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1 Details of the Extensions

In the following we provide more detailed information for some of
the extensions introduced in Section 4 of our paper.

Shape Arrays allow propagating arrays of shapes that adapt the
number of elements to the surrounding geometry with a single
placement propagation. The choice between scaling or repeating
shapes to fill the bounding box of a placement can be specified sep-
arately for the width and height dimensions. To implement shape
arrays, we specify a minimum spacing between shapes and find the
maximum number of shapes that can be placed along the width
and height dimensions while respecting this minimum spacing. The
spacing is then adjusted so that there is no space before the first and
after the last shape in both dimensions.

Labels can be given to each scene element. Edges and Corners
get the label of the polygon they are part of by default, but can be
given individual labels as well. As described in Section 3.3 of our
paper, tuples corresponding to scene elements with different labels
have zero similarity s.

Planar Surfaces on 3D objects are either created and
parametrized automatically as part of the mass modeling operations
described below, or the surfaces and their parameterization are de-
fined by the user. All elements in the scene are placed on a sur-
face, e.g., a house is placed on the parcel surface, and a window
is placed on the facade surface. On such a surface, the elements
are represented as two-dimensional polygons, corresponding to the
projection of the elements onto the surface. Each surface forms a
separate scene, thus relations are only computed inside a surface,
not between surfaces. The parameterization of a surface is a two-
dimensional euclidean coordinate system that has the same scale as
the global coordinate system of the three-dimensional scene (i.e., it
is an isometry of the x-y coordinate plane in the global coordinate
system).

Extrusions New 3D elements may be created through the extru-
sion of polygons. For example, the footprint of a building may be
extruded to create the basis for a building model. Planar surfaces
are automatically found and parametrized on the extruded mesh.
Polygons are always extruded in a direction normal to their surface
with a height specified interactively by the user. An optional ran-
dom multiplier can be applied to the height to add variation to the
resulting models. Straight boundary segments of the polygon cor-
respond to planar surfaces on the extruded 3D element. Finally, a
simple roof or a flat cap can be added to the bottom or top side for
a more realistic appearance.

Boolean Operations To construct more interesting 3D shapes,
we can combine several elements using Boolean operations such as
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unions or subtractions. This allows the creation of more complex
building mass models with variation introduced by the placement of
the individual elements. Boolean operations are applied in one of
two ways: Either by merging or subtracting one or several elements
with/from their surface, or by or merging intersecting elements on
the same surface.

Operations Tree Each modeling operation performed by the user
during an example modeling session is recorded in an operations
tree. This tree can then be applied to a different scene without ad-
ditional user interaction to create varied and complex models. Op-
erations that may be nodes of this tree are:

Placement, which finds new placements in a given input scene
from the bounding boxes of a set of example elements. The
information that is recorded in the tree consists of the mesh
that is to be placed and the kernel regression model trained
on the example placements, as well as the five models for the
sample points described in Section 3.5 of our paper. Each
trained model consists of the feature sets Φi or φi of the ex-
ample placements or sample points, and the adjusted target
values t′ that result from training the models.

Extrusion, which extrudes a given set of polygons to create new
meshes and surfaces. The height of the extrusion is stored in
the operations tree, as well as flags indicating which type of
cap should be added to the extruded model (flat, roof or none).

Boolean Operation, which merges or subtracts an element from
its own surface, or subtracts/merges all elements on the same
surface that intersect the given element. No parameters need
to be stored for this operation.

Deletion, which deletes elements. Again, no parameters are
needed.

Selection, which selects elements by label. Only the label is stored
in the operations tree.

The tree is defined by connecting the input elements of child op-
erations to the output elements of their parent. The scope of each
operation is then limited to its input elements. Each operation can
optionally specify if the output should be split randomly into a
given number of disjoint sets. This effectively creates alternative
branches in the tree, representing alternative chains of operations
to be performed on different subsets of the operation’s output ele-
ments. Creating a tree with alternative branches increases the vari-
ation of the resulting scene, since the possible chains of operations
from the root to the leaf of the tree increase exponentially with the
number of branching nodes along the chain.

2 Validity of the SL0 Kernel

In this section we show that the SL0 kernel defined in Equation (2)
and (3) is valid:

kSL0(Φ1,Φ2) =
∑
ψ∈Φ1

s(ψ,M(ψ)), (1)

where we denote the kernel with kSL0 to avoid confusion with other
kernels.



To prove this is a valid kernel, we first show that, given a set of ex-
ample feature sets Q, the kernel evaluated between an example set
Φ ∈ Q and any other feature set is equivalent to the SL0 similarity
in a high-dimensional vector space:

kSL0(Φ,x) = s(Φ′,x′) (2)

for suitable vectors Φ′ and x′. Then we proceed to show that the
SL0 similarity is a valid kernel.

2.1 The SL0 Kernel is Equivalent to an SL0 Similarity
in a Suitable Vector Space

The example feature sets Φ ∈ Q do not form a vector space, since
they generally do not have the same number or types of tuples. To
get the sets into a common vector space, we perform a series of
expansions of the feature sets. We first give a short overview of
these steps and continue with a more detailed proof.

First, we expand the example feature sets in Q to have the same
number and types of tuples and give them a specific order, resulting
in the expanded feature sets Φ∗ ∈ Q∗. Any given feature set x
can then be expanded as well to have the same number and type
of tuples as the feature set in Q∗. Through the assignment M ,
we can perform a second expansion of feature sets Φ∗ and x∗ that
results in a consistent ordering of the tuples in all feature sets. Since
all feature sets now have the same number and type of tuples that
are consistently ordered, we can simply append their tuples to get
vectors in a common vector space. The SL0 similarity on these
vectors is equivalent to the SL0 kernel on the original feature sets.

First Expansion We first identify all of the scene elements that
correspond to any of the tuples in the example feature set Q and
denote this set with E. Then we expand the feature sets Φ to include
tuples for all elements in E. Added tuples are filled with NIL values
that always result in zero SL0 similarity. The expanded feature sets
now all have the same number and types of tuples. Thus, we can
order the tuples by elements e1...e|E| ∈ E, giving us ordered sets
of tuples Φ∗.

Since our kernel is a sum over the SL0 similarities of individual
tuples, and Mx,Φ∗ : Φ∗ → x maximizes this sum, it is easy to
see that the result of the kernel remains the same when replacing
example feature sets Φ with the expanded feature sets Φ∗:

kSL0(Φ,x) = kSL0(Φ∗,x) (3)

=
∑

i=1...|E|

s(ψi,Mx,Φ∗(ψi)), (4)

where ψi are the tuples of the ordered set Φ∗ = {ψ1, . . . , ψ|E|}.
Here we explicitly show the dependence of M on the feature sets
Φ∗ and x. This expression is equivalent to a sum of SL0 similarities
over corresponding tuples in Φ∗ and an ordered feature set x∗Φ∗ =
{χ1, . . . , χ|E|}:

kSL0(Φ,x) =
∑

i=1...|E|

s(ψi,Mx,Φ∗(ψi)) (5)

=
∑

i=1...|E|

s(ψi, χi), (6)

where χi = Mx,Φ∗(ψi) is the feature tuple of x assigned to ψi.
The ordered feature set x∗Φ∗ is the expanded version of feature set
x, which now has the same number and type of tuples as any feature
set in Q∗.

Since all feature sets are now ordered and have the same number
and types of tuples, they can be thought of as vectors in vector space

of dimension N =
∑
i=1..|E| nei , where nei is the tuple size for

element ei ∈ E. Then,

kSL0(Φ,x) =
∑

i=1...|E|

s(ψi, χi) (7)

= s(Φ∗,x∗Φ∗), (8)

which follows from the definition of the SL0 similarity in Equation
(1) of our paper.

Second Expansion Remember that our goal is to find a single
feature vector for Φ and a single feature vector for x in a high-
dimensional vector space that have an SL0 similarity equivalent to
the SL0 kernel of Φ and x. We now have two feature vectors Φ∗

and x∗Φ∗ ; however, x∗Φ∗ still depends on Φ∗, due to the dependence
of the assignment Mx,Φ∗ on Φ∗. To find a single vector for x, we
have to remove the dependence of x∗Φ∗ on Φ∗. For this purpose, we
introduce a second expansion of the feature vectors x∗Φ∗ and Φ∗.

Specifically, we concatenate the vectors x∗Φ∗j
j = 1 . . . |Q|, such

that

x′ =
[
(x∗Φ∗1 )T, (x∗Φ∗2 )T, . . . , (x∗Φ∗|Q|)

T
]T
, (9)

where square brackets denote concatenation. Feature vector Φ∗j ∈
Q∗ is expanded to get Φ′j as follows:

Φ′j =
[
O1, . . . , Ij , . . . , O|Q|

]T
Φ∗j , (10)

where Oi denotes a NIL matrix and Ii the identity matrix, both
square matrices of size N × N . This simply puts Φ∗j at the same
position as x∗Φ∗j

in vector x′ and fills the remaining entries with
NIL. Then,

kSL0(Φj ,x) = s(Φ∗,x∗Φ∗) (11)

=
∑
k 6=j

s(OkΦ∗j ,x
∗
Φ∗

k
) + s(IjΦ

∗
j ,x
∗
Φ∗j

) (12)

= s(Φ′j ,x
′) (13)

for all j ∈ {1 . . . |Q|}, since OkΦ∗j only contains NIL elements
and s(OkΦ∗j ,x

∗
Φ∗

k
) is therefore 0, q.e.d.

2.2 The SL0 Similarity is a Valid Kernel

Next, we prove that the SL0 similarity of two vectors is a valid
kernel in the sense defined by Bishop [2006]. To do so, we show
that the SL0 similarity can be constructed from simpler kernels that
are known to be valid. The Gaussian kernel

kG(x, y) = G(x− y|0, σ) (14)

is known to be valid (see [Bishop 2006], Section 6.2). Then by
repeatedly applying the kernel construction rule (see [Bishop 2006],
Equation 6.21)

k(x,y) = Ka(xa, ya) +Kb(xb, yb), (15)

which states that the left-hand side is a valid kernel if the kernels
on the right-hand side are valid, we see that kSL0 is a valid kernel,
q.e.d.

In the next section, we give a different proof of the kernel validity,
which is based on its dual representation as a linear basis function
model, and allows an interesting visualization of these basis func-
tions.



Figure 1: Basis function for regression. We show all basis functions for a 2-dimensional feature space. The left image shows all basis functions that are
non-constant in the first dimension, the right image shows the basis functions that are non-constant in the second dimension.

2.3 Dual Representation of the SL0 Kernel

In this section, we show that linear regression with SL0 similarity
as kernel (and thus, as shown before, also with the SL0 kernel) is
the equivalent dual representation of a linear regression model that
uses a regularly spaced set of extruded 1D gaussian basis functions
(see Figure 1) as the number of basis functions approaches infinity.
The model is defined as:

y(x,w) =

M∑
j=1

wjφj(x) = wTφ(x) (16)

where M is the number of basis functions and the basis functions
φj have the shape described above:

φj(x) = G(xk(j)|µj , σ) (17)

where k(j) is the non-constant dimension of basis function j.
We assume a constant variance σ, so the basis functions can be
parametrized by their mean and the index of their non-constant di-
mension k. To enable the use of a fixed, finite set of basis func-
tions, we restrict the domain of our model to a hyper-rectangle in
feature space, defined by a minimum and maximum value in each
dimension. Along each of the dimensions, we place a fixed number
Lk of basis functions, for a total of M =

∑
k Lk basis functions

in our model. For dimension k we place basis functions that are
non-constant in that dimension in regular intervals µk1 . . . µkL
between the minimum and the maximum value of that dimension.
Equation 16 then becomes:

y(x,w) =

D∑
k=1

Lk∑
l=1

wkl G(xk|µkl, σ) (18)

To show that this model is equivalent to liner regression with the
SL0 kernel, we show that (see [Bishop 2006], Equation 6.10):

kSL0(x,y) = φ(x)Tφ(y) =

M∑
j=1

φj(x)φj(y) (19)

as M approaches infinity. Using Equation 17, this becomes:

kSL0(x,y) =

M∑
j=1

G(xk(j)|µj , ρ) G(yk(j)|µj , ρ) (20)

where we use basis functions with variance ρ. Recall that the basis
functions are defined on regular intervals µkl in each dimension of
the feature space. We can therefore split the sum into an outer sum

over all dimensions and an inner sum over all basis functions in that
dimension.

kSL0(x,y) =

D∑
k=1

Lk∑
l=1

G(xk|µkl, ρ) G(yk|µkl, ρ) (21)

Since the Gaussian function is symmetric around the origin, we can
switch the argument with the parameter µ

kSL0(x,y) =

D∑
k=1

Lk∑
l=1

G(µkl|xk, ρ) G(µkl|yk, ρ) (22)

The scaling of the Gaussians is unimportant. When scaling a Gaus-
sian by a factor c, the result of the regression is the same (the cor-
responding entry in w is only scaled by the inverse c−1 of that
factor). We can scale the Gaussians by the distance ∆µk between
two adjacent Gaussian centers. Note that ∆µk only depends on
the dimension since the centers of the Gaussians are spaced equally
along each dimension.

kSL0(x,y) =

D∑
k=1

Lk∑
l=1

G(µkl|xk, ρ) G(µkl|yk, ρ) ∆µk (23)

As Lk goes to infinity, the sum becomes an integral. Factoring
out the inverse normalization factor 1√

2πρ
for a normal distribution

from each Gaussian we get

kSL0(x,y) = 2πρ

D∑
k=1

∫
N (µk|xk, ρ)N (µk|yk, ρ) dµk (24)

The integral of the product of two normal distributions is a zero-
mean normal distribution of the distance between the centers:

kSL0(x,y) = 2πρ

D∑
k=1

N (xk − yk|0, 2ρ) (25)

=
√
πρ

D∑
k=1

G(xk − yk|0, 2ρ) (26)

Which is equivalent to the definition of the SL0 kernel with σ = 2ρ
up to the constant scaling factor

√
πρ.



3 Additional Results

In the following pages, we show the full set of models that we generated for the skyscrapers, city and kitchen scenes. Figures 2 and 3 show
all generated skyscrapers, Figures 4 to 7 show additional views of the city scene and Figures 8 to 11 show all generated kitchens.

Figure 2: Skyscrapers 1 to 9 generated by our method. Note how our method can be used to create varied mass models that guide the
placement of facade elements to create interesting variations in the final models. A total of 146 operations were performed in the example
modeling session.



Figure 3: Skyscrapers 10 to 17.



Figure 4: Overview of the four tiles of the city scene generated by our method. Input for this scene was the parcel and street layout shown as
lines on the ground plane. A total of 1181 houses were created from an example modeling session with 135 Operations (including selection
operations).



Figure 5: Aerial views of the city scene. Note how the varying parcels shapes and additionally random parameters in the operations tree
result in many varied models.



Figure 6: A closer view on some parts of the city scene. Note how individual facade elements like windows and handrails adapt to the size of
the facade, which in turn is influenced by the size of the parcel.



Figure 7: Close-up view of buildings in the city scene. Note how the shape of the buildings guide the placement of elements to create
interesting facade layouts.
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Figure 8: Kitchens 1 to 6 generated by our method. We show two views of each kitchen (view A and view B). Note how the furniture
placements adapt to the shape of the kitchen. Variation also comes from alternative branches in the operations tree, which are used for
example to place different kinds of fridges, stoves and sinks, or to vary the width of the cupboards. A total of 85 operations were performed
in the example modeling session.
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Figure 9: Kitchens 7 to 12 generated by our method. We show two views of each kitchen (view A and view B).
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Figure 10: Kitchens 13 to 17 generated by our method. We show two views of each kitchen (view A and view B).



4 Scenes used in the Quantitative Evaluations

scene 4 (japanese gardens)

scene 2 (big facades)scene 1 (small facades)

scene 3 (rooms)

Figure 11: The four scenes used in our evaluations. All operations were performed on variations of these scenes that represent different
stages in their construction process. The first scene contains small- to medium sized facades, including family houses and small apartment
buildings. Scene 2 contains larger facades that might be used to create landmark buildings or office buildings. Scene 3 contains several floor
plans with different types rooms including offices, living rooms and kitchens. Finally, scene 4 shows three japanese gardens, with elements
such as paths, lakes and stone gardens that have a more organic shape.
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