Figure 13: Framework overview: a) for an initial triangle, quad, or hex mesh, we can generate a pattern mesh using simple geometric rules.
b) The initial pattern mesh might already be aesthetically pleasing, but the faces are typically not planar. c) A regularizer can be configured by
specifying symmetries that should be preserved in the pattern. In this case, face symmetries are chosen. Corresponding vertex pairs are shown
using the same number and the symmetry centers are shown in blue and red. d) Finally, the optimization generates a mesh with planar faces.
The most interesting aspect of polyhedral patterns is that most of them have to transform so that they look different in regions of positive, zero,
and negative Gaussian curvature (see insets).

fore, we identify invariant symmetries of tiles and then regularize the
mesh in our planarization process to maintain them. The symmetries
that we identify include reflection through axes and through planes
as well as reflections through the centers of tiles or edges. It is
straightforward to check that such symmetries are general enough
to contain the deformations we describe here. The symmetries are
described in greater detail in Section 6.

4 Overview and User Interaction

Our framework comprises four stages, shown in Figure 13.

Pre-processing Initial meshes are generated using triangular-,
quad-, or hex-based remeshing techniques in a separate program, ac-
cording to the desired pattern (see Figure 5 for a description). Many
patterns are initialized using the hex-based remeshing approach
proposed by Vaxman and Ben-Chen [2015] with their planarity opti-
mization omitted. We therefore have two input meshes in our system:
A finely-tessellated triangle mesh to define the reference surface and
a coarser (non-planar) remeshed triangle, quad, or hex mesh.

Pattern generation The user can transform the initial coarse mesh
into a pattern mesh by selecting from a list of pre-defined patterns.
The transformation is implemented using a sequence of geometric
rules, e.g., subdivision rules. The implementation of such rules
is fairly straightforward and follows the framework proposed by
Akleman et al. [2005].

Symmetry configuration The user can then specify a desired
strip decomposition and configure the regularizer by assigning sym-
metries. We offer axial symmetries with respect to an axis passing
through a vertex, an edge midpoint, or a face barycenter. We also
offer reflective symmetries with respect to a plane, e.g., a plane pass-
ing through an edge. The user specifies the symmetry assignment
for one or more elements, and the system propagates the assign-
ment over the whole mesh according to the strip decomposition. To
guide the user in his/her selection, we provide a list of suggested
symmetries. The suggestions are generated by mapping each strip
decomposition of each pattern to a cylinder and then observing what
symmetries are feasible (see Sec. 3).

Symmetry optimization Our algorithm optimizes the pattern for
planarity and aesthetics (using the regularizer configured in the
previous step) through non-linear optimization. The details for the
optimization framework are presented in Section 5, and those for the
symmetry regularizers are given in Section 6.

5 Optimization Framework

We next describe the regularity-based planarity optimization frame-
work that our work builds upon. The inputs are a reference surface,
S, given as a triangle mesh, and an initial polygonal mesh with
vertices, vi, that approximates the reference surface. The goal is to
optimize the initial polygonal mesh, M = (V,E, F ), according to
three terms: the planarity of the faces, the closeness to the reference
surface, and the regularity of the mesh. We rely on existing methods
(described in this section) to formulate planarity and closeness terms.
The regularity terms are our contribution.

Variables We denote the vertex coordinates of M as vi, i ∈ V ,
and the unit face normals as nk, k ∈ F . Vertices are not constrained
to lie on the reference surface, S, exactly. The closest point on S for
a vertex vi is v∗i with corresponding normal n∗i (see Fig. 14).
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Figure 14: Notation: faces (left), closest point projection (right)

Problem formulation The objective function we minimize is

E(vi) = λ1Eplan + λ2Eclose +
∑
j

µjE
j
reg. (1)

Following the reasoning of [Tang et al. 2014], we set up a system
with energies that are at most quartic, which entails soft constraints
that are at most quadratic, since this formulation is easy to optimize
using a standard regularized Gauss-Newton algorithm.



Planarity The planarity constraint is necessary for all non-
triangular faces. We adapt the formulation of [Tang et al. 2014]
and express Eplan as

Eplan =
∑
k∈F

∑
(i,j)∈E(fk)

((vi−vj)·nk)2+
∑
k

(nk ·nk−1)2, (2)

which is zero if all face edges are orthogonal to a unit length normal.

Closeness The closeness constraint of a vertex, vi, to a reference
surface is modeled by requiring vi to move only on the tangent
plane associated with its closest point, v∗i , on the reference surface,
S:

Eclose =
∑
vi∈V

((vi − v∗i ) · n∗i )2. (3)

As shown in Figure 14, n∗i is the normal of the tangent plane at v∗i ,
and it is kept constant in every iteration. Alternatively, for coarse
and inconsistent tilings, we may use closeness of face barycenters
instead to relax this constraint (see Figures 18 and 29, left).

Previous iteration We add a term in each iteration that dampens
the optimization for stability by closeness to the previous iteration:

Eprev = β
∑
vi∈V

∣∣vmi − vm−1
i

∣∣2 + β
∑
ni∈F

∣∣nmi − nm−1
i

∣∣2, (4)

where m denotes the number of an iteration and vmi is the value of
vi at iteration m. We use β = 10−6 in all our examples.

6 Regularization with Affine Symmetries

We next define the invariant symmetries of deforming patterns (see
Section 3) and how we utilize them in practice to regularize pat-
terns undergoing deformations through the planarization process.
Generally speaking, there are several ways to represent feasible reg-
ularities, such as enforcing specific angles, polyline smoothness of
selected sequences of non-adjacent vertices, ratios of edge lengths,
and more. We choose to use local affine symmetries as described in
the following, because they are simple, sparse, local and linear (e.g.,
compared with angle-based formulations), and this is important for
computational efficiency.

We describe the practical implementation of various symmetry regu-
larizers and adapt them to the discrete surface by two approaches:
affine symmetries in space and in a tangential projection. Each
approach has different merits and shortcomings.

6.1 Affine symmetries

Affine symmetries can be defined with respect to either an axis or a
plane. We can distinguish four different generators of symmetries:
vertices, faces, edge midpoints, and edges. Vertices, faces, and edge
midpoints generate symmetries with respect to an axis and edges
generate symmetries with respect to a plane.

vi vj
Ak

ck

n∗k ak

Tk
n̄k

rk
bk

vi

vj

Pk

Figure 15: Affine reflection in an axis (left) and in a plane (right)
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Figure 16: Left to right: symmetry with respect to a vertex, an edge
midpoint, a face barycenter, and an edge.

Axial symmetries An affine reflection in an axis,Ak, requires the
additional prescription of a reference plane, Tk (not parallel to Ak;
see Fig. 15, left). Then, a pair of vertices vi and vj is symmetric
with respect toAk if the midpoint between vi and vj lies onAk and
the vector vi−vj is parallel to Tk. LetAk be defined by a direction
vector ak and a point ck, and let n∗k be a normal vector of Tk. Then,
the axial symmetry regularizer E1

reg is encoded as follows:∑
(i,j,k)

((vi + vj)/2− (ck + λklak))2 + ((vi − vj) · n∗k)2 (5)

The triplets (i, j, k) are chosen according to the user-assigned sym-
metries. That is, vi and vj are selected to have affine symmetry with
respect to Ak. Furthermore, ak and λkl are considered as additional
variables in our optimization. The axis point ck is a vertex, an edge
midpoint, or a face barycenter, and thus it is a linear combination
of vertex coordinates. The n∗k variables can be either considered as
additional variables, or approximated at the beginning of each itera-
tion as the normal of S at the closest point to ck. We do the latter.
Symmetry is applied to local neighborhoods as illustrated in Fig. 16.
Note that the symmetry of a planar face with respect to its barycenter
does not require an axis. n∗k = ak models a Euclidean reflection in
Ak and is therefore suitable to enforce Euclidean symmetries.

Plane-reflective symmetries Fig. 15 (right) presents an affine
reflection with respect to a plane, Pk (through point bk and with
normal vector n̄k), in the direction rk. Plane-reflective symmetry
of vi and vj requires their midpoint to be located on Pk, and the
vector vi − vj to be parallel to rk. We encode this requirement in
the regularizer, E2

reg , as follows:∑
(i,j,k)

(((vi + vj)/2− bk) · n̄k)2 + ((vi − vj)− λklrk)2. (6)

We use rk for each reflection plane and the scale variable λkl as
additional variables. The plane Pk is commonly the bisection plane
of two adjacent faces in a polyhedral mesh, and so bk can be the
midpoint of the common edge of two adjacent faces. The normal,
n̄k, is then pre-estimated in each iteration. With rk = n̄k, we obtain
a Euclidean reflection.

Symmetry centers In Fig. 16, as exemplified on a quad mesh, the
three leftmost images show point symmetries in 2D, equivalent to
3D axial symmetries. The blue dot represents the symmetry center.
Each pair of symmetric points is labelled the same (orange dots).
Their symmetry centers are located at a vertex, an edge midpoint or a
face barycenter, and their symmetries are denoted accordingly. The
rightmost edge symmetry is equivalent to a 3D planar symmetry.

6.2 Symmetry in a tangential projection

A relaxed version of affine axial symmetry is symmetry in a projec-
tion parallel to a certain direction (the image plane of the projection
does not matter). To achieve it, we simply discard the second part of



Figure 17: Semi-regular patterns on a Dupin cyclide. Left: A (3, 4, 6, 4) pattern using face symmetries. Middle: A (3, 6, 3, 6)∗ pattern using
symmetries with respect to an edge. Right: A (4, 8, 8) pattern using face symmetries.

Equation 5. We use the normal at the closest point, c∗k, to ck as the
projection direction, and thus enforce a symmetry that is relative to
the tangent plane of S at c∗k. This yields the regularizer E3

reg:∑
(i,j,k)

((vi + vj)/2− (ck + λklak))2. (7)

By approximating ak with n∗k, this expression can be simplified to
the following equivalent formulation:∑

(i,j,k,l)

(((vi + vj)/2− ck) · tkl)2. (8)

In addition, we need to sum over two orthogonal directions, tk1 and
tk2. Both directions are orthogonal to n∗k, and they are estimated at
the beginning of each iteration.

6.3 Avoiding self-intersection

The proposed symmetry regularizers cannot prevent self-
intersections within the pattern. To counter that, we introduce an
additional regularizer, E4

reg , assuming that a line segment connect-
ing the face barycenter to a vertex is within the corresponding face:∑

k∈F
0≤i<|fk|

((v̂ik − ck)× (v̂i+1
k − ck) · nk − ν2ki)2. (9)

We assume that the faces are consistently oriented with vertices
(v̂0
k, v̂

1
k, . . . , v̂

|fk|−1
k ), where indices in the sum are taken modulo

the face valence |fk|. The face normals, nk, and barycenters, ck, are
evaluated prior to each iteration, and considered as constants. We in-
troduce νki as slack variables to encode the inequality requirements
that the vectorial areas of ckv̂ikv̂

i+1
k are aligned with nk.

6.4 Edge length regularization

To avoid short edges, we regularize selected length differences of
adjacent edges. For example, if ei and ej are the edge vectors of
two neighboring edges, we regulate the ratio of their lengths into a
given interval, and E5

reg is defined as:∑
(i,j)

(‖ei‖2−r2‖ej‖2−µ2
ij)

2 +(‖ej‖2−r2‖ei‖2−µ2
ji)

2, (10)

where the summation is over the pairs of edges chosen based on the
used strip decomposition and r is set to 0.8 in our implementation.
We can require a lower bound, lmin, on edge lengths by E6

reg:∑
i∈E

(‖ei‖2 − l2min − γ2
i )2. (11)

µij and γi are slack variables for the inequality requirements.
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Figure 18: Triangle meshes constructed by a single type of triangle
for the (4, 8, 8)∗ pattern (left) and the (4, 6, 12)∗ pattern (right)
using symmetries with respect to an edge.

7 Results

We present several results and discuss parameters, planarity, running
time, failure cases, and comparison to related work.

Models and patterns We generate results for a set of selected
surfaces showing multiple patterns per surface (see Figures 17, 23,
and 24) where all patterns use the simplest strip decomposition.
Throughout the paper, we select the surfaces to highlight the be-
havior of our regularizer in different situations. We select models
to include regions of positive and negative Gaussian curvature, as
well as interesting transition regions between them. We exemplify
patterns on both open and closed surfaces, as well as surfaces with
topological holes. We show a wood construction of an interior
cladding of an architectural model in Figure 2. Finally, our method
is used to generate rough patterns consisting of identical triangles
(see Figure 18) and a (3, 4, 6, 4) pattern on a non-architectural model
(see Figure 19). Note that our algorithm typically targets architec-
tural models with moderate curvature variations and a sparse set of
singularities. This model is therefore mainly depicted to demonstrate
robustness.

Strip decompositions We demonstrate a pattern on a surface
with different strip decompositions (see Figures 1 and 30). Different
symmetries are used to accommodate each decomposition. Com-
bining different strips and symmetries leads to a large variety of
aesthetic results from a single basic pattern (see Figure 29).



Figure 19: We show a
(3, 4, 6, 4) pattern on the
Moomoo model with 57 sin-
gularities. This is the most
complicated model shown
in the paper due to the
high number of singulari-
ties (hexagons replaced by
septagons and pentagons)
and the high curvature vari-
ations.

Planarity All our models are successfully planarized. For assess-
ment, we measure face planarity as the maximum distance between
a vertex and a regression plane computed using PCA, normalized by
dividing by the average edge length in the model. Our tolerance for
this measure is under 10−2. We illustrate one example in Figure 13
where we show how the Soumaya museum model is planarized.
Before the optimization, many faces of the model are considerably
non-planar. The optimization is nevertheless successful.

Parameters The main parameters stem from the configuration of
the regularizer, i.e., the selected symmetries and strip decomposi-
tions. The weights for the different terms in the optimization vary
slightly per pattern. In the optimization, we use the default parame-
ters of 1.0 for face planarity, 0.1 for the closeness to the reference
surface, and 0.01 for the symmetry-based regularizers. This choice
is good for most examples. For example, the (34, 6) pattern in Fig-
ure 24, right and the (3, 4, 6, 4) pattern in Figure 17, left use these
parameters without change.

Alternatively, the user can adjust the parameters to trade off reg-
ularity for stricter planarity or closeness to the reference surface;
see Figure 20 for example. For the (4, 6, 12) patterns in Figure 23
and 24, we set the planarity to 5.0 and 10.0, respectively, while
setting the closeness and symmetry parameters to the default ones.
For the remaining terms, we advise that the edge-length parameter
be equated with the symmetry regularization parameter, and the
self-intersection avoidance parameter with the planarity parameter.

Implementation details and running times We implemented
our framework in C++ using OpenMesh [Botsch et al. 2002] for the
mesh data structures and TAUCS [Krieg et al. 2003] as the library
for sparse linear solvers. The running times for our examples are
typically under one minute with an Intel Xeon X5550 2.67GHz
processor. For example, the Soumaya model in Figure 13 has 7034
vertices and took 43 seconds to optimize. Smaller examples are
much faster. For example, a (4, 6, 12) pattern on an HP surface with

Figure 20: A planarized cyclide model. Hotter vertex colors indi-
cate greater distances to the reference surface (left). A coarse input
mesh can be successfully planarized and regularized at the cost of
lower fidelity to the reference surface (second from left). Forcing
closeness to the reference surface sacrifices regularity (second from
right) and may cause edge degeneracies (right).

Figure 21: Failure case on a monkey saddle: due to the initialization
used on the left, the pattern (3, 4, 6, 4) degenerates as some of the
quads collapse to lines. With a different initialization that is better
aligned with the principal curvature directions, the pattern can be
mapped correctly (right).

Figure 22: A failure case due to improper initialization. With a hex-
dominant mesh dualized from of an arbitrary triangle mesh (left), the
computed result (right) cannot achieve regularity or planarity, be-
cause there are too many singularities, leading to a over-fragmented
strip decomposition.

432 vertices took 0.53 seconds to optimize.

Failure cases and limitations Our framework is sensitive to the
triangle, quad or hex mesh that is used as input. A poor initialization
leads to poor results. In Figure 21, we contrast the results of a poorly
initialized optimization with a good initialization on the monkey
saddle. In Figure 22, we show a poor initialization of the Soumaya
model with many singularities in comparison with the example
demonstrated above in Figure 13. In addition, we depend on the
quality of existing code for the creation of the initial hex or quad
patterns on the surface.

Coarse meshes Our algorithm can create adequate results on
coarse meshes as well. However, we observe that coarse meshes can
typically only be planarized and regularized when sacrificing the
closeness to the reference surface, as demonstrated in Figure 20.

Comparison to PQ meshing Our regularizers provide more de-
grees of freedom than does the traditional regularizer based on
polyline fairness [Tang et al. 2014]. Therefore, our planarization
is less sensitive to PQ meshes that are not initialized according to
conjugate directions. We show examples in Figures 4, 27, and 29.
A detailed analysis of the difference is provided in the additional
materials.

Comparison to PH meshing Li et al. [2014] proposed a regular-
izer for planar hex meshes, meshing the positively and negatively



Figure 23: Left: A (3, 4, 6, 4) pattern using face symmetries. Middle: A (3, 6, 3, 6) pattern using vertex symmetries. Right: A (4, 6, 12)
pattern using face symmetries.

Figure 24: Semi-regular patterns on an architectural six shape. Left: A (4, 6, 12) pattern using face symmetries. A (34, 6)∗ pattern using
vertex symmetries. Note how prominent feature lines form automatically due to the regularization.

curved regions separately. However, they do not propose a specific
solution for the transition region and cannot automatically assign
which regularizer to use. This may lead to artifacts in the transition
region (see Figure 25) and to possible failures in the planarization
(Figure 26). Our solution can produce significantly better results.
It also caters to non-canonical strip decomposition. However, we
note that Li et al. [2014] propose a complete framework for PH
remeshing, while our paper focuses only on the regularizer used
after the generation of an initial mesh layout.

Comparison to ad-hoc regularizers A large variety of regular-
izers has been proposed in other contexts. When using ad-hoc
regularizers, typical problems occur, depending on how the regular-
izer is weighted. On the one hand, using a high weight leads to a
mesh that is visually pleasing, but not polyhedral. On the other hand,
using a low weight leads to a planar mesh that is highly irregular,
including degeneracies like self-intersections. There is no effective
weight that can achieve both planarity and regularity simultaneously.
Figures 27 and 28 present examples.

Figure 25: Comparison of Phex mesh aesthetics: with the same
initialization, the regularizer of [Li et al. 2014] generates the left
mesh, while our approach leads to more natural transitions (right).

Figure 26: Comparison of Phex mesh planarity. Left: [Li et al.
2014]. Right: our method achieves better planarity.

Figure 29: Different patterns generated by different symmetries.
The pattern on the left uses face symmetries; the one on the right is
based on edge midpoint symmetries.

8 Conclusions

We consider the design and optimization of polyhedral patterns,
i.e. patterns of planar polygonal faces, on freeform surfaces. Our
contributions are the description of a novel class of regularizers
based on affine symmetries and a theoretical analysis of polyhedral
patterns. In future work, we plan to study mixed patterns and their
transition regions, volumetric patterns such as frame structures for
support in architectural applications, folding patterns, and time-
varying polyhedral patterns for shading systems.



Figure 27: Mesh planarity. From left to right: initialization, polyline fairness, Laplacian, edge length, angles, face area, ours.

Figure 28: Mesh planarity. From left to right: initialization, Laplacian, edge length, angles, face area, ours.
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Figure 30: Three strip decompositions on the knot model for the (4, 8, 8) pattern. Figure 1 presents an explanation of the color coding.

Appendix: conjugacy of patterns

We prove that a primal pattern can be vertically lifted to a
paraboloid, S, while every face remains planar, if and only if
every primal edge in the pattern is conjugated to and bisected
by the corresponding dual edge (i.e., the edge between the conic
centers of the neighboring faces). The paraboloid, S, is defined
as z = κ1x

2 + κ2y
2. We currently assume κ1κ2 6= 0 and refer

to this assumption later. We consider the induced quadratic form
〈a,b〉 := κ1xaxb + κ2yayb on the (x, y)-plane and denote the
squared norm |a|2 = 〈a,a〉 accordingly. The conjugacy relation is
thus 〈a,b〉 = 0. We prove our claim using the following:

Lemma 1. A polygon with vertices (p1,p2, . . . ,pn) on the x, y-
plane, inscribed to a conic of the form |p− c|2 = γ, γ ∈ R,
remains planar when lifted to S.

Proof. The lifted points of pi on the paraboloid are on the in-
tersection of S of the vertical cylinder C extruding the conic:
κ1(x − xc)

2 + κ2(y − yc)
2 = γ. Thus, they also lie on any

linear combination of C and S. The C − S surface is a plane, as the
quadratic terms cancel out.

Lemma 2. Let pj−pi be a primal edge conjugate to the dual edge
cj − ci and bisected by cj − ci at point d. Then, |pi − ci|2 =

|pj − ci|2 and |pi − cj |2 = |pj − cj |2.

Proof. The conjugacy of pj−pi and cj−ci implies 〈pj−pi, cj−
ci〉 = 0, and the bisecting condition implies |pi − d|2 = |pj − d|2.
Thus:

|pi − ci|2 = |d− ci + pi − d|2

= 〈d− ci,d− ci〉+ 〈pj − d,pj − d〉
= 〈pj − ci,pj − ci〉.

Similarly, 〈pi − cj ,pi − cj〉 = 〈pj − cj ,pj − cj〉.

Corollary 1. Consistency to planar lifting: A primal pattern on
the (x, y)-plane with every edge conjugate to and bisected by the
dual edge is liftable to S while the faces remain planar.

Proof. Due to Lemma 2, for a given polygon {pi} and center c, we
have 〈pi − c,pi − c〉 = γ for some constant γ ∈ R, and thus the
vertices are on a planar conic and can be lifted to S while keeping
face planarity, due to Lemma 1.

We next prove how planar lifting leads to consistency.

Lemma 3. The vertical projection of the intersection curve between
S and a plane P := z = ax + by + e onto the (x, y)-plane is a
conic of the form |p− c|2 = γ, γ ∈ R.

Proof. The surface obtained by the P − S subtraction is a vertical
cylinder passing through the intersection curve, which intersects the
(x, y)-plane with a conic of the form κ1(xp−xc)2+κ2(yp−yc)2 =

|p− c|2 = γ, where xc = a
2κ1

, yc = b
2κ2

, and γ ∈ R.

Lemma 4. On the (x, y)-plane, if two similar conics ci :

|p− ci|2 = γi and cj : |p− cj |2 = γj intersect at pi and pj ,
then pj − pi is conjugate to and bisected by cj − ci.

Proof. The subtraction of the two conics, cj − ci, produces a line
l defined by 〈p, cj − ci〉 = const. As both pi and pj are on l,
〈pj − pi, cj − ci〉 = 0.

To show that bisection holds as well, we apply a shearing transforma-
tion so that c̄j− c̄i and p̄j− p̄i become orthogonal and thus aligned
with the axes. As c̄i and c̄j are both reflectively symmetric with
respect to c̄j−c̄i, so are their intersections. The midpoint of pj−pi
therefore lies on cj − ci before the shearing transformation.

Corollary 2. Planar lifting to consistency: Consider a pattern on
the (x, y)-plane which is the vertical projection of a polyhedral
pattern inscribed on S. Then, there exists a dual pattern with each
edge conjugate to and bisecting the corresponding primal edge.

Proof. Due to Lemma 3, the faces of the primal pattern are all
inscribed to conics with the form |p− ci|2 = γi, γi ∈ R. Consider
the dual pattern formed by connecting the adjacent face circumconic
centers. Then, the primal edges pj−pi are conjugate to and bisected
by the dual edges cj − ci due to Lemma 4.

Cylindrical paraboloids When κ1κ2 = 0, κ1 6= κ2, Corollary 1
still holds, but Corollary 2 is no longer generally exact, as the proof
of Lemma 3 requires κ1 6= 0 and κ2 6= 0. The reason for this is that
the conics made by this condition are pairs of straight lines without
any center, and thus the duality is not well defined. However, by
identifying centers, this is still true in the limit of our deformation
scheme, as we continuously deform regular tilings from elliptic
to hyperbolic conics with well-defined centers. Thus, we have a
well-defined dual center obeying these conditions.


