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Unbiased Sampling and Meshing of
Isosurfaces

Dong-Ming Yan, Johannes Wallner, Peter Wonka

Abstract—In this paper, we present a new technique to generate unbiased samples on isosurfaces. An isosurface, F (x, y, z) =

c, of a function, F , is implicitly defined by trilinear interpolation of background grid points. The key idea of our approach is that of
treating the isosurface within a grid cell as a graph (height) function in one of the three coordinate axis directions, restricted to
where the slope is not too high, and integrating / sampling from each of these three. We use this unbiased sampling algorithm
for applications in Monte Carlo integration, Poisson-disk sampling, and isosurface meshing.

F

1 INTRODUCTION

Isosurfaces play an important role in many fields,
such as medical data processing, scientific visualiza-
tion, volume rendering, and geometry processing. A
three-dimensional (3D) isosurface is implicitly defined
as F (x, y, z) = c, where c is a constant, called an
isovalue.

In this paper, we consider isosurfaces given as a
3D discrete volumetric dataset, Inx×ny×nz

, where each
sample, Ii,j,k, is associated with a scalar function
value and the function, F , is trilinearly interpolated
between samples. This procedure evaluates the value
F (x, y, z) by interpolating function values at the eight
corners of an axis-aligned box in which the point
(x, y, z) is contained.

Since it is difficult to process isosurfaces directly,
they are often sampled and converted to triangle
meshes before further processing. A major break-
through in this area was the marching cubes (MC) algo-
rithm [1], a simple and elegant method for isosurface
extraction. During the last decades, the MC algorithm
has been studied extensively and many variations
have been proposed to improve the efficiency and the
quality of the extracted surfaces, e.g., feature preser-
vation [2], [3], [4], adaptive meshing [5], [6], improved
triangulation [7], improved topological consitency [8],
etc.

While sampling and meshing are often combined
in a single framework, it is interesting to analyze
the sampling problem separately. For example, the
marching cubes algorithm places samples only on
the edges of the sample grid (see Fig. 1), which
leads to an undesirable distribution of sample points.
For higher-quality sampling, there are generally two
strategies: a) optimization based sampling such as
centroidal Voronoi tesselation [9], and b) randomized
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Fig. 1: Sampling pattern of the MC algorithm [1].

sampling, e.g., maximal Poisson-disk sampling [10].
Both approaches are valuable and have different ad-
vantages and disadvantages. The goal of this paper
is to contribute to the development of algorithms
employing the second of these strategies, i.e., random-
ized sampling. In this context, one important question
to tackle is how to generate a random, unbiased
sample on an isosurface. This question does not have
a straightforward answer. In this paper, we make the
following contributions:
• We propose a new algorithm that randomly

chooses samples on an isosurface generated by
trilinear interpolation, where “randomly” refers
either to a uniform distribution, or to a distribu-
tion specified by some density function.

• We build a complete framework around the un-
biased sampling algorithm to obtain maximal
Poisson-disk sampling and meshing of isosur-
faces.

2 RELATED WORK
This section reviews the literature on isosurface ex-
traction and Poisson-disk sampling. For more details,
we refer the reader to recent comprehensive sur-
veys [11], [10].
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Isosurface extraction. In their seminal paper, Loren-
sen and Cline introduced an elegant and robust al-
gorithm for isosurface extraction [1], called Marching
Cubes (MC). After that, a huge amount of work
investigated polygonalization of implicit surfaces. For
example, to resolve the topological ambiguities of the
original MC algorithm, Nielson and Hamann pro-
posed the “asymptotic decider” [8]. The accuracy of
the MC algorithm was further improved by applying
trilinear interpolation [12], [13].

One line of research aims at preserving features
of the input data. Kobbelt et al. [2] presented an
algorithm to preserve sharp features while extracting
surfaces. Ju et al. [3], [4] used the dual grid instead
of the primal MC grid for contouring the volumetric
data. Schaefer et al. [14] extended dual contouring to
generate manifold mesh surfaces.

Another direction of research is to improve the
triangle quality of the extracted mesh. Schreiner et
al. [5] proposed an active front-based approach to
extract isosurfaces from volumetric data. The extract-
ed meshes are near-regular, but artifacts can be ob-
served in the regions where multiple fronts meet.
Meyer et al. [6] used particle systems to generate
well-distributed points on isosurfaces and to compute
their Delaunay triangulation. This led to a significant
improvement in the quality of the triangles, with the
drawback that the density function estimation used
in their work is time consuming. Dietrich et al. [15]
introduced an algorithm to analyze the quality of the
output of MC. Further, Dietrich et al. [7] proposed to
use edge transformations to improve the mesh quality.
This approach only slightly changes the original MC
algorithm.
Surface sampling. Liu et al. [16] propose a quasi-
Monte Carlo approach using integral geometry for
computing the area of point-sampled surfaces. Count-
ing the number of intersection points of random lines
with the surface, the surface area is estimated by the
Cauchy-Crofton formula. Detwiler et al. [17] propose
a generic surface sampler for Monte Carlo simulations
based on line-surface intersection. However, the line-
surface intersection is somehow time consuming.
Poisson-disk sampling. High-quality sampling is
a fundamental research problem in both computer
graphics and geometry processing. One of the most
popular sampling techniques is Poisson-disk sam-
pling, because it exhibits nice properties in both the
geometry domain and the frequency domain. Since
Cook [18] introduced the classic Poisson-disk sam-
pling algorithm, called “dart throwing”, a lot of work
has been conducted to generalize and accelerate this
algorithm. Poisson-disk sampling has also been gen-
eralized to surfaces [19], [20], [21], [22]. More recently,
many techniques have been proposed for maximal
Poisson-disk sampling (MPS), which plays an important
role in the quality of the triangulation of a Poisson-
disk set [23]. The key to computing MPS is to locate

the uncovered regions in an already existing sam-
pling set, e.g., using boundary tracing [24], Voronoi
diagrams [25], spatial subdivisions using axis-aligned
boxes [26], [27], [28], [29], and regular triangulation-
s [30], [31]. The most recent work of Yan and Won-
ka [30], [31] generalizes MPS to surfaces and presents
a remeshing framework that can guarantee a lower
bound of the minimal angle. This property is crucial
to many applications, such as finite element simu-
lation [32]. However, to the best of our knowledge,
there is no published work that deals with Poisson-
disk sampling of isosurfaces directly. In this paper, we
show how to adapt a spatial subdivision technique for
MPS on isosurfaces.

3 OVERVIEW

In the following sections, we first address the problem
of generating unbiased uniform or adaptive samples
on isosurfaces (Section 4), based on a careful analysis
of the trilinear interpolation of a 3D scalar-valued
implicit function. Then, we show several applications
that can benefit from the presented sampling tech-
nique, including Monte Carlo sampling, Poisson-disk
sampling, and meshing of isosurfaces (Section 5).

4 SAMPLING ON ISOSURFACES

This section describes how to choose a random point
on an isosurface, F (x, y, z) = c, of a function F that is
defined by trilinear interpolation. Here, the meaning
of random is either that of uniform distribution with
respect to the surface’s area measure, or, alternatively
distribution with respect to to a certain density func-
tion (if that density is a constant, then we again obtain
uniform distribution with respect to surface area).
Our algorithm is based on the availability of random
numbers uniformly distributed in an interval, and
the fact that the trilinear interpolation can be locally
represented by a graph with respect to a reference
plane. It consists of the following steps:

1) Set up a way of randomly choosing a point on
surfaces that are the graphs of functions, z =
f(x, y). Here “random” refers either to uniform
distribution, or to distribution with respect to
some density function. It is well known that this
task can be solved by rejection sampling in the
parameter domain [33].

2) Locally represent the isosurface as a graph sur-
face (over the xy plane, or the yz plane, or the
xz plane), taking care that the inclination of the
isosurface with respect to the reference plane
does not exceed a certain threshold.

3) A random point on the isosurface is now chosen
by first randomly choosing one of the local
graph representations of step 2) and then apply-
ing step 1) to it.



JOURNAL 3

z = f(x, y)

z ≤
√

1 + f2
x + f2

y

αmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmaxαmax�
��

1/ cosαmax

Fig. 2: The uniform distribution of points (x, y, z) (blue) on
a graph surface, z = f(x, y), corresponds to the distribu-
tion of points (x, y) with respect to the density function,
δ(x, y) =

√
1 + f2

x + f2
y . We simulate the latter via uniform

distribution of auxiliary points (red) in the spatial domain
z < δ(x, y), and forgetting the z coordinate.

4.1 Rejection sampling
The first task is solved by the following well-known
observation: choosing a point (x, y) in a domain D
randomly according to the density δ(x, y) is equiva-
lent to choosing a point (x, y, z) in the spatial domain

D̃ = {(x, y, z) | (x, y) ∈ D, 0 ≤ z ≤ δ(x, y)}

randomly according to the uniform distribution, and
subsequently forgetting the z coordinate. This taking
of marginals is implemented by finding a bounding
box, BB = [a1, b1] × [a2, b2], for D, and an upper
bound, δmax, for the density. We now choose random
numbers x ∈ [a1, b1], y ∈ [a2, b2] and z ∈ [0, δmax],
and repeat this process until (x, y, z) happens to be
contained in D̃. Obviously, the numerical performance
of this method depends on the tightness of both the
bounding box and the density bound.

The success rate of one pass is the volume of the set
of acceptable picks (x, y, z), divided by the volume of
the box we pick (x, y, z) from:

r =
vol(D̃)

area(BB)δmax
=

1

area(BB)

∫
δ

δmax
.

The average number of iterations until a random pick
(x, y, z) is successful then equals 1/r.

Normalization of density functions. The outcome of
rejection sampling remains the same if δ is multiplied
with an arbitrary factor (and δmax is adjusted accord-
ingly). A natural way of normalizing δ is to make
it a probability density whose integral is 1. Another
normalization is to make

∫
δ equal r, by multiplying

both δ and δmax by r /
∫
δ. The latter normalization

also leads to a probability density, namely the one
modeling one pass of rejection sampling where with
probability 1− r no point is generated.

4.2 Sampling of graph surfaces
The surface area element of the graph surface, Ψ,
with equation z = f(x, y) and the corresponding area

z ≤ δ3(x, y)

δ3 = φ3δ
area
f3

φ
3

=
0

φ3 = 1

x
≤
δ 1

(y
,z

)

δ1 = φ1δ
area
f1

φ
1

=
1

φ1
=

1−
φ3

Fig. 3: Left: Weighted sampling of a surface, Ψ : z = f3(x, y),
such that the density, φ3, vanishes in the steep part of Ψ.
Right: Ψ is also represented as x = f1(y, z). We perform
sampling of Ψ using the density function φ1(x, y, z) =
1 − φ3(x, y, z). Superposition of the two samplings yields
a uniform distribution.

element “dxdy” in the xy plane are related by the
cosine of the slope angle α(x, y) between the surface
and the plane:

dA = δarea
f (x, y) dxdy, where (1)

δarea
f =

1

cosα
=
√

1 + f2
x + f2

y (2)

(fx and fy are the partial derivatives of f ). The
equality in (2) is verified by an elementary computa-
tion. Summing up, the uniform distribution of points
(x, y, f(x, y)) in Ψ directly corresponds to the distribu-
tion of points (x, y) according to the density, δarea

f . It
is therefore not difficult to uniformly sample Ψ: we
simply choose (x, y) ∈ D according to the density
defined in (1). Figure 2 illustrates this procedure.

If we wish to sample the surface not in a uniform
manner but according to a density, φ(x, y, z), we can
use the same procedure, but with the density function

δ(x, y) = φ(x, y, f(x, y)) · δarea
f (x, y) (3)

instead. Rejection sampling has the success rate

r =

∫
D
φ δarea

f

area(BB)δmax
=

∫
Ψ
φ

area(BB)δmax
. (4)

Unfortunately even very simple surfaces can lead
to unbounded densities, making rejection sampling
unusable in practice. There are, however, special sur-
faces that are graph surfaces with respect to all three
coordinate axes, and for which we can escape this
predicament – by locally choosing that coordinate
plane as a base plane with respect to which the surface
enjoys the gentlest slope.

We give a general algorithm for random sampling
on such a special surface, which is based on three
auxiliary densities, φ1, φ2, φ3, summing up to 1. The
procedure is illustrated in Figure 3 in a schematic way
(with φ2 = 0). This algorithm uses the function γ
defined by

γ(x) =

{
0 if x < n∗

1 if x ≥ n∗ n∗ =
1√
3



JOURNAL 4

(actually all we need is that γ(x) > 0 if x ≥ 1/
√

3 and
γ(x) = 0 for some value x < n∗, where n∗ ≤ 1/

√
3).

Algorithm 1. (Uniform random sampling on a surface, Ψ)

(i) Determine graph representations z = f3(x, y), x =
f1(y, z), y = f2(x, z) of the surface, Ψ, and the
respective domains, Di, bounding boxes BBi and
densities δarea

fi
.

(ii) Evaluate the density function φi (i = 1, 2, 3) in a
point of the surface Ψ that uses the unit normal
vector (n1, n2, n3) in that point: we let

φi =
γ(|ni|)

γ(|n1|) + γ(|n2|) + γ(|n3|)
.

(iii) Find an upper bound, δi,max, of the function δi =
δarea
fi
· φi. One may always use δi,max = 1/n∗.

(iv) Choose an index i ∈ {1, 2, 3} randomly, such that
the probability of choosing index j equals

wj
w1 + w2 + w3

, where wj = area(BBj) δj,max. (5)

(v) Perform one round of rejection sampling in Di with
density φiδarea

fi
in order to obtain a point on the graph

of the function fi (which is Ψ). Iterate from (iv) until
success.

Well-definedness of Algorithm 1. In the notation
employed by Algorithm 1, n2

1 + n2
2 + n2

3 = 1 implies
that at least one coordinate, ni, exceeds 1/

√
3, so φi

has a nonzero denominator and is well defined. In
any point of the surface we have either |ni| < n∗ (so
φi = 0 there), or |ni| ≥ n∗, so the slope angle with
respect to the base plane does not exceed arccos(n∗)
and the value of δarea

fi
does not exceed 1/n∗. Since

φ ≤ 1, we have δi ≤ 1/n∗ as stated.

Correctness of Algorithm 1. Rejection sampling with
base domain Di generates points distributed with
density φi. From Equations (5) and (4), we derive the
success rate, ri =

∫
Ψ
φi/wi, so the point generated by

one pass of rejection sampling is distributed according
to the probability density, φiri /

∫
φi = φi/wi. Since

Di is chosen with probability wi

w1+w2+w3
, the total

probability density in Ψ of the point generated by one
pass of the algorithm is

3∑
i=1

wi∑
wj

φi
wi

=
φ1 + φ2 + φ3∑

wj
=

1∑
wj
. (6)

It is a constant function, implying correctness. The
success rate of one pass is found by integration:

r =

∫
Ψ

1∑
wj

=
area(Ψ)∑

j area(BBj)δj,max
=

n∗ area(Ψ)∑
j area(BBj)

.

Non-uniform sampling in surfaces. Note that sam-
pling guided by some density function, φ, can be
achieved by simply replacing φ1, φ2, φ3 by the prod-
ucts φφ1, φφ2, φφ3, respectively. We assume, without

loss of generality, that φ has values in [0, 1], so there
is no need to adjust the density bounds, δi,max, in the
algorithm (unless, of course, it is possible to increase
the efficiency of the algorithm if a tighter bound can
be found). The success rate of one pass of sampling
according to density φ is given by

r =

∫
Ψ

φ∑
wj

=

∫
Ψ
φ∑

j area(BBj)δj,max
=

n∗
∫

Ψ
φ∑

j area(BBj)
.

4.3 Sampling of isosurfaces
We cannot apply §4.2 to arbitrary
isosurfaces. However, any trilinear
interpolant, F (x, y, z), defined by
function values on a grid has the
property that, within a grid cell,
its isosurfaces are graphs over each
of the three coordinate planes. This
statement is perhaps unexpected,
since such isosurfaces may exhibit
features like tunnels (see inset) or
pinch points, but is proven directly
from construction of the trilinear
interpolant: Within a grid cell, F is a linear function
in each variable separately, e.g., F (x, y, z) = α(x, y) +
z · β(x, y). Consequently, the level set {F = c} is
the graph of the function z = f3(x, y) = c−α(x,y)

β(x,y) .
Similarly, we get functions f1(y, z) and f2(x, z). There
are, however, the following limitations:
• If the eight values of F in the vertices of a grid

cell equal the same constant, c, then the entire
grid cell is part of the level set, {F = c}. We must
exclude such parts of level sets, since they are not
surfaces, and the concept of uniform distribution
with respect to the area measure breaks down.

• The denominator of fi might be zero, e.g., if the
level set contains a line parallel to the i-th coor-
dinate axis. This phenomenon does not disturb
Algorithm 1: The probability of randomly hitting
a singularity of the level set is zero, whereas Al-
gorithm 1 deals with regular areas of the surface
by means of those graph representations whose
slope does not exceed a certain threshold.

The above-mentioned graph properties of trilinear
interpolants lead to the following procedure for sam-
pling isosurfaces of trilinear interpolants according to
a given density function φ(x, y, z):

Algorithm 2. Sampling of a trilinear interpolant isosur-
face, Ψ, according to a density function, φ, defined on Ψ.

(i) For each grid cell C intersecting Ψ, prepare the data
needed for Algorithm 1: graph representations, fi,C ,
of the surface, Ψ ∩ C, bounding boxes, BBi,C , and
product densities, δarea

fi,C
φφi,C .

(ii) Randomly choose a pair (i, C), i ∈ {1, 2, 3}, such
that the probability of picking that pair is propor-
tional to area(BBi,C).
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(iii) Perform one pass of rejection sampling within cell C,
representing the isosurface as graph of the respective
function, fi,C . Iterate from (ii) until success.

Correctness of Algorithm 2. The correctness proof
is a direct continuation of the respective proof for
Algorithm 1: Equation (6) still applies, only

∑
wj is

replaced by
∑

i,j wC,j . Correctness follows from the
fact that the point generated by one pass enjoys a
constant density independent of the choice of the cell.

Success rates of Algorithm 2. In order to compute the
success rate of one pass, we assume that 1/n∗ is the
density upper bound (in the notation of Algorithm 1).
Averaging individual success rates yields

r =
∑
C

( ∑
i area(BBi,C)∑

i,C area(BBi,C)

) n∗ ∫
Ψ∩C

φ∑
i area(BBi,C)

=
n∗

∑
i,C area(BBi,C)

∑
C

∫
Ψ∩C

φ =
n∗

∑
i,C area(BBi,C)

∫
Ψ

φ.

If one does not want to implement optimal bounding
boxes for the individual graph representations, then
of course the entire face of a grid cell may be used as
a bounding box. If in addition grid cells are cubes,
step (ii) of Algorithm 2 is considerably simplified:
We may choose a cell C and an integer i ∈ {1, 2, 3}
independently, according to uniform distribution.

5 APPLICATIONS

In this section, we present three applications of the
proposed isosurface sampling technique: Monte Carlo
integration, Poisson-disk sampling, and meshing of
isosurfaces. All the experimental results were con-
ducted on an Intel X5680 with a 3.33GHz CPU, 4GB
memory and a 64-bit Windows 7 operating system.

5.1 Monte Carlo integration
The first application we would like to show is that
the sampling algorithm presented in Section 4.3 is
useful for Monte-Carlo integration (e.g., for global
illumination). In the following examples, the proba-
bility density that guides the sampling is constant;
the sampling is also uniform. These tests are the most
straightforward application of our algorithm, because
we generate independent, uniformly distributed (i.e.,
un-biased) samples on the isosurface. Figure 4 shows
the result of sampling 200,000 points on a piece of
isosurface inside a unit cube. However, we do not
attempt to uniformly sample the boundary of the
isosurface. Figure 5 illustrates sampling on a sphere,
which is implicitly defined as F (x, y, z) = x2+y2+z2−
1. In this example, we use a sampling grid with size
0.01 to sample the function into a regular grid. For
each grid cell, we try to generate a sample 100 times
(several of the tries will be rejected). The color coding
indicates the number of neighboring points of each

Fig. 4: Uniform sampling inside a unit cube. The isovalues
at the vertices are {-3, 3, 1, -1, 2, -1, 12, 1}. Left: d=0.005;
middle: d=0.02; right: d=0.05. The color-coding indicates the
number of neighboring samples inside a sphere centered at
each sample point, where green indicates a smaller value
and red indicates a larger value. The histograms show the
distribution of neighborhood sizes where neighborhood size
is defined by the number of points inside it. The flat regions
in the histogram stem from the points on the boundaries.

sample within a fixed distance. The histograms in the
figures show that our sampling results are uniformly
distributed. We can also determine the efficiency of
our method by computing the acceptance rate of the
samples. We can classify two reasons for rejecting a
sample. First, a sample can be generated on a part
of a graph that is outside of the grid cell (56.6%).
Second, the sample can be rejected based on rejection
sampling (19.9%). Finally, 23.5% of the samples are
accepted leading to an efficient algorithm. The speed
of uniform sampling is about 1M accepted points/sec.

Fig. 5: Uniform sampling on a sphere. From left to right:
The neighborhood sizes of the analysis are 0.005, 0.02, and
0.05. See the caption of Fig. 4 for an explanation.

Fig. 6: Adaptive sampling of isosurfaces. The color-coding
indicates the curvatures.
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Our sampling algorithm also works well for the
non-uniform case. In our tests, we estimate the maxi-
mal curvature at the sample point as the density func-
tion. Figure 6 shows the results of adaptive sampling.

5.2 Poisson-disk sampling
Our sampling algorithm can also be used for Poisson-
disk sampling. The goal of Poisson-disk sampling is
the un-biased distribution of a set of points on the
surface, such that each pair of points has a distance
greater than a predefined value. This value can be
constant for the complete point set (in which case it
is called the sampling radius) or it can be location
dependent (thereby controlling the local density of
the sampling). We use Euclidean distances in our
framework for simplicity and efficiency.

The input of our system is a 3D volumetric dataset,
I , together with an isovalue, c, i.e., an isosurface. The
resolution of the input 3D image is nx×ny×nz voxels,
and the width, height, and depth of I are denoted by
lx, ly , and lz , respectively. We assume that the longest
edge of the input 3D image is normalized to have
length one. The user input consists of a sampling ra-
dius, r, the cutoff sampling radius, λ r for the maximal
radius (typically we use λ = 8 for adaptive sampling),
and a density function that indicates the sampling
radius at a given sample point for adaptive sampling.
The cutoff sampling radius is the largest allowable
radius. If the density function requests a larger radius,
then the cutoff radius will be used instead.

We propose a framework for maximal Poisson-
disk sampling on isosurfaces, which consists of the
three steps initialization, initial sampling, and gap filling,
see Figure 7(b-e). In the following, we first explain
the details of the framework for uniform sampling.
Then we extend the framework to adaptive maximal
Poisson-disk sampling.

5.2.1 Uniform MPS
Initialization. We first build a uniform grid, G, for
accelerating the Poisson-disk sampling [26]. The grid
size is set to r√

3
, such that each grid cell can contain

at most one sample point. We only need to store the
grid cells that intersect the isosurface, “F (x, y, z) = c”.
Those cells are called boundary cells. Each grid cell
stores a flag to indicate whether or not the cell is
occupied. This flag is initialized as false. Further, each
boundary cell stores the values of F at the eight
corners of the cell. The values inside the cell are com-
puted by trilinear interpolation of the input 3D image,
I , at the grid positions. Note that for a boundary
cell, the eight function values at vertices cannot have
the same sign. The grid, G, is also used for conflict
checking during the Poisson-disk sampling.
Initial sampling. Once the boundary cells of the
grid are extracted, we store them in a flat array
and we preform rejection sampling as described in

Section 4.1 on the pieces of the isosurface contained
in the boundary cells. Each time a boundary cell is
randomly chosen, a sample point inside the boundary
is randomly generated using the method presented in
Section 4.3. If the newly generated sample is inside
the boundary cell, we perform the conflict check with
its 5 × 5 × 5 neighboring boundary cells. If the new
dart does not contain any other existing sampling and
vice versa, the dart is accepted and the occupied flag
of the containing boundary cell is marked as true.
This initial sampling is repeatedly performed until
a consecutive number of rejections is observed (e.g.,
300 in our implementation). Note that there are other
choices of the conflict checking that can affect the
angles of the meshing [34].
Gap filling. The initial sampling results in a non-
maximal sampling of the isosurface. As shown in [35],
[31], the maximal sampling has many nice properties
such as angle bounds of the extracted triangle mesh.
Hence, we perform another gap-filling step to achieve
maximality. We adapt the technique proposed by
Ebeida et al. [29] for this purpose. We first update
the flat array by subdividing the boundary cells that
are not fully covered. We call a subdivided cell a
fragment. If a fragment is still not fully covered, we
keep it in the flat array; otherwise, the fragment is
discarded. Then, we perform dart throwing against
the flat array of the fragments. The fragment updating
step and the dart throwing step are repeated until
there are no more uncovered fragments. While this
process is limited by machine precision, we observed
convergence in 12-15 iterations in our examples (see
Figure 8).

5.2.2 Adaptive MPS
The framework for adaptive MPS is quite similar to
that for uniform MPS. The only difference is that in
the initial sampling stage, each time when a new
sample, x, is generated, we first evaluate the sampling
radius, r(x), based on the input density function. The
radius is bounded between [r, λ r] in our experiments.
Then, we perform the conflict check using the subgrid
that is covered by the sphere, (x, r(x)), of the new
sample point. If the new sample is covered by other
spheres centered at existing samples or it covers other
existing samples, the new sample is rejected; other-
wise, it is accepted. Note that the resolution of the
subgrid used for conflict checking is much larger than
that used for uniform sampling, which slows down
the performance of the adaptive sampling. The read-
ers are referred to [31] for more details on adaptive
MPS.

5.2.3 Performance analysis
We analyze the efficiency of our approach. Given the
normalized input data set (as well as the isovalue)
and a sampling radius, r, we measure the speed of
generating valid points on the isosurfaces, and the
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(a) (b) (c) (d) (e) (f )

Fig. 7: Main steps of the isosurface sampling/meshing framework. (a) A uniform grid is built from the input 3D image.
The cells are classified as inside (cyan), outside (red) and boundary (yellow); (b) initial uncovered fragments (boundary
cells); (c) fragments after one iteration of dart throwing and subdivision; (d) fragments after two steps of repetition; (e)
final maximal sampling result; (f) meshing result from the sample points.

speed of the accepted points by Poisson-disk sam-
pling. Table 1 lists those statistics. We can see that
about 66.7% of the randomly generated points are
outside the box, and the acceptance ratio decreases
when the sampling radius decreases. We can observe
that Poisson-disk sampling has a significantly lower
acceptance ratio than the uniform sampling procedure
discussed in Section 5.1. This is partly due to the fact
that the efficiency of Poisson-disk sampling decreases
over time, as it is difficult to find small gaps. However,
the sampling efficiency is similar to other state-of-the-
art Poisson-disk sampling algorithms.

Model r #V oob% rej1% acc% rej2% speed

Skull

0.010 15.9k 66.68 14.35 1.65 16.38 5.7k/s
0.008 24.4k 66.66 14.60 1.11 16.04 4.4k/s
0.006 43.3k 66.62 14.48 0.64 16.12 3.3k/s
0.005 63.0k 66.60 14.46 0.42 16.29 2.8k/s

Botijo

0.010 6.0k 66.66 14.36 4.05 16.54 7.9k/s
0.008 9.4k 66.70 14.28 2.69 16.49 6.5k/s
0.006 16.4k 66.58 14.48 1.68 16.17 4.7k/s
0.005 23.4k 66.70 14.37 1.26 16.00 4.0k/s

TABLE 1: Performance analysis of Poisson-disk sampling. r
is the sampling radius. #V is the total number of generated
samples. oob is the out-of-box ratio when attempting to
generate a random point inside a box; rej1 is the rejection
ratio of generating a random point inside a box; acc means
the final accepted point by Poisson-disk sampling over the
total generated darts, and rej2 means a rejection of the
Poisson-disk sampling over the total generated points. The
speed is measured in points per second.

Fig. 8: Convergence of the gap-filling step. Left: Skull
(r=0.008); right: Botijo (r=0.006).

Convergence of the gap-filling procedure. The ex-
amples of Figure 8 illustrate that the gap-filling step
converges in practice.
Blue-noise properties. Since the standard Fourier

analysis cannot be directly applied to point sets on
surfaces, Wei and Wang [36] introduced the Differ-
ential Domain Analysis (DDA) technique. We use this
technique to measure the blue-noise properties of our
results. One example is shown in Fig. 9. The spectrum
properties are very similar to that of the original
paper [36], which means that our sampling results
exhibit the typical blue-noise properties.
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Fig. 9: Spectrum analysis of the uniform (top row) and the
adaptive (bottom row) sampling of the Botijo model. Left:
samples; middle: power spectrum, and right: radial average
(top) and anisotropy (bottom) of the power spectrum.

5.3 Mesh generation
As discussed in [31], the sampled Poisson-disk set is
already a very good candidate for mesh generation.
There are multiple ways to extract a 3D mesh from a
point set. We use the algorithm proposed in [37], [31]
to compute a restricted Delauney triangulation. The
generated meshes satisfy the Delaunay property and
have high quality; see the discussion below.

We have tested our algorithm on various data sets,
including 3D CT images (Figure 10) and computation-
ally generated volumetric data sets (Figure 11). The
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input data sets are scaled into a bounding box with
the longest edge length equal to one. We use a fixed
sampling radius, r = 0.008, for all the results listed in
Table 2.
Quality of results. We measure the quality of the
resulting meshes in terms of triangle quality, approx-
imation error, and vertex valences. We measure trian-
gle quality by the following values: Q1(t) is defined
as 6√

3

|t|
p(t)h(t) , where |t| is the area of the triangle t,

p(t) is the half-perimeter of t, and h(t) is the longest
edge length of t [38]. The value Q2(t) is defined as
ratio of the radii of incircle and circumcircle. Finally,
θmin/θmax is the ratio of the minimal and maximal
angles in a triangle.

The approximation quality is measured by the
Hausdorff distance and the Root Mean Square (RMS)
distance between each generated mesh and the cor-
responding reference mesh. The reference meshes are
extracted from the input data by the classic marching
cubes algorithm [1] with a finer resolution. We adapt-
ed the code of [39] as the MC reference algorithm.
Comparison with other methods. We compare our
approach with marching cubes [1] and an active front
(AF) algorithm [5]. The results of our comparison are
shown in the middle columns of Figures 10 and 11.

In the case of uniform sampling/meshing, the an-
gles of the extracted mesh are bounded between
[30◦, 120◦], and the edge lengths are between [r, 2 r]
(with r as the sampling radius). In adaptive sam-
pling/meshing, our algorithm can always generate
meshes with θmin around 24◦, which outperforms the
result of AF. The AF method generates meshes that
are more regular than the meshes generated by other
methods, but artifacts can be observed in the regions
where multiple fronts meet. Moreover, our algorithm
can generate meshes with much better values for Q1,
Q2. Marching cubes always exhibits better Hausdorff
and RMS distances to the reference mesh, which is
explained by the fact that many vertices of the new
mesh are actually vertices of the reference mesh. Both
the AF method and our method have better distribu-
tions of vertex valences (which can even further be
improved by randomized optimization as proposed
in [31]. We did not do that in this paper because it is
too slow for some realtime applications).
Timings. The tables below also provide detailed tim-
ings for all three methods used for meshing. Note
that these timings do not include the time spent for
loading the input volumetric data. The MC algorithm
is still the most efficient one, but it yields the worst
results. In summary, our numerical experiments show
that our algorithm is capable of generating high-
quality meshes, while sacrificing a little bit of efficien-
cy.

6 CONCLUSIONS
We have presented an algorithm for unbiased sam-
pling on isosurfaces, as well as a framework for

maximal Poisson-disk sampling and meshing of iso-
surfaces. We demonstrated that our results have better
meshing quality than previous approaches. This is
important for applications like rendering, physical
simulation, etc.

We rely on existing methods
for mesh-extraction (triangula-
tion) after sampling and we
therefore inherit all limitations
of the chosen mesh-extraction
algorithm. For example, we
cannot extract a valid mesh
from the Elk data set (right figure) due to the large
sampling radius and the presence of the thin features.
In this case, the mesh can have non-manifold edges
(green edges shown in the figure). Another issue is
that the efficiency of the adaptive sampling is slower
since the subgrid resolution for conflict checking is
much larger than uniform sampling. In the future,
we would like to address these issues by using an
adaptive grid. We are also interested in finding more
applications of the presented technique such as topol-
ogy verification for isosurface extraction [40].
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Fig. 10: Results of isosurface sampling/meshing on CT-images. Left: MC; middle left: uniform MPS; middle right: AF;
right: AMPS. Here, MC refers to the marching cubes algorithm [1], MPS refers to our algorithm with uniform sampling,
AF refers to the advancing front approach [5], and AMPS refers to our algorithm with adaptive sampling.
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Fig. 11: Results of isosurface sampling/meshing on synthetic data. Left: MC; middle left: uniform MPS; middle right: AF;
right: adaptive MPS. Here, MC refers to the marching cubes algorithm [1], MPS refers to our algorithm with uniform
sampling, AF refers to the advancing front approach [5], and AMPS refers to our algorithm with adaptive sampling.




