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Template Assembly for Detailed Urban Reconstruction

Liangliang Nan, Caigui Jiang, Bernard Ghanem, and Peter Wonka
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Figure 1: Two buildings reconstructed with details using our template assembly approach. From top to bottom: the template
locations marked in the optimized texture images, the coarse model, and the detailed 3D surface model. Different colors indicate
different templates.

Abstract
We propose a new framework to reconstruct building details by automatically assembling 3D templates on coarse
textured building models. In a preprocessing step, we generate an initial coarse model to approximate a point
cloud computed using Structure from Motion and Multi View Stereo, and we model a set of 3D templates of facade
details. Next, we optimize the initial coarse model to enforce consistency between geometry and appearance
(texture images). Then, building details are reconstructed by assembling templates on the textured faces of
the coarse model. The 3D templates are automatically chosen and located by our optimization-based template
assembly algorithm that balances image matching and structural regularity. In the results, we demonstrate how
our framework can enrich the details of coarse models using various data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Reconstruction of urban scenes from a set of images
remains a challenge in both computer graphics and computer
vision. As a first step, several algorithms can extract point
clouds from a set of images using Structure from Motion
(SfM) [HZ00]. While these point clouds can be rendered in
an impressive manner, they are actually quite sparse. For
example, in a typical point cloud reconstructed by Multi
View Stereo (MVS) [FP10], fine details of facade elements

(e.g., door decorations, window frames, etc.) are usually
contaminated by the noise in the point clouds.

The density of the point clouds is still reasonable for
generating coarse building mass models (where building
facades are approximated by large textured polygons),
and various techniques have been developed for this
purpose [XFZ∗09, VAB10, VAB12, ZN12, ZN13, LGZ∗13]
(Note that some of these techniques were actually developed
for LiDAR data). However, generating high-quality detailed
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models remains an open problem. Even the automatic
generation of coarse models is not robust and typically
requires manual editing [XFT∗08, ASF∗13]. Furthermore,
facade details are reconstructed almost completely manually.

The goal of this paper is to bring more facade details
into the image-based urban reconstruction pipeline. Our
proposed strategy relies on image information to add more
details to the models. Thus, we propose two new algorithms
to augment the image-based reconstruction pipeline. First,
we improve coarse mass models that are computed by fitting
shapes to point clouds by making use of image information
(e.g., edges in the facade textures). To this effect, we
propose a new optimization algorithm that combines both
image and geometry-based energy terms. Second, we place
geometrically detailed templates onto the facades of the
coarse model using image information as the query key.
Given a set of different 3D templates, representing a facade
by choosing a subset of the templates is challenging due to
illumination variations, occlusions, and the complex nature
of facade design. We use an optimization approach that
leverages template matching and prior knowledge of the
structural properties of facades. In Fig. 1 we show an
example reconstruction.

Our paper makes the following contributions:

• a framework that can generate more detailed building
models from a set of input images than existing methods.
• a novel geometry-appearance consistent optimization

algorithm for coarse models, which enhances the consis-
tency between their geometry and the images.
• an optimization-based template assembly algorithm that

faithfully and effectively represents facade structures.

2. Related Work

Recent years, tools and methods for analyzing and re-
constructing architectural models has been researched ex-
tensively. For a more comprehensive survey of related
work, please refer to [VAW∗09, MWA∗13]. In this section,
we review related work in the areas of photogrammetry-
based reconstruction, primitive-based reconstruction, and
repetition detection and facade parsing.

Photogrammetry-based reconstruction. Works in com-
puter vision mainly focus on obtaining dense point cloud-
s [GSC∗07, FP10, WYJT10, WACS10, Wu11, CMZP14]
or automatic reconstruction of textured models [WZ02,
DTC04, PF08] from collections of photos, relying on
photogrammetric reconstruction and image-based modeling
techniques. Xiao et al. [XFT∗08, XFZ∗09] exploit SfM
for depth enhanced facade modeling. They assume planar
rectangular facades where details are essentially 2.5D rect-
angular elements on top of them. A facade is decomposed
into rectilinear patches, and each patch is then augmented
with a depth value from SfM. Wu et al. [WACS12] proposed
a schematic algorithm to reconstruct dense mesh models

from profile curves extracted from sparse point clouds.
Sinha et al. [SSS∗08] present an interactive image-based
modeling system for reconstructing piecewise planar 3D
structures. The user sketches 2D lines of planar sections over
photographs, which are automatically mapped into 3D by
aligning to vanishing points or existing point geometry.

Primitive-based reconstruction. Architectural structures
typically consist of an assembly of basic primitive shapes ex-
hibiting some regularities. Schnabel et al. [SDK09] present
a hole-filling algorithm that is guided by primitive detection
in the point cloud. Li et al. [LWC∗11] discover and optimize
the global spatial relationship of geometric primitives. The
interactive SmartBoxes tool proposed by [NSZ∗10] utilizes
the regularity of facades to quickly assemble detailed 3D
primitives balancing between data fitting and structural
regularity terms. Arikan et al. [ASF∗13] proposed an
optimization-based interactive tool that can reconstruct
relatively detailed architectural models from a sparse point
cloud. Lin et al. [LGZ∗13] employ supervised learning to
segment the urban scenes into different categories and then
reconstruct 3D models using prior knowledge. The results
are coarse building models that are merely approximated
with a small number of textured planes. Unlike these
works that target the reconstruction aspect, we focus on
incorporating geometric details into the coarse models
through template assembly.

Repetition detection and facade parsing. Another
large body of research related to our work focuses on
repetition detection and facade parsing, which aim to
detect one [CZM∗10, PBCL10, WFP11] or a few repetitive
patterns [SHFH11, TKS∗13]. The characteristics of our
work that set it apart from these works include: 1) our
template assembly works with a much larger number of
templates and is capable of choosing and arranging a subset
of the templates (quite a few templates are redundant) that
best describe both the facade’s content and structure (see
the supplemental material). In other words, our template
assembly can be described as a specialized object detection
algorithm that resolves conflicts of different regular patterns
caused by imperfect template matching; 2) existing facade
analysis methods take a single facade image as input,
while our template assembly algorithm is designed to work
on multiple facades from either one building or a set of
buildings.

3. Overview

Our goal is to construct detailed building models by
assembling 3D templates on the faces of polygonal building
mass models. Fig. 2 shows an overview of the proposed
framework consisting of three main steps. The preprocessing
step mainly relies on existing techniques, while the last two
steps are novel algorithms introduced in this paper.

Preprocessing. The input of our framework is a set of
ground level images. In our example scenes, we use between
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Figure 2: An overview of our template assembly framework. Given an initial coarse model (top-left), we first enforce
geometry-appearance consistency (bottom-left) through optimization. Then, the template assembly step automatically suggests
appropriate 3D templates and their locations in the optimized facade texture images (bottom-middle). Finally, detailed 3D
templates are transformed onto the coarse model at the suggested locations using camera parameters recovered by SfM during
the preprocessing stage. This framework results in a detail rich 3D surface model (bottom-right).

6 (Fig. 14 (a)) and approximately 200 (Fig. 1) images. We
extract a 3D point cloud for these images using SfM and
MVS [Wu11,WACS10]. From this point cloud, we generate
a coarse approximate building mass model using a mixture
of automatic and interactive tools. Alternatively, these coarse
models could be generated with existing fully or semi-
automated methods [ZBKB08, SSS∗08, XFZ∗09, VAB10,
VAB12, ZN12, ZN13]. We generate 3D templates using our
own interactive tool that enables a user to quickly build 3D
primitives over an image. For more details on our coarse
model reconstruction and the 3D template construction
please refer to the supplemental materials.

Coarse model optimization. In this step, we use both
geometry and appearance (texture) information to optimize
the coarse model. The goal of this particular task is to
improve the quality of the coarse model and its textures,
by encouraging common facade structural properties (e.g.,
facades are piecewise planar and are either orthogonal to
or parallel with each other). This can be formulated as an
energy minimization problem, which inherently trades off
between geometric and appearance priors, leading to more
accurate and regular coarse models that have texture images
consistent with their corresponding 3D geometry. Section 4
describes the details of the coarse model optimization step.

Template assembly. Since the point clouds computed
using SfM and MVS lack detailed 3D information at
the facade level, we rely mainly on images to assemble
3D templates on coarse models. We first detect candidate
template locations in the optimized texture images of the
coarse model using a template matching technique based
on Histogram of Oriented Gradients features. Clearly, such
matching in the image space might lead to false detections,
so a further round of template candidate pruning is required
for accurate and robust template assembly onto the coarse
model. An appropriately sampled subset of candidate
templates and their locations are chosen by solving a binary

optimization problem, which trades off multiple properties
of ideal template assembly including template matching
score, regularity/symmetry, overall facade coverage, and
sparsity. Finally, the detailed 3D templates are assembled
and their corresponding geometry is added to the coarse
models using transformations estimated in the coarse model
construction step. Section 5 describes the details of the
template assembly step.

Assumptions. In this paper, the assembly of geometric
details in 3D space is reduced to choosing appropriate
templates and detecting their locations in images. This re-
stricts our framework to buildings consisting of large planar
facades. We optionally make use of the Manhattan World
assumption (e.g., [FCSS09, VAB10]), in the optimization
to improve the coarse building mass models. Further, we
assume that the set of templates available for reconstruction
are taken from buildings constructed in a similar style. This
assumption is reasonable for buildings in a community that
are constructed by the same developer (see Fig. 3 for an
example), or for buildings that stem from a city with strong
coherence between facades (e.g., Haussmannian facades in
Paris).

Figure 3: Buildings within a geographical area usually have
similarly detailed elements.

4. Coarse Model Optimization

To assemble templates of facade details onto a coarse
model, the facade images should first be rectified for this
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purpose. The image rectification step is crucial to template
assembly. Unlike conventional methods that use only image
information for the rectification [LZ98], our initial coarse
models are reconstructed from image sequences using SfM
and MVS; thus, the camera parameters recovered from SfM
can be used for the rectification. However, this rectification
has some level of error due to noise in the SfM step, resulting
in missing reconstruction and misalignment in the final 3D
model. Our coarse model optimization is designed to enforce
the geometry and appearance consistency of the coarse
model, which significantly improves the final reconstruction.

We consider an initial coarse model comprised of a
set of boxes M = {M1, ...,Mm} in 3D as seen in Fig. 4
(top). We allow this model to deform in such a way that
certain geometric and appearance priors are taken into
account. On the one hand, orthogonality and parallelism
are quite common in architectural structures and need to
be enforced in the coarse model. On the other hand, many
visual cues (e.g., long straight lines corresponding to face
boundaries) exist that encourage certain model deformations
so as to provide a better fit to the appearance of the model’s
projections into each of the images it appears in.

To estimate the deformations on the initial model that
incorporate the geometric and appearance priors, we for-
mulate an energy minimization problem and allow the user
to trade-off between its different terms. Unlike previous
work on the topic of coarse model modification using
optimization [LWC∗11, ASF∗13] (solely based on point
clouds), we add a new regularization term that encourages
consistency between the model itself and its projections into
2D images. Such a regularizer ensures a more consistent
and accurate coarse model. The energy function we aim
to minimize trades off between five distinct terms char-
acterizing: geometry-appearance consistency, point cloud
fidelity, face geometry, face alignment, and deviation from
the initial geometry. A positive linear combination of these
terms forms the energy function E(M). Each of these terms
is described in the following paragraphs.

The geometry-appearance consistency term C(M) mea-
sures how well the projection of all the model’s faces align
with the corresponding regions in the 2D images. Note
that the transformations needed for such projections have
been estimated during the SfM step. We rely on geometric
features of the model that manifest themselves as detectable
low-level features in images. To this end, we focus on
the face edges in the model, which tend to project into
the images as long line segments. These line segments are
detected in each image using the method of [VGJMR10].
Due to noise in the SfM process, the projections of the
3D edges might not overlay exactly on the detected line
segments in the images, but instead, they tend to be quite
close to each other (see the textured coarse model in Fig. 4
top-right). Therefore, we assign each face edge in the model
to its closest line segments in the images. In images with

camera parameters recovered by SfM, each line segment
corresponds to a 3D plane that potentially generates it. Thus,
we formulate this term to penalize the model by the sum
of squared distances between the face edge and the 3D
planes of its assigned line segments. As an effect, this term
encourages the model to deform in order to satisfy the face-
to-line assignment.

C(M) = ∑
e∈M

dev(e), (1)

where dev(e) is the distance of a face edge e to the 3D
supporting plane of the assigned line segment.

The data fidelity term D(M,P) prevents the optimized
model from deviating too much from the point cloud. It is
designed to measure how well the faces of the initial coarse
model M fit to their nearest 3D points P = {p1, ...,pn}.

D(M,P) = ∑
(p, f )|dist_point(p, f )<ε

dist_point(p, f ). (2)

Recall that the plane segments are extracted from the point
cloud using RANSAC. So here, we model dist_point(p, f )
as the deviation of the face f from the detected plane in the
point cloud. Specifically, it measures the average Euclidean
distance between a vertex of the face and the detected
plane. We consider only points that are ε-close to f (i.e.,
points p satisfying dist_point(p, f )< ε). Throughout all our
experiments, we set ε to 0.1 meters.

The face geometry term F(M) is defined to measure how
well each face in the model satisfies the co-planarity and
orthogonality properties,

F(M) = P(M)+O(M)

= ∑
f∈M

coplanar( f )+ ∑
f∈M

ortho( f ). (3)

Here, the co-planar term P(M) en-
courages vertices of each face to lie in
the same plane. Specifically, coplanar( f )
is modeled as the mixed product of
consecutive edge vectors and the diagonal

vector of f . In our implementation, we randomly pick one
of the four vertices to compute the mixed product, e.g.,
c · (a×b) in the left example figure. The term ortho( f )
measures the degree of orthogonality that adjacent edges in f
are, and is modeled as the sum of dot products of successive
edges.

The face alignment term A(M) dis-
courages the existence of gaps and
intersections between adjacent boxes. We
only consider pairs of faces that are ε-
close to each other and have overlap
when one is projected onto the other.
Let dist_ f ace( fi, f j) denote the sum

of distances of the vertices in f j to the supporting
plane of face fi (e.g., d1 + d2 for the 2D example in
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the left figure), and bidist( fi, f j) = (dist_ f ace( fi, f j) +
dist_ f ace( f j, fi))/2, then A(M) is defined as

A(M) = ∑
(i, j)∈I

bidist( fi, f j), (4)

where I = {(i, j)|
⋂
( fi, f j) 6= ∅ and bidist( fi, f j)< ε}, and⋂

( fi, f j) 6= ∅ denotes both the projection of fi onto f j and
the projection of f j onto fi are not empty.

In order to avoid drastic deviations from the user-defined
initial coarse model, we add an initial geometry term I(M),
which regularizes the overall magnitude of the deformation.
Mathematically, it measures the sum of squared distances
between every vertex in M to its position in the initial coarse
model.

Therefore, the underlying energy that needs to be mini-
mized is a positive linear combination of all the aforemen-
tioned energy terms, as formulated in Equation (5).

E(M) =λcC(M)+λdD(M,P)+λ f F(M)+

λaA(M)+λiI(M).
(5)

Since it is difficult to obtain analytical forms for each
of the above energy terms and their gradients, we resort
to a nonlinear least-squares approach (i.e., a variant of the
Levenberg-Marquardt method) to minimize the nonconvex
E(M) [Dev10], where the Jacobians are approximated
by finite differences. In all our experiments, we use the
following weights: λc = 1.0, λd = 0.2, λ f = 0.3, λa = 0.5,
and λi = 0.1. Fig. 4 shows an example optimization result.
In the input coarse model (top row), the misalignment of
the texture to the original model can be seen by observing
the sky pixels (white and light blue) near the boundaries
of the facade. Our optimization process results in a more
regularized model that better aligns the facade with its
texture images (bottom row).

Figure 4: Our geometry-appearance consistent optimization
resolves inconsistencies in the coarse model (e.g., inter-
sections, gaps, and nonorthogonality) (top row), resulting
in a more regularized and accurate coarse model (bottom
row). Note that the geometry of the coarse model has
been improved, thus a new texture image from a slightly
different viewpoint is automatically chosen providing a more
consistent texture for the right facade.

5. Template Assembly

To augment the optimized coarse model with detailed
geometric elements, one has to infer from the point cloud
data a detailed structure of archetypal elements that tend to
repeat. However, since point clouds generated by MVS tend
to be sparse (compared with laser scans [NSZ∗10]), noisy,
and contain a large number of missing parts, performing this
inference reliably and robustly is quite difficult. Therefore,
we resort to a semi-automatic procedure that enables the user
to explicitly define a detailed 3D template for these repeating
elements from the underlying images and point cloud. To do
this, we provide the user with a template construction tool,
where the user can sketch template contours directly on an
image. The depth of each sketched region (and equivalently
its 3D position) is estimated from the point cloud. As such,
the user can quickly generate a detailed 3D template (e.g.,
door, window, arch, etc.). Details of our interactive 3D
template construction tool can be found in the supplemental
material.

It is quite challenging to assemble the user-built 3D
templates directly in 3D space using the information
from the inherently sparse, noisy, and incomplete point
clouds. Instead, in this work, we rely on images to
perform this task. Specifically, by assuming facades are
planar, the 3D template assembly problem is simplified
to detecting the locations of the same (or very similar)
objects in the rectified images. Using the camera-to-model
transformations computed by SfM, we can transform these
2D detected locations back to 3D space. For this purpose,
we associate each 3D template to the image region that
was edited by the user to construct it (more details on
the template construction are in the supplemental material).
This image region is considered to be a query key image
used during the 2D detection and assembly step. In what
follows, we use the term template to refer to the 3D
geometric template and its query key image interchangeably.
Similarly, the term template assembly refers to both 3D
detail enhancement of the coarse model and the assembly
of 2D template query key images in the image domain.

5.1. Template descriptor and matching

To choose and locate appropriate templates that best
describe each facade of the coarse model, we require
template matching techniques that are capable of capturing
the underlying geometric properties of the projected 3D
elements (i.e., the contours). Based on the state-of-the-
art object detection literature, the Histogram of Oriented
Gradients (HOG) feature has been proven to be efficient,
effective, and robust for this task. This is attributed to the fact
that local object appearance and shape can be characterized
well by the distribution of local intensity gradients or edge
directions [DT05]. In this paper, we use the HOG feature to
describe our templates and potential detection locations in
the image domain.
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Recall that the coarse models have been optimized in
Section 4 alleviating the effect of perspective distortion in
the texture images. We define the score S(T,F) for matching
a template query key image T with a facade texture image
region F as the Normalized Cross Correlation (NCC) of
their HOG descriptors. Let I denote the texture image of the
facade obtained from the geometry-appearance consistent
optimization step in Section 4, and T = {t1, ...tk} denote
the k templates’ query key images. We initially perform
HOG-based template matching for each query key image
in T. The results are a set of candidate locations for each
individual template (Fig. 5). Note that the initial locations of
different templates may overlap due to the absence of high-
level constraints (e.g., regularities and alignments).

Figure 5: Candidate template locations detected by the
HOG-based template matching algorithm. Different colors
indicate different templates. The template images are shown
on the right. Note, these templates may come from the
facades of other buildings.

One possible way to resolve this overlap problem is by
performing the detection in a greedy manner, e.g., only the
template that has the highest S(T,F) score is maintained at a
particular location. However, due to illumination variations,
occlusions, and the complexity of facade structures, the
highest score does not always suggest the best template. This
is typically true when the number of templates is large or
when occlusions and varying illumination conditions persist.

In our work, we exploit high-level structural properties
(i.e. repetitions and alignments) of facades to alleviate these
overlap ambiguities. Compared to [MZWG07] that makes
stronger assumptions on facade regularity (a single grid of
elements), we are also interested in handling interleaved
grids (e.g., Figures 4 and 6 in Supplemental Material 2
are two such examples). First they compute the location of
individual template elements using translational symmetries
and edge detection. Next, they find suitable templates for
given fixed rectangles in an image. By contrast, we jointly
optimize for template positions and template types by
formulating a discrete (binary) optimization problem that
incorporates three interacting terms: 1) a template matching
cost, 2) a facade regularity cost, and 3) a spatial coverage
cost. The optimal assembly that describes the facade is
one of the many potential groupings of individual template
detections. In the following, we first describe the generation
of these candidate groups, followed by our formulation of
the discrete optimization.

Figure 6: Detected template locations for a given template.

5.2. Candidate group generation

We first generate a restricted power set of potential
groupings of the initial template matching detections,
denoted by G = {g1, ...gn}. Thus, the optimal representation
of the facade is a subset of the potential groups that
satisfy some requirements formulated as the aforementioned
three energy terms. Here, we only consider potential
groups whose elements are spatially adjacent. For ex-
ample in Fig.6, the candidate groups are {A},...,{H},
{A,B},...,{F,G},{C,H},..., and {A,B,C,D,E,F,G,H}.

Let X denote the binary labels for all the candidate
groups. Consequently, the solution to the template assembly
problem is a subset of non-overlapping candidate groups that
minimizes the following three costs:

The template matching cost term ET (X) measures the
overall matching confidence for the entire facade. It is
defined as how far it is from a perfect match, where the score
of a perfect match using NCC of the HOG descriptor is 1.

ET (X) =
n

∑
i=1

[(1− si) · xi]. (6)

Here, si is the average matching score of all elements in
group gi, and xi denotes the binary labels of gi, where 1
indicates chosen and 0 indicates not chosen.

The regularity term ER(X) measures the overall regular-
ity of the assembly,

ER(X) =
n

∑
i=1

(ri · xi). (7)

Here, the regularity ri of a group gi is measured as how far
gi is from a perfectly regular pattern. It is defined as the
maximum variance of interval and alignment of gi.

ri =

{
max( varI(gi)

wi
,

varA(gi)
hi

), for a horizontal group

max( varI(gi)
hi

,
varA(gi)

wi
), for a vertical group,

(8)
where wi and hi are the average width and height of the
elements in gi. varI(gi) and varA(gi) are the interval variance
and alignment variance of gi.

The coverage term EC(X) encourages that more of the
facade image be covered by candidate groups.

EC(X) = 1− ∑
n
i=1 [area(gi) · xi]

area(I)
. (9)
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To prevent multiple overlapping groups from contributing to
this cost, later we will add an exclusion constraint that allows
one group maximum to be chosen at any given location in the
image.

5.3. Assembly optimization

The template assembly optimization problem can be for-
mulated as finding an optimal labeling for each candidate
group so as to minimize a weighted sum of the above
three terms. Before we describe how template assembly
is optimized, we make the following observation: since
generally a facade can be represented by a number of
subsets of individual template groups, we seek to find the
most compact among these representations (i.e., the smallest
number of template groups). Inspired by recent work in
sparse representation [CT06, WYG∗09], we encourage the
structure of the facade to be represented by a minimum
number of candidate groups. Therefore, we add a sparsity-
inducing regularization term ES(X) to the objective function.

ES(X) =
n

∑
i=1

xi. (10)

The overall objective function to be minimized is

E(X) = λT ET (X)+λRER(X)+λCEC(X)+ES(X). (11)

Thus, our optimization problem can be formulated as

min
X

E(X)

s.t. xi + x j ≤ 1 ∀gi
⋂

g j 6= ∅, 1≤ i, j ≤ n

xi ∈ {0,1}, 1≤ i≤ n,
(12)

where xi + x j ≤ 1 is an exclusion constraint, which ensures
that one group maximum among a set of overlapping groups
is chosen at a given location in the image. λT , λR, and λC
are weights that balance between the template matching,
regularity, and spatial coverage costs. In all our experiments,
we use the following weights: λT = 60, λR = 200, and λC
= 970. These weights are learned from a set of ground truth
assemblies using linear regression [HTF∗09].

Our formulation of the template assembly results in
a 0-1 (binary) linear programming problem. We solve
it using the conventional Gurobi solver [Gur], which is
quite efficient with a runtime of 3.01 seconds for an
assembly problem of 961 candidate groups and 93,944 non-
overlapping constraints. Fig. 7 (top) shows the assembly
result of the facade in Fig. 5. As a comparison, we also show
the assembly of the same templates for this facade using the
greedy approach discussed earlier in this section (bottom).

5.4. Detail enhancement

The previous template assembly optimization step results
in a compact representation of the facade texture images.

Figure 7: Template assembly results using our optimization-
based approach (top) as compared to results from the greedy
approach (bottom).

To enrich the detail of the 3D coarse model, we use the
optimal location of each detected template to backproject
its 3D template onto the 3D face in the coarse model. This
backprojection process makes use of the camera-to-model
transformations estimated by SfM in the aforementioned
preprocessing stage. The geometry of the 3D templates is
appropriately transformed onto the optimized 3D locations
in the corresponding facade face. The result is a 3D mesh
model of the building enriched with fine-grained geometric
details.

6. Results and Discussion

We have applied our template assembly algorithm on a
variety of architectural scenes.

Coarse model optimization results. First, we would
like to present and discuss the necessity of the coarse
model optimization step. Fig. 4 shows how our geometry-
appearance consistent optimization resolves inconsistencies
(i.e., intersections, gaps, and nonorthogonality). As a result,
the texture quality has been significantly improved. To
quantitatively evaluate the texture improvement, we use the
area of texture overlap with ground truth divided by their
union as a measure. Texture quality of the three facades
in the model (before/after optimization) are 94.2%/98.3%,
93.5%/99.1%, and 91.4%/97.7% respectively. This process
is crucial for the latter template assembly step. In Fig. 8, we
show the effect of the coarse model optimization step on the
2D template assembly and the final 3D reconstruction.

Template assembly results. After consistency between
geometry and appearance is enforced, we then perform
template assembly in the optimized texture images, followed
by detail enhancement for the coarse models. As can be
seen from Figures 1, 11, 12, 13, and 14, our optimization-
based template assembly algorithm is quite robust to varying
illumination and occlusions, resulting in promising detailed
3D reconstructions.
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Fig. 1 shows two buildings reconstructed with details
using our template assembly approach. We also show the
textured version of the reconstructed model in Fig. 10. The
realism has been significantly improved by adding more
details into the coarse model. In Fig. 11, the building is from
the same region as the previous example shown in Fig. 1.
Although these two buildings have different mass models,
they share the same detailed elements. Therefore, the details
for this building are correctly recovered even though the
templates are extracted from the one shown in Fig. 1.

Fig. 12 shows another set of buildings reconstructed using
our template assembly method. Although the facades in
Fig. 12 (a) are occluded by trees, our algorithm successfully
localizes most of the template instances. This is possible
because our assembly optimization computes a compromise
between matching scores of individual templates and pattern
regularity. A door in the middle of the first floor is missed
due to severe occlusions by trees. In Fig. 12(b), the facades
exhibit some irregularities (different adjacent windows),
nevertheless, our method still produces good assembly
results.

In Fig. 13 four buildings from another area feature
completely different structures and appearances. Thus with
our interactive template construction tool, we build another
set of templates to perform our automatic template assembly
algorithm.

Fig. 14 shows several street-side facades reconstructed
with details. Although the windows in the middle facade are
quite similar in style and appearance, our template assembly
algorithm succeeds in choosing appropriate templates and
detecting the locations for most of them.

Comparison. In addition to the 3D examples dis-
cussed above, we also tested our 2D template assembly
algorithm on a variety of facade images, and conducted
a comprehensive comparison of our optimization-based
assembly algorithm with two other approaches: 1) greedy
- a greedy method where we iteratively add the templates
with the highest matching score. This method is identical
to our framework, except that we replace the template
assembly step with a greedy search. 2) mutual information -
template matching using Mutual Information (as suggested
by [MZWG07]) followed by our assembly optimization step.
For the visual comparison please refer to the supplementary
material. In Fig. 9 we show a quantitative comparison
between the three methods. We manually marked 24 facades
with ground truth labels and computed an assembly score
as the area of overlap with ground truth divided by their
union. On average, our method achieves 93% overlap
compared with 85% for greedy and 51% for mutual
information. The comparison shows that the greedy method
is prone to produce false template instances and that Mutual
Information is not competitive in detecting the correct
template locations, while our optimization-based method
performs the best among the three.

Timings. Total reconstruction time for each of our scenes
is less than 5 minutes. As can be seen from Tab. 1, adding
details to the coarse models is much faster than the coarse
model construction step. In Fig. 11, since all templates were
built for the scene shown in Fig. 1, it takes less than 4
minutes (including the coarse model construction, coarse
model optimization, and template assembly) to obtain this
detailed 3D model. In Fig. 13 the reconstruction time for all
four detailed buildings is less than 5 minutes.

Table 1: Detailed summary of coarse model sizes (quantified
by the number of boxes), detailed model sizes (number of
faces), coarse model reconstruction runtime, and template
assembly runtime for the 3D examples presented in this
paper.

Figure Coarse
(# box)

Detail
(# face)

Coarse
model

Template
assembly

1 18 4,897 4 min 34 sec
11 18 4,479 3 min 28 sec
12 (a) 5 2,754 1 min 39 sec
12 (b) 7 2,661 2 min 32 sec
12 (c) 7 2,856 1 min 26 sec
12 (d) 11 5,330 2 min 47 sec
13 (a) 4 938 1 min 11 sec
13 (b) 4 942 1 min 14 sec
13 (c) 5 1,046 1 min 16 sec
13 (d) 5 1,046 1 min 15 sec
14 7 3,225 1 min 67 sec

Limitations. Our template assembly-based reconstruc-
tion strategy is suitable for reconstructing a set of buildings
that consists of the same or similar detailed structures (i.e.,
elements repeating among the target buildings or facades).
In some instances, this is an advantage of our template
assembly framework; however, when repetitions do not
exist, the templates must first be identified using manual
annotation.

With the assumption that facades are planar, the assembly
of detailed templates in 3D space is simplified to choosing
appropriate templates and detecting their locations in the
image domain. This restricts our framework’s applicability
to buildings consisting of planar facades.

Our template assembly is designed on top of the robust
HOG-based template matching algorithm. Although the
HOG feature is not invariant to projective distortions and
occlusions caused by protruding components, we observe
that it performs well in all our experiments. This is because
the template and the facade images have similar projective
distortions and occlusions (taken from similar view points);
this is typically true for low-rise buildings. It may fail in
extreme situations, such as a template of a balcony from the
first floor getting matched to balconies on higher floors.

We currently do not have a regularization term to

c© 2015 The Author(s)
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complete missing parts of the facade. For example, the door
in Fig. 12 (a) (left facade) is almost completely occluded
by trees. In future work, we would like to extend our
template assembly framework so that plausible templates are
suggested for occluded regions. One useful ingredient might
be the explicit detection of vegetation in the images.

7. Conclusions and Future Work

We present an efficient urban reconstruction framework
based on an effective template assembly algorithm. Our
algorithm relies on image information and reusable detailed
3D templates to enrich the 3D models. We use image
information in two key steps of the reconstruction pipeline.
First, we use it to improve the geometry-appearance
consistency of the coarse mass models. Second, we use it to
detect templates on the facades of the coarse mass models.
We incorporate prior knowledge about facades into our
optimization process for both steps, resulting in an effective
urban reconstruction framework.

In future work we plan to extract templates from laser
scans and match them to images. We would also like to
investigate the detection of occlusions in facade images.
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Figure 8: A comparison of template assembly results without (top) and with (bottom) the geometry-appearance optimization of
the coarse model. From left to right: the template assembly result, the final 3D reconstruction, the transformed 3D templates
overlayed on the textured coarse model, and a close-up view. Clearly, the geometry-appearance optimization step leads to more
consistent geometry, better localized template detections, and a more accurate detailed model.

Figure 9: A quantitative comparison of our optimization-based template assembly with two competing methods: greedy and
mutual information [MZWG07]. We applied these methods to all 24 facades in our data set. The assembly score is measured
as the ratio of the overlap area between the automatically detected templates and the manually marked ground truth to their
union. A ratio closest to 1 indicates the best results.

Figure 10: Textured detailed models of the two buildings in Fig. 1. The inset shows the real photograph for a visual comparison.
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Figure 11: Two different buildings with the same style as those in Fig. 1 are reconstructed with details using the same set of 3D
templates.

Figure 12: A set of buildings reconstructed with details by our template assembly method using the same set of 3D templates.
Due to severe occlusions, the doors marked by red arrows are not detected in the template matching step, thus, no 3D
reconstruction exists for them.
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Figure 13: Detailed reconstruction of another set of buildings with a different architectural style.

Figure 14: Detailed reconstruction of seven street-side facades.
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