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1. INTRODUCTION

The continuously increasing amount, scale, and complexity of vir-
tual worlds, accompanied with the growing users’ expectations
on realism and level of detail, pose high challenges on content
creation. To cope with them, procedural modeling methods have
proven very useful, especially if larger amounts of similar but var-
ied, detailed objects have to be created. While such approaches
have been developed for a wide range of objects, like plants, cities,
buildings, and rooms, they focus primarily on geometry. The im-
portant aspect of lighting, however, has been largely ignored, al-
though it influences the final visual result substantially.

Often, light sources are part of the scene, and placing them such
that a reasonable lighting result is obtained can be difficult and te-
dious. This design task involves deciding what illumination should
be achieved as well as finding the right number, type, and loca-
tion of light sources and adjusting their parameters. Determining
such an appropriate light source setup is generally far from straight-
forward, not least because the cumulative effect of all sources as
well as occlusion and geometric constraints need to be considered
(see Figure 2). Hence, even well-trained specialists usually require
many iterations to achieve the desired illumination for one concrete
variation of an object. The challenges are exacerbated in a proce-
dural context, as the modeler would have to reason about spatial
relationships (including occlusion) and how multiple lights play
together in a way that holds for all possible variations. Even ig-
noring the fundamental problem of how to express such deductions
in a procedural description, directly adding lighting to an object as
part of this object’s procedural generation is consequently rarely
feasible, necessitating a separate, manual modeling step instead.
Further, this task needs to be executed for each generated variation
of an object, intensifying the demand for a more automated and
integrated process.

In this paper, we address these challenges and present a system
that extends the procedural modeling workflow with lighting design
capabilities. The system utilizes a shape grammar for procedural
specification and augments it with new modeling operations that
allow the modeler to describe goals concerning the illumination
that should be achieved. Furthermore, operations are introduced for
specifying potential locations where luminaires (i.e., light sources
and their supporting bodies) can be installed and what kind of lu-
minaires may be employed there. Importantly, it is also possible to
impose constraints on a group of these installation sites, like en-
forcing to use the same luminaire at all group sites. This enables
the modeler to constrain the placement of luminaires such that the
luminaire-augmented object conforms to a desired aesthetic con-
vention. The complicated task of finding an actual luminaire con-
figuration that satisfies the goals as well as possible is instead left
to the system. Thus, the user can concentrate on the general design
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Fig. 1. Our system addresses lighting design for buildings in a procedural modeling context. A procedural building model (a) is augmented by a procedural
lighting design specification that expresses the desired lighting in terms of lighting goals, luminaire installation sites and constraints (b). For a concrete instance
of this model, an according lighting solution (c; d: luminance visualization with a black / blue–green–red / white color map) is then automatically determined
by our system.

of the lighting and does not need to bother with its concrete im-
plementation. When generating a new object with a grammar, our
system creates the object as usual but also an according concrete
specification of goals and luminaire installation sites. Subsequently,
it derives an appropriate luminaire configuration and incorporates
this result into the object. While this approach to procedural light-
ing design is applicable to many domains, our focus in this paper is
on architectural buildings and their exterior lighting (see Figure 1
for an example).

Determining a luminaire configuration that realizes a specific
lighting design is generally a hard problem. In particular, such a
configuration has to satisfy all modeled constraints. These intro-
duce complex dependencies among the variables at multiple sites,
rendering the set of constraint-observing configurations an inco-
herently and complexly shaped subspace of the domain of all con-
figurations. Moreover, the illumination resulting from a configura-
tion is an intricate function of its parameters that additionally is
expensive to compute. As standard methods like simulated anneal-
ing are not well suited to deal with such a challenging setup (see
Figure 3), we approach this constrained optimization problem with
a stochastic scheme that operates directly in the complex subspace
of constraint-satisfying configurations. It further accounts for the
actual lighting situation to guide the exploration of this subspace.

To the best of our knowledge, this work is the first to address
the (non-manual) lighting of procedurally generated content. Un-
like previous work on lighting design, our system supports complex
constraints, which play a substantial role in enabling sophisticated
designs. Our main contributions are thus twofold: First, we intro-
duce an approach to specify the lighting design procedurally as part
of the ordinary procedural modeling process. Second, an integrated
optimization and constraint satisfaction approach is presented that
determines a luminaire configuration implementing a given, poten-
tially complex, and in our case procedural specification.

2. RELATED WORK

Lighting design. Generally, lighting design is concerned with
determining a configuration of lights whose resulting illumination
satisfies some objective. In computer graphics, most related work
focuses on lighting a single object or a spatially confined aggre-
gation of objects with a few light sources. One objective targeted
by several methods [Shacked and Lischinski 2001; Gumhold 2002;
Lee et al. 2004] is to convey as much information as possible about
an object, often taking perceptual considerations into account.

A major line of research, however, concentrates on (interactive)
systems where a concrete lighting result is specified as goal and
suitable light source parameters are derived to achieve this goal.
A quintessential part of most of these systems is an intuitive inter-

face to input the desired lighting results. Some rely on direct spec-
ification and manipulation of lighting-induced features like shad-
ows or highlights [Poulin and Fournier 1992; Pellacini et al. 2002],
while others adopt a painting paradigm where the intended illumi-
nation result is painted by the user [Schoeneman et al. 1993; Anrys
and Dutré 2004; Okabe et al. 2007; Shesh and Chen 2007]. Ad-
vanced examples are the system for cinematic lighting by Pellacini
et al. [2007] and the recent work by Lin et al. [2013]. In our system,
the desired result is specified procedurally in terms of photometric
quantities.

A few approaches are concerned primarily with interior archi-
tectural lighting. For instance, Zmugg et al. [2010] take a user-
painted illumination goal as input and derive the positions of (iden-
tical) light sources, assuming surfaces of identical white diffuse
material. A more complex, general system was devised by Costa
et al. [1999], which, given a lighting goal specified via fictitious
lights, a cost function expressed via a custom scripting language
and a number of desired lights, optimizes the parameters of these
lights. The radiosity-based radioptimization method [Kawai et al.
1993] allows specifying goals, like radiosity value ranges for scene
elements, and optimizes user-selected variables, like parameters of
light sources (of fixed position) or surface reflectivities, accord-
ingly.

These systems all make substantial simplifications. They con-
sider only abstract lights (points or fixed surface patches) that are
described by a few independent parameters; this often renders the
addressed problem amenable to efficient optimization techniques,
though. By contrast, our system deals with models of real lumi-
naires, comprising both a (parametric) luminaire body and a light
source, whose position and orientation are influenced by the body’s
configuration. Moreover, existing systems basically treat the indi-
vidual lights in isolation, whereas we support relating multiple lu-
minaires in complex ways. Although Costa et al. [1999] in prin-
ciple allow for specifying complex constraints, their optimization
method treats them as a black box, simply rejecting all solution pro-
posals that violate a constraint, which becomes impractical when
faced with more than a few simple constraints. By contrast, our
approach explicitly accounts for all constraints and hence readily
copes with complex, highly constrained lighting specifications.

Procedural modeling. In procedural modeling, content is gen-
erated according to some procedure, and this is often expressed
using a formal grammar. A well-known example is L-systems,
which are frequently employed to describe growth processes, like
for modeling plants [Prusinkiewicz and Lindenmayer 1990] or de-
riving street networks [Parish and Müller 2001]. Shape grammars
[Stiny and Gips 1972; Stiny 2006] are the basis for several archi-
tectural modeling approaches; they have been adapted for façades
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Fig. 2. Simple example where eight luminaires surrounding a building are
supposed to light all façades. (a, b) An effort to directly model a good so-
lution struggles and would require numerous manual iterations to achieve
a satisfying result. (c, d) By contrast, our system takes a lighting design
specification as input and successfully determines a solution that meets the
desired goal. See Section 7.5 for details.

[Wonka et al. 2003] and entire buildings. The most prominent ex-
ample is CGA shape [Müller et al. 2006], for which also exten-
sions [Krecklau and Kobbelt 2011; Whiting et al. 2009] and gener-
alizations, like enhanced language expressiveness [Krecklau et al.
2010], were suggested. Motivated by its wide use, we chose the
recent variant of CGA shape found within the commercial soft-
ware CityEngine [Esri 2012] as basis for our system’s grammar
language.

To facilitate the often tedious modeling process, user interfaces
were devised that allow interactive visual grammar editing [Lipp
et al. 2008], graph-based rule editing and modeling [Patow 2012],
or direct profile modeling [Kelly and Wonka 2011]. Another option
is to incorporate domain knowledge, enabling a direct higher-level
specification of the result. Recent examples include floor plan gen-
eration from given requirements [Merrell et al. 2010] and optimiz-
ing furniture layout based on arrangement criteria [Merrell et al.
2011; Yu et al. 2011]. Similarly, Talton et al. [2011] search for
specific instances of a probabilistic L-system that satisfy certain
prescribed objectives, and Vanegas et al. [2012] explore parame-
ter changes to a given simple procedural model that make it meet
specified target values for predefined indicators. The encountered
domain to optimize over has a sufficiently simple structure for these
systems to be able to resort to standard stochastic methods, execut-
ing arbitrary random changes to a current solution in an effort to im-
prove on it. By contrast, we are dealing with lighting specifications
that comprise complex constraints, imposing intricate dependen-
cies onto the subspace of valid solutions. Consequently, sampling
from and moving within this subspace involves solving a challeng-
ing constraint satisfaction problem. With computing lighting being
expensive, the optimization’s efficiency also becomes significantly

Ordinary optimization approach:

a b

Our system:

c d

Fig. 3. Example design for an office building, where the luminaires at
the brick columns are requested to be identical, use the same flux and be
mounted at consistent heights. Common optimization approaches can ac-
count for such constraints by treating them as soft. However, as demon-
strated by the results after (a) 2,000 and (b) 200,000 iterations, which both
fail to meet the constraints and constitute unsatisfying lighting solutions,
such approaches are not successful in coping with the complex space of
valid luminaire configurations. (c) By contrast, our system yields a good so-
lution after 2,000 iterations, which respects all constraints. See Section 7.6
for details. (d) Example of a different lighting design.

more important. Among others, we address this by choosing the
changes considered for finding a better solution wisely and not just
arbitrarily.

3. OVERVIEW

Figure 4 presents an overview of our system. The desired lighting
design is input by specifying goals for the illumination that should
be attained and identifying locations where luminaires can be in-
stalled to realize these goals (Section 4). Additionally, constraints
on the luminaires and on groups of locations can be imposed, which
is often crucial to implement aesthetic and structural desiderata.

Based on this design specification, our system determines a light-
ing solution that achieves the targeted goals well while fully ad-
hering to all constraints defined (Section 5). The underlying con-
strained optimization problem is tackled with an integrated stochas-
tic approach that operates directly in the complex space of lumi-
naire configurations satisfying all constraints. Because illumination
is expensive to compute, our approach further pays special attention
to efficacy.

This lighting design module is integrated into a procedural mod-
eling system. Extending a standard shape grammar language such
that a lighting design can be specified procedurally (Section 6), our
system directly embeds lighting design into the procedural mod-
eling workflow. For each generated model instance, an accord-
ing lighting design specification instance is produced, and a cor-
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Fig. 4. Overview of our procedural lighting design system.

responding lighting solution is then determined and incorporated
into the model.

4. LIGHTING DESIGN SPECIFICATION

In real-world lighting design, one common approach is to first iden-
tify what kind of illumination should be attained where. This pro-
cess is typically guided by functional considerations, like accentu-
ating a certain structure or providing enough light to allow for facial
recognition or to identify obstacles when walking. Moreover, aes-
thetic factors may heavily influence the decision. In a subsequent
step, appropriate luminaires are selected to realize these lighting
goals, and finally a concrete configuration is determined. In prac-
tice, several iterations of this general procedure may be necessary
to establish a satisfactory lighting solution.

Similarly, a lighting design is specified in our system by defining
lighting goals and identifying locations at which luminaires may
be installed, describing them via installation sites. Additionally, lu-
minaire and inter-site constraints may be established to restrict the
set of candidate luminaires and enforce consistency across instal-
lation sites, respectively. The design specification is complemented
by a database of luminaires. Our system can then automatically
determine a configuration at the installation sites that realizes the
specification, achieving the goals well.

4.1 Lighting goals

A lighting goal is specified via a set of objectives concerning the
illumination of one or more surfaces, referred to as goal sites. Such
a site is not necessarily an actual scene surface but may be a vir-
tual one. For the goal and for each of the objectives, the relative
importance is given by a weight.

The illumination is described in terms of either one of the photo-
metric measures illuminance and luminance. Illuminance E, mea-
sured in lx (= lm/m2), quantifies the light that reaches a surface,
whereas luminance L (cd/m2) additionally takes the scattering on
the surface into account, thus corresponding to the reflected light
that is perceived by the observer. When computing luminance for

evaluating goals, we ignore the specular component of the surface’s
material and account only for its diffuse part (assuming Lambertian
behavior), as otherwise the luminance depends on the viewer’s po-
sition, which is unknown to the system and may be arbitrary.

Supported objectives include the desired minimum and maximum
values for the photometric measure adopted for a goal. A target
value can also be prescribed for its mean over all surfaces, and
for its variance an upper bound may be imposed. Moreover, a de-
sired minimum uniformity of the illumination across all surfaces
can be specified. This is commonly expressed as ratio of minimum
to mean illumination, referred to as average or mean uniformity.
Alternatively, sometimes the ratio of minimum to maximum illu-
mination is employed, termed general or extreme uniformity. In ad-
dition to these photometric ones, further objectives are of course
conceivable, like high energy efficiency or color rendition quality,
but we did not explore this in the current system.

4.2 Luminaires

A luminaire (also called light fixture) is a device that houses one
lamp (or sometimes multiple), the actual source of light, and of-
ten comprises reflectors and shielding and diffusion components,
which influence the overall light pattern.

Light source. Each lamp is characterized by quantities like the
emitted luminous flux Φ (measured in lm), its color temperature,
and the color rendition performance. Its most distinctive feature,
though, is typically the pattern of emitted light. At a sufficient dis-
tance, the lamp can be reasonably approximated as a point light, al-
lowing the pattern to be compactly represented as directional lumi-
nous intensity distribution. Such far-field photometric data is rou-
tinely provided by lighting manufacturers.

In our system, light sources are hence modeled as point lights
with an associated directional distribution. This distribution typi-
cally represents a real-world luminaire, but it could easily encode
a simpler computer-graphics omni-directional or spot light. More-
over, we assume a falloff of intensity that is quadratic in distance
as in the real world, and gradually fade it out once it drops below a
threshold to limit the spatial support of each light.

Luminaire body. The luminaire’s body is represented by a ge-
ometric model in our system. This model may be composed of sev-
eral elements forming a chain, where each element can be scaled in
one direction or rotated around an axis. The amount of scaling or
rotation, respectively, is a free parameter of the model with a spe-
cific range of values. That way, varying pole heights and tilt angles,
for instance, are readily supported.

For each model, we additionally record the corresponding in-
sertion point, the installation normal direction, and, if applicable,
the direction of forward orientation (see Figure 6). When the lumi-
naire gets placed in the scene, these are aligned with the installation
point, the normal direction of the installation site, and, if specified
by the modeler, the site’s orientation direction, respectively. Fur-
thermore, information about the location of the associated point
light source and the frame for its luminous intensity distribution,
which both may depend on the model’s parameters, is kept.

Luminaire model. In our system, a luminaire hence consists
of a luminous intensity distribution and a luminaire body model
as well as a range for the lamp’s luminous flux. By default, this
is simply the value from the manufacturer-provided photometric
data, but in all our examples, we generally specify a larger range
to allow for light dimming and thus more flexibility. To support an
efficient selection of a set of luminaires, we assign a name and a set
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Fig. 5. Some examples of luminaires as used in our system. The two luminaires on the right use the same body and luminous flux but feature different
luminous intensity distributions.

forward orientation

normal direction

light point frame of luminous intensity distribution

insertion point

Fig. 6. To enable correctly installing a luminaire, several geometric quan-
tities are maintained.

of permissible installation location types (wall, ceiling, and floor)
to each luminaire and further classify it using one or more general
luminaire types, which include floodlight, spotlight, bollard, street
light, and in-ground light, for instance. Figure 5 shows examples of
luminaires.

4.3 Luminaire installation sites

Potential locations where luminaires can be installed are specified
by means of installation sites. In its most restricted form, such a
site prescribes an exact position on a surface, with the site’s normal
direction being derived from this surface. Alternatively, a line seg-
ment Lp may be specified on which the installation point has to lie
(see Figure 7). This degree of freedom allows modeling, for exam-
ple, that a luminaire is horizontally centered between two windows
while the exact installation height is left flexible. Moreover, an ori-
entation direction for the luminaire can be specified, for instance, to
enforce that a wall-mounted luminaire points straight downwards.

An installation site is not restricted to accommodate only one (or
none) luminaire but may also support multiple identical, linearly
arranged, and uniformly spaced luminaires. The site’s specification
hence further includes a range for the number of luminaires to in-
stall as well as a line segment La along which to arrange them. The
luminaires are placed such that as a group they are centered in this
segment, with their spacing being flexible within the constraints
imposed by the segment’s length and the minimum spacing implied
by the concretely employed luminaire (and its orientation and con-
figuration). This covers common cases like bollards placed along a
pathway where the exact spacing of the luminaires and hence their
number is not known a priori. The distance of the bollards to the
pathway can also be left flexible by additionally specifying a (non-
degenerate) line segment Lp for the position.

Luminaire constraints. The specific set of luminaires that
may be used at an installation site is established by luminaire con-
straints. These allow putting restrictions on the installation loca-
tion type, the luminaire type, and the name of permissible lumi-
naires. Additionally, photometric constraints can be imposed, like
prescribing a range of permissible luminous flux values or of peak

spacing

La

different spacing different number

orientation
direction

Lp

current shape

Fig. 7. A luminaire installation site’s specification may define translational
freedom (along Lp), prescribe an orientation direction, and allow for accom-
modating more than one luminaire.

luminous intensity values (which depend on the flux and the lumi-
naire’s intensity distribution). One may also define constraints on
further attributes of luminaires, like manufacturer, product family,
or energy efficiency, but we currently don’t maintain these in our
luminaire database.

Inter-site constraints. In practice, it is often desirable that at a
certain group of installation sites the luminaires eventually placed
share some characteristics. For instance, assume multiple installa-
tion sites of common purpose exist along a wall, that their shared
luminaire constraints leave multiple options, and that they all adopt
identical vertical line segments for positioning. It is then easily pos-
sible that a different luminaire is installed at each site, that the lu-
minous flux at two different sites varies, and that luminaires are
installed at inconsistent heights. Even though such a diverse con-
figuration may indeed achieve the specified lighting goals best, one
instead typically wants that the same luminaire and the same flux
is used at all these installation sites and that the luminaires are all
installed at the same vertical position, even if this means sacrificing
achieving the lighting goals completely.

Such important design objectives can be enforced by inter-site
constraints. For a group of sites, our system currently supports
(among others) requiring

—that the same luminaire is used,

—that the used luminaires share at least one luminaire type,

—that all luminaires use the same luminous flux value,

—that if a certain luminaire is installed at multiple sites, all in-
stances use the same luminous flux values,

—that if a certain luminaire has a parametric body model and is
installed at multiple sites, all instances use the same parameter
values (implying that pole heights or tilt angles are consistent),

—that if a line segment for the final position is specified, the posi-
tions at all sites are consistent,

—that if more than one luminaire is installed at a site, the spacing
is consistent across all sites, or

—that the same number of luminaires is installed.
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5. DETERMINING LIGHTING SOLUTIONS

Implementing a lighting design based on its specification requires
determining a suitable luminaire configuration at all installation
sites. Such a configuration must adhere to all constraints defined
in the specification to be valid (Section 5.1). Ensuring this requires
solving an intricate constraint satisfaction problem [Dechter 2003],
where we are faced with a mixture of discrete and continuous vari-
ables that are partially coupled, causing the domain of some vari-
ables to depend on the values of others. In particular, inter-site con-
straints often entail complicated dependencies.

At the same time, the configuration should yield a lighting that
meets the specified lighting goals. Because generally no solution
exists that fulfills all goals completely, we seek a configuration that
attains the goals as well as possible while respecting all constraints.
Assessing a certain configuration Λ (Section 5.5) involves comput-
ing the illumination induced by Λ (Section 5.6) and is hence not
only a complex and highly nonlinear function of Λ but also expen-
sive to evaluate.

We tackle this joint optimization and constraint satisfaction prob-
lem with an integrated stochastic approach (Section 5.4) that op-
erates directly in the highly constrained, complexly shaped space
of valid configurations. It also harnesses knowledge about the in-
duced lighting situation to generate more efficacious proposals for
improving an intermediate solution (Section 5.7).

In the following exposition, we first focus on the aspect of con-
straint satisfaction. After characterizing luminaire configurations,
discussing the involved variables, dependencies among them estab-
lished by the specified constraints, and how these restrict the vari-
ables’ domains (Section 5.1), we present an approach to generate a
valid (i.e., constraint-satisfying) configuration (Section 5.2). Subse-
quently, we show how a variable of an existing valid configuration
can be changed such that the resulting configuration is still valid
(Section 5.3), before turning to and elaborating on our stochastic
optimization approach, which these techniques are directly used by
and integrated into (Section 5.4). The cost function employed for
assessing configurations is detailed (Section 5.5), and the involved
evaluation of the lighting induced by a configuration is described
(Section 5.6). Finally, we discuss generating efficacious proposals
for changing an existing configuration (Section 5.7).

5.1 Valid luminaire configurations

A luminaire configuration Λ = (λ1, λ2, . . . , λN) consists of the con-
figurations λk at all N installation sites; each is described by a tuple
of variables

λk = (Mk,Φk,Θk,Rk, nk, xk,∆xk),

where Mk ∈ M identifies the installed luminaire model, with M
denoting the set of all known luminaire models, Φk ∈ R is the lu-
minous flux, Θk ∈ ∪d∈N0 Rd are the concrete parameter values for
the luminaire’s body model, Rk ∈ SO(3) determines the orientation
of the installed luminaire instances, nk ∈ N0 is the number of lumi-
naires installed at the site, xk ∈ R3 specifies the position of the first
luminaire instance’s installation point, and ∆xk ∈ R3 is the spacing
between successive luminaire instances (the i-th luminaire instance
is installed at xk + i∆xk).

The resulting configuration domain

D =
N

×
k=1
Dk =

(

M,R,∪d∈N0 Rd,SO(3),N0,R
3,R3)N

is a high-dimensional space comprising both discrete and contin-
uous dimensions. The lighting specification imposes several con-

a

on Lp along Lafluxmodel parameters luminaires

body model number ofluminaire spacingposition

rotation

ζ
ζ

ζ

spacing

minimum

luminaire constraints ψ Lp Lasite specification

M Φ Θ φ n u Δv
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M2
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M Mi j=
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Φ Φi j i j= if =M M
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Φ1

M5

Φ5

Φ2
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Φ3
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Φ4

M4

Φ6
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Fig. 8. Example fragments of the complex constraint network resulting
from a lighting design specification. (a) The variables describing the config-
uration at an installation site (shown in orange) are constrained by the site’s
specification and the referenced luminaire constraints ψ. Moreover, the do-
main of a variable may depend on the concrete values of other variables. For
instance, the luminaire model M restricts the permissible flux range for Φ
according to the model specification ζ(M). Reciprocally, the flux value Φ
restricts the set of permissible luminaire models for M. Most site variables
are also mutually dependent due to the implied minimum spacing (a derived
quantity shown in green). (b) Dependencies among variables from differ-
ent sites are established by inter-site constraints. For instance, a use-same-
luminaire constraint for sites k ∈ S = {1, . . . , 5} makes all Mk interdepen-
dent. As these dependencies hold in addition to the existing ones (indicated
by the incident taupe-colored arcs), all other variables dependent on any Mk

become transitively interdependent. (c) Complex inter-site constraints may
involve multiple variables at all associated sites (here: S = {1, . . . , 6}).

straints on D, defining the subspace V ⊂ D of valid configura-
tions.V is no longer a simple product space but features a complex
structure with intricate relationships between various dimensions
(see Figure 8).

Concretely, the specification for an installation site k restricts the
number of luminaires nk to a range nmin

k
, . . . , nmax

k
. The spacing ∆xk

is confined to a distance ∆vk ∈ [0, ‖La,k‖] along the site’s line seg-
ment La,k, and the 3D position xk becomes a function of the 1D
position uk ∈ [0, ‖Lp,k‖] on the site’s line segment Lp,k, ∆vk, and
nk. The site’s normal fixes one axis of the luminaire’s local space
and hence two degrees of freedom of the orientation Rk. If an ori-
entation direction is prescribed, Rk’s third degree of freedom, the
rotation angle ϕk around the normal, also becomes fixed. Overall,
this allows us to describe each configuration λk slightly more con-
cisely as

λ̃k = (Mk,Φk,Θk, ϕk, nk, uk,∆vk).

The luminaire constraints ψ = ψ(k) specified for the installation
site define a set of luminairesMψ ⊆ M, requiring Mk ∈ Mψ. The
constraints may also restrict the flux Φk (either directly or by pre-
scribing a peak intensity) for each permissible luminaire Mk to a
range Φψ(Mk).

Additionally, the model specification ζ = ζ(Mk) for a luminaire
Mk defines the flux range supported by the luminaire, the number
dk of body model parameters θk,i, and their permissible values, thus
constrainingΦk andΘk = (θk,1, . . . , θk,dk

) for a certain Mk. The spec-
ification ζ also yields a minimum spacing distance, which may de-
pend on the installed luminaires’ orientation ϕk and body parameter
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values Θk, providing a lower bound for ∆vk. It further imposes an
upper bound on the number nk of luminaires that may be installed
at the site. This is one example where multiple variables of a site’s
configuration become coupled in a complex way.

By contrast, inter-site constraints ξ entail dependencies between
multiple installation sites. Some constraints enforce that a certain
(set-valued) function f (τk) of a configuration variable τk yields (at
least) one common result at all sites k ∈ S(ξ), where S(ξ) denotes
the set of sites associated with the constraint:

⋂

k∈S(ξ)
f (τk) , ∅.

This couples related variables across multiple installation sites, and
if the function is injective, the dimensionality of the configuration
space is effectively reduced by |S(ξ)| − 1 dimensions. One such ex-
ample is the use-same-luminaire constraint, which uses τk ≡ Mk

and f (M) = {M}. By contrast, a use-same-luminaire-type con-
straint employs the non-injective function f (M) = type(M), where
type(M) yields the set of luminaire types a luminaire M belongs to.

Other inter-site constraints result in even more complicated de-
pendencies. For instance, the lighting specification may dictate that
if a certain luminaire is installed at multiple sites, all instances use
the same flux values (see Figure 8 c), thus requiring the configura-
tion to satisfy

∧

M∈{Mk |k∈S(ξ)}

∣

∣

∣

{

Φℓ | ℓ ∈ S(ξ) ∧ Mℓ = M
}

∣

∣

∣ = 1.

To capture the interplay of all constraints that result from the
lighting specification, we define an indicator function χ(Λ) that is
zero if and only if a configuration Λ satisfies all these constraints.
A configuration Λ with χ(Λ) = 0 is called valid, and the space of
valid configurations is thus given by

V =
{

Λ | Λ ∈ D ∧ χ(Λ) = 0
}

⊂ D.

5.2 Generating a valid configuration

In order to create a random valid configuration Λ ∈ V, we pur-
sue a constructive approach that can yield any possible configura-
tion and is guaranteed to find one if any exists. Conceptually, we
start with the unconstrained domain D and successively apply all
constraints to narrow it down to the space V, and subsequently
select one random configuration out of V. However, because the
domains of many configuration variables are dependent on the val-
ues of other variables, we cannot simply represent each variable’s
domain in isolation, and hence representing the whole spaceV ex-
plicitly is generally not practical, with respect to both storage and
computational effort.

On the other hand, a greedy approach that visits all variables one
after another, each time first determining a local domain by apply-
ing all constraints implied by the values chosen for the already vis-
ited variables and then selecting a random value from that domain
is not very efficient. Even if the order in which the variables are vis-
ited is chosen carefully, the purely local view makes it unavoidable
that sometimes values are selected that cause the domains of some
variables visited later to become empty. This only becomes known
though, when the first variable with an empty domain is visited,
and necessitates backtracking and selecting a different value for a
variable visited earlier.

For example (see Figure 9), when a same-flux constraint ξ ap-
plies to multiple sites k ∈ S(ξ), the flux at all these sites is restricted
to

Φξ =

⋂

k∈S(ξ)

⋃

M∈Mψ(k)
Φψ(k)(M), (1)

Φ

m₄ m₄ m₈m₇ m₉m₉ m₅m₆ m₂

M₂

m₃

M₃

m₁

M₁

m₁

Φ

M₂ M₃M₁

Fig. 9. Example of the joint (Mk, Φk) domain for a group of three sites
related by a same-flux constraint ξ. The flux range Φψ(k)(M) for each per-
missible luminaire Mk (left) establishes the overall flux range supported
at each site (right). The same-flux constraint restricts the flux values to
the orange subset Φξ , and each concrete flux value further constrains the
choice of luminaires. For instance, for a flux corresponding to the red line,
M1 ∈ {m4,m9}, M2 ∈ {m5} and M3 ∈ {m4,m9} holds. Note that the per-
missible flux range for a certain luminaire M may differ across sites due to
different luminaire constraints ψ(k); e.g., Φψ(1)(m1) ⊃ Φψ(2)(m1).

and the permissible luminaires at each site k are limited to those
with a compatible flux range (i.e., Mk ∈ {M | M ∈ Mψ(k) ∧

Φψ(k)(M)∩Φξ , ∅}). However, when greedily processing one vari-
able a time, these limitations only become fully known after multi-
ple variables have been visited, at which point a wrong value may
already have been selected. If one first chooses a flux value, it may
for example be compatible with all but the last site. Consequently,
only when the luminaire of this last site is to be chosen and the de-
rived domain is empty, it becomes apparent that the value of some
variable visited earlier causes problems. Visiting the variables in a
different order, that is, first choosing the luminaire at one or multi-
ple sites and then determining the flux, results in a similar situation.

Approach. Avoiding the major shortcomings of the two ex-
tremes full representation and greedy, purely local exploration, our
approach offers an efficient middle ground. We first partition the
configuration space’s variables into independent groups such that
exactly all those site configurations λk are binned together that are
(transitively) connected via at least one constraint. For each parti-
tion, we incrementally and lazily build an explicit representation
of the relevant subset Γ of V’s dimensions as implied by the con-
straints that apply. This enables efficiently determining random val-
ues for the partition’s configurations λk respecting all constraints.

More precisely, we impose an order γ1, . . . , γ|Γ| on the variables
contained in Γ and employ a sequence of according sets Ω j to rep-
resent (incrementally tightened) supersets of these variables’ do-
mains. In a first phase, these sets are successively determined (Fig-
ure 10 illustrates). Ωi is initialized to all values permissible for γi

under all constraints that rely only on the variables γ1, . . . , γi. This
involves that for each preceding variable γ′i , i′ < i, that is related to
γi via a constraint, the set Ωi′ is forward enforced onto Ωi, exclud-
ing values from Ωi for which no constraint-satisfying value in Ωi′

exists. If conversely this enforcement reveals that any such related
preceding set (potentially) features a value that has no matching γi

value in Ωi, then Ωi is backward enforced onto these related pre-
ceding sets Ωi′ , narrowing them further down by removing those
values from Ωi′ with which no value in Ωi satisfies the constraint
among the corresponding variables. In case any value gets removed
from Ωi′ , we propagate this refinement by backward enforcing Ωi′

(which may trigger further enforcements) and subsequently for-
ward enforcing it. While this constraint inference takes permissible
values for other variables into account, it does not consider concrete
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a

b

c

d

Ω₄Ω₂ Ω₃Ω₁

γ₄γ₂ γ₃γ₁

Fig. 10. Finding a valid configuration, demonstrated on a simple example
involving four variables γi. (This corresponds, for instance, to a situation
with two sites where γ1 ≡ M1, γ2 ≡ Φ1, γ3 ≡ M2, γ4 ≡ Φ2, and a same-flux
constraint holds.) (a) Constraint network, where each mutual dependency is
shown as a forward (solid line) and a backward (dashed line) directed arc.
(b) In a first phase, the sets Ωi, representing permissible values for γi, are
determined. Ω1 is initialized to the unconstrained domain of γ1. Because
of the dependency γ1 → γ2, it is then forward enforced onto Ω2: for each
ω ∈ Ω1, the corresponding set of values for γ2 respecting the constraint
among γ1 and γ2 is determined, and the union of these sets constitutes Ω2.
As γ3 does not (directly) depend on any γi, i < 3, Ω3 is set to the uncon-
strained domain of γ3. Subsequently, Ω4 is determined by forward enforc-
ing Ω2 and Ω3: each of them yields a set of values for γ4 satisfying the
respective constraint, and the intersection of these two sets identifies those
values meeting both constraints γ4 is engaged in. (c) Because the intersec-
tion discarded an element ( ) and also because at least one element of the
forward-enforced sets yielded an empty set ( ), Ω4 is backward enforced
onto Ω2 and Ω3. Since for ∈ Ω3 no ω ∈ Ω4 exists that satisfies the con-
straint among γ3 and γ4, it is removed from Ω3. Analogously, is removed
from Ω2, which is then backward enforced onto Ω1 (where it does not in-
flict any change). (d) Utilizing the sets Ωi, concrete values for the variables
γi are determined in a second phase. First, a random value ( ) from Ω1 is
chosen for γ1. Due to the dependency γ1→ γ2, this assignment is forward
enforced onto Ω2, yielding a refined set Ω2 |γ1 , from which a value ( ) for
γ2 is subsequently selected (entailing forward enforcement onto Ω4, which
is then backward enforced onto Ω3). Note that if Ω2 |γ1 was empty, back-
tracking would be performed, causing a different value for γ1 to be chosen.
Values for the remaining variables γ3 and γ4 are determined analogously.

variable assignments. Consequently, each resulting set Ωi may not
always constitute the exact domain of γi but a superset of it.

In a second phase, concrete values are successively chosen for
all variables. Beginning with i = 1, a random value for γi is se-
lected from Ωi. This assignment is forward enforced onto all sets
Ωi′ , i′ > i, corresponding to directly dependent variables. When-
ever such inference causes a set Ωi′ to become smaller, Ωi′ is for-
ward enforced itself, followed by backward enforcement to all sets
Ω j′ , i < j′ < i′, where γ j′ participates in a constraint with γi′ . This
process is repeated for all other variables γi, i = 2, . . . , |Γ|, eventu-
ally yielding a valid configuration Λ|Γ for the sites covered by the
partition, if one exists.

As each set Ωi may initially be a superset of γi’s domain, it is
possible that a value is selected for γi that later turns out to be
actually outside the domain. Such cases result in at least one set

Ωi′ , i′ > i, becoming empty during constraint enforcement and are
hence detected early on. We then perform backtracking, which in-
volves removing the offending value from Ωi, resetting all transi-
tively related Ωi′ , i′ > i, and continuing with another value from
Ωi. To facilitate resets, we maintain a set Ω̄ j of discarded values for
each Ω j, j > 1.

Efficiency-related details. While the ordering chosen for the
variables contained in Γ has no impact on the scheme’s correct per-
formance, it can affect the number of constraint enforcements and
how often backtracking is required. Aiming for keeping such over-
head low, we assign each constraint a preferred enforcement direc-
tion based on functional considerations and heuristics (like making
a discrete variable enforce its assignment onto a continuous one’s
domain) and utilize the resulting directed graph’s topological sort
to derive the ordering. (This approach was not used for the toy ex-
ample in Figure 10.)

For selected pairs of variables γa and γb, a < b, (like luminaire
model M and flux Φ), we also refrain from using two sets Ωa′ and
Ωb′ in favor of a single 2D set Ω j, where for each contained value
of γa the corresponding set of permissible γb values is stored. This
enables a more fine-grained constraint inference and better pruning
and thus helps limiting the number of cases where backprojection
eventually becomes necessary. Similarly, if multiple variables γi are
constrained to have identical values, we employ a single shared set
Ω j′ for them.

Examples. Concretely, if a partition comprises only one site k
(i.e., the site is not affected by any inter-site constraints), we first
determine the set of luminairesMψ(k) allowed by the according lu-
minaire constraints ψ(k) and, if nmin

k
> 1, subsequently prune it

by applying the minimum spacing constraint implied by each lu-
minaire’s specifications ζ(M). After selecting a luminaire Mk, we
successively choose values for the remaining variables of λ̃k. Each
time a variable has been assigned a value, the domains of the out-
standing ones are refined accordingly. By processing the variables
in a carefully chosen order (Mk, Φk, Θk, ϕk, nk, uk, ∆vk), backtrack-
ing never becomes necessary.

If sites are related via inter-site constraints, some sets Ω j usu-
ally cover variables common to multiple sites explicitly. For exam-
ple, if a same-flux constraint ξ applies, we maintain a single setΦξ
(Equation 1) for allΦk, thus avoiding selecting a flux at one site that
finally is incompatible with another site. As a consequence, back-
tracking may generally only become necessary in case a complex
interplay of multiple constraints or an intricate constraint apply.
An example for the latter case is a use-same-flux-if-same-luminaire
constraint ξ, where for each site k ∈ S(ξ) we maintain the domain of
(Mk,Φk) as a 2D set. This is rather cheap to represent (for each M, a
set of intervals for Φ is stored) and helps both detecting and avoid-
ing incompatible choices early on. We first select the luminaires
Mk for all sites, which may involve backtracking, and subsequently
directly choose compatible flux values Φk.

Alternative approaches. Unlike our approach, the common
procedure of starting with an arbitrary configuration Λ0 ∈ D and
then projecting it into V is not viable due to V’s complex shape;
please refer to the supplemental material for a more detailed dis-
cussion.

5.3 Moving in the subspace of valid configurations

Given a valid configuration Λ ∈ V, a new configuration Λ′ can be
derived by modifying the value of one variable τ, like increasing
the flux Φk at some site k. However, the dependencies among the
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variables imposed by the various constraints may necessitate fur-
ther changes to other variables for Λ′ to not leave the spaceV and
remain valid.

Therefore, we pursue a constructive approach similar to the one
in Section 5.2, which also ensures that if a modification of τ is
possible, an according value is found. First all variables that are ul-
timately affected by τ’s value via constraints are determined, and
then an explicit representation of the according subspace of V is
constructed incrementally and lazily. In the set Ωτ representing τ’s
domain, we optionally flag all those values that entail a change to
other variables, using separate flags for whether any of these vari-
ables belong to the same site as τ or to another site. A new value
can then be chosen directly from Ωτ, potentially taking into ac-
count whether a change to other variables of the modified site or at
other sites is acceptable or not. If changes to further variables are
required, new values for them are subsequently determined from
the according sets Ω j.

For example, if a change of luminaire Mk at site k is considered
and a same-flux constraint ξ applies, we initially determine all lu-
minaires M ∈ Mψ(k) \ {Mk} other than the current one together with
the respective flux intervalsΦψ(k)(M) that are allowed according to
the luminaire constraints ψ(k), storing them in a 2D set Ω. These
flux intervalsΦψ(k)(M) are subsequently intersected with the overall
flux ranges ∪M∈Mψ(k′ )

Φψ(k′)(M) that are permissible at the other sites
k′ affected by the same-flux constraint, flagging those subintervals
that would require a change of luminaire at at least one of these
other sites. Finally, if the pruned candidate set Ω|M is not empty, a
new luminaire from the set is selected, and further changes to other
variables triggered are carried out, yielding a new valid configura-
tion.

5.4 Optimization approach

Finding a valid configurationΛ∗ ∈ V that satisfies the lighting goals
as well as possible eludes a direct, exact solution due to the com-
plexity of the problem. We thus explore the space of valid config-
urations V using a Markov chain Monte Carlo approach [Robert
and Casella 2004].

A new chain is started by constructing a valid configuration as
described in Section 5.2. In each successive iteration, a configura-
tion proposalΛ′ ∈ V is generated based on the chain’s current state
Λ and accepted with probability [Metropolis et al. 1953]

α(Λ′|Λ) = min
{

1, exp
(

(C(Λ) −C(Λ′))/T
)}

,

where the employed Boltzmann-like energy distribution function
favors good lighting solutions. The cost function C(Λ̂) assesses
how well the lighting goals are satisfied (Section 5.5), which in-
volves computing the lighting induced by Λ̂ (Section 5.6). If the
cost increases by Λ′, the proposal has still a chance of being ac-
cepted, which helps avoiding getting stuck in a local minimum. As
the number of accepted configuration proposals increases, we grad-
ually lower the temperature T , reducing the acceptance probability
for cost-increasing configurations. Please refer to the supplemen-
tal material for details on the annealing schedule as well as other
implementation-specific choices.

Elementary mutations. Typically, the proposal Λ′ is derived
from Λ by changing the value of one random variable τ, which
may entail changes to further variables. We employ the constructive
approach from Section 5.3 and determine the new value τ′ by ap-
plying a relative change ∆τ to the current value for non-categorical
variables and randomly choosing a new value otherwise. ∆τ is sam-
pled from a truncated normal distribution [Robert 1995] whose

standard deviation is a function of T , thus increasingly favoring
small changes over time.

Another available mutation of Λ is the variant of only changing
the lamp at a site, that is, changing the luminaire to a different one
that employs the same body model but has a different luminous
intensity distribution and flux range.

Performance enhancements. Striving to not just finding a
good solution but also keeping the number of iterations needed low,
we diversify the navigation of the search space by running multiple
independent chains and generating multiple random initial configu-
rations. Additionally, the elementary mutations are complemented
with composite mutations; these come in two flavors: higher-level
mutations (e.g., focus mutation), corresponding to orchestrated se-
quences of elementary mutations, and random sequences of mul-
tiple mutations (see below). Moreover, information about the in-
duced lighting situation is harnessed to make efficacious change
proposals (Section 5.7).

Interleaved exploration of chains. If the progress in lower-
ing the solution cost C(Λ) has stalled for some time, we randomly
suspend the current chain and start a new one. For its initial state,
we either generate a new valid configuration, thus considering a
potentially largely different configuration, or pick the configuration
Λ
∗ that yielded the lowest cost so far, thus resuming trying to fur-

ther improve this best solution. That way, ultimately multiple initial
solutions are explored in an interleaved fashion.

Instead of creating just one new initial configuration, we actu-
ally generate multiple initial configurations in successive iterations
(20 for all results in the paper). The first one is always accepted,
while for the following ones the acceptance probability α(Λ′|Λ)
applies. This strategy aims at avoiding spending many iterations on
exploring a bad initial solution and has proven successful in prac-
tice. Effectively, it results in switching between coarsely exploring
the solution space and refining (or exploiting) a certain configura-
tion.

Focus mutation. Going beyond direct changes to a single vari-
able, a higher-level focus operation is supported, and its application
to a random site in Λ augments the arsenal of mutation procedures.
For a given installation site, the focus operation randomly selects
a goal site (weighted by proximity) that potentially may be illu-
minated, and then directs the luminaire(s) at the installation site
towards this goal site. Both the orientation direction and a lumi-
naire body model’s tilt parameter may be changed by this focusing,
which is an effective means to assign a luminaire to a different goal
site. In particular, achieving the same modification by repeatedly
applying random variable changes can easily require an impracti-
cal number of iterations. When generating an initial configuration,
we apply the focus operation to all installation sites.

Multiple mutations per iteration. Sometimes, only the in-
terplay of several elementary (and focus) mutations may yield an
improvement in cost. However, realizing them over successive it-
erations is unlikely if any single of these mutations applied indi-
vidually would temporarily increase the cost substantially. To al-
leviate such situations, we perform a random number m of muta-
tions when generating a new proposal. On the other hand, multiple
random mutations may not necessarily act together in a synergis-
tic way and can even inhibit each other. Therefore, care should be
taken that it cannot happen too often that two unrelated changes are
made and accepted, with one improving and one worsening the sit-
uation, as dealing with them in separate iterations would be prefer-
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able in those cases. We address this by choosing m’s distribution to
strongly favor a single mutation.

5.5 Cost function

The cost for a luminaire configuration Λ is defined as

C(Λ) = κGCG(Λ) +CE(Λ)

and assesses both how well the specified objectives are met (CG)
and how effectively the luminaires’ flux is employed for lighting
the goal sites (CE).

Goal satisfaction. The total cost for missing objectives is

CG(Λ) =
∑

i

gi
∑

o∈Oi
wo,i

∑

o∈Oi

wo,i Co(Λ, i),

where gi is the relative importance weight of goal i, Oi denotes the
set of objectives defined for goal i, and wo,i is the weight for the
objective o of goal i. The individual cost functions Co penalize a
deviation of the lighting result from the objective’s target.

For minimum and maximum objectives, the costs

Cmin(Λ, i) = 1
Ai

∫

Pi
max{mini − vΛ(p), 0} dAp and

Cmax(Λ, i) = 1
Ai

∫

Pi
max{vΛ(p) − maxi, 0} dAp

consider how much the result values vΛ(p) are below or above the
target value of mini or maxi, respectively, on average, where Pi

comprises the goal sites of goal i and Ai =

∫

Pi
dAp. The cost for

a mean objective with a target value of µi is

Cmean(Λ, i) =
∣

∣

∣µi − µΛ,i
∣

∣

∣,

where µΛ,i = 1
Ai

∫

Pi
vΛ(p) dAp, while for a variance objective, the

cost

Cvar(Λ, i) = max
{
√

varΛ,i −
√

vari, 0
}

,

with varΛ,i =
1
Ai

∫

Pi

(

vΛ(p)
)2

dAp − (µΛ,i)2, penalizes exceeding the
specified upper bound vari. Finally, extreme uniformity and mean
uniformity objectives with target lower bounds of eui and mui, re-
spectively, have costs

Ceu(Λ, i) = 1 − euΛ,i/eui and Cmu(Λ, i) = 1 − muΛ,i/mui,

where

euΛ,i =
minPi

vΛ(p)

maxPi
vΛ(p)

and muΛ,i =
minPi

vΛ(p)

µΛ,i

if µΛ,i > 0 and euΛ,i = muΛ,i = 0 otherwise.

Luminaire effectiveness. To encourage that installed lumi-
naires are actually and mainly contributing to the illumination of
goal sites, we penalize other uses with a cost of

CE(Λ) = κng
1

|I>0(Λ)|

∑

k∈I>0(Λ)

Φ̄
ng
Λ,k
+ κw

1
|I>0(Λ)|

∑

k∈I>0(Λ)

Φ̄
w
Λ,k
,

where I>0(Λ) is the set of installation sites with at least one lumi-
naire. Φ̄ng

Λ,k is the fraction of the flux averaged over all luminaires
installed at site k that ends up lighting non-goal surfaces, whereas
Φ̄

w
Λ,k corresponds to wasted illumination, like shining into the sky.
For the weighting constants, we use κG = 10, κng = 1 and κw = 3.

5.6 Lighting evaluation

To evaluate how well the specified goals have been reached, the
illumination at the goal sites needs to be determined, and aggregate
quantities that allow checking the objectives must be derived.

Calculation points. We sample the goal sites at a number of
points and compute the illumination for these calculation points,
which is also a common approach in evaluating a real-world light-
ing design [IESNA 2000]. Specifically, during initialization, we im-
pose a uniform grid on each goal site of a goal i. For each grid cell
that overlaps the site’s surface, we create a sample point pi, j as close
to the cell center as possible and assign it a weight ai, j according to
the surface area overlapping the grid cell. When evaluating the cost
function C, integrals

∫

f (vΛ(p)) dAp are approximated by weighted
sums

∑

j ai, j f (vΛ,i, j), where vΛ,i, j = vΛ(pi, j).

Lighting computation. Given a configuration Λ, the illumina-
tion vΛ,i, j at each considered point pi, j is determined on the GPU in
a pixel shader, where a separate pass is performed for each lumi-
naire. The according luminous intensity distribution is provided as
a texture, and visibility is resolved using a cube shadow map. To
make a shadow map update only necessary if the light position has
changed, we opted to not include luminaires in the shadow map,
thus ignoring the (typically negligible) occlusion caused by them.

Result aggregation. The illumination values are then aggre-
gated per goal site with a segmented parallel reduction using com-
pute shaders. The determined quantities are stored for better situa-
tion analysis (Section 5.7) and subsequently further aggregated per
goal to derive statistics that enable assessing how well the goals’
objectives are met.

Luminaire effectiveness. Additionally, we compute for each
luminaire how much of its flux actually hits goal sites, hits other
surfaces, and is wasted by not hitting anything. To this end, first
all goal sites are rendered into a cube depth map centered at the
luminaire. Subsequently, for each direction of a discretization of the
spherical domain, we query both this goal site map and the shadow
map to determine whether a goal site, any other surface or nothing
is hit, sample the luminous intensity distribution and then assign
the intensity to the determined hit class. Finally, a parallel reduction
over all directions is performed, yielding the flux fractions for all
three hit classes after normalization.

5.7 Efficacious change proposals

Starting many chains over time and applying random (elementary
and focus) mutations, as outlined in Section 5.4, will eventually
explore the whole configuration space V. However, such an unin-
formed approach is generally not efficient for finding good solu-
tions, as the proposal generation is (largely) agnostic to the lighting
situation induced by the current state Λ (focus mutations account
for some spatial relationships). Therefore, we instead sample the
proposal Λ′ from a distribution that favors changes to the current
state Λ that affect the cost C, ideally reducing it.

Concretely, we randomly decide whether to apply a random mu-
tation or to take the actual lighting situation arising from Λ into
account. In the latter case, we analyze the situation and try to come
up with a modification of Λ that improves on it and hence leads to
a lower cost. Our strategy is to address a specific cost factor, deter-
mine the set of relevant changes that can potentially reduce its cost,
and pick one of them. To enable and support this, we maintain in-
formation about which goal sites are and which may potentially be
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affected by an installation site and also keep installation-site- and
goal-site-specific statistics from the lighting evaluation.

First, we randomly select an unsatisfied goal or a subeffective in-
stallation site according to their contribution to the overall cost C.
In the case of a goal, we then randomly choose an objective accord-
ing to the associated cost and randomly pick a goal site where the
objective is missed. Subsequently, we randomly select an installa-
tion site that either contributes to the illumination of the goal site
or that may contribute but currently does not. We then determine
all changes that may help to directly improve satisfying the ob-
jective and randomly pick one of them. In addition to elementary
mutations to single variables, we also consider composite actions,
like changing the luminaire, focusing it onto the goal site, and in-
creasing the flux such that the goal site is within the light’s cut-off
distance.

If a subeffective installation site was selected, we aim to improve
the effectiveness of its luminaire(s) by randomly applying either
the focus operation, optionally in combination with a change of
luminaire, or another random elementary mutation to this site.

6. PROCEDURAL LIGHTING DESIGN

In our system, a lighting design can be specified procedurally as
part of an extended procedural modeling workflow.

Procedural modeling. Our procedural modeling system is in-
spired by CGA shape [Müller et al. 2006; Esri 2012] and extends it
in several ways to enable effective lighting design. It builds on the
concept of a shape, which comprises a symbol, a set of attributes,
an oriented bounding box called scope, and geometry inside this
scope. Each shape with symbol V is eventually refined by a pro-
duction rule of the form V → A1 . . . An, unless no such rule was
defined, which makes V a terminal symbol. If a rule is applied to
a shape, the actions Ai are executed sequentially. An action is ei-
ther simply a symbol W, which creates an instance of the current
shape and assigns the symbol W to it, or an operation that modi-
fies or splits the current shape, where a split operation decomposes
the current shape into a set of shapes and performs actions on them
according to the operation’s arguments.

Starting from an initial shape that represents a lot, a whole build-
ing can be created by iteratively applying rules. This derivation pro-
cess implicitly defines a shape tree, where the initial shape forms
the root and the shapes produced by a rule’s actions become the
children of the shape for which the rule is applied. The final build-
ing model is then defined by the set of leaf nodes, which correspond
to all shapes with terminal symbols.

For procedural lighting design, we introduce several new opera-
tions and augment the shape tree to a model tree, where additional
types of nodes other than shape nodes may occur. Analogous to be-
fore, the final model is then given by the subset of leaf nodes that
are shape nodes.

Lighting goals. As detailed in Section 4.1, a lighting goal com-
prises both objectives and goal sites for which they apply. Accord-
ingly, a goal is specified in two steps in our modeling system. First,
the objectives are defined with the new operation

lightingGoal (i, quantity, spec1, . . . ),

where i is an identifying (but not necessarily unique) number, quan-
tity determines whether to consider illuminance or luminance, and
the arguments speck specify the concrete objectives; mean(ℓ, w),
for instance, imposes a target mean illumination level of ℓ. Provid-
ing an objective’s importance weight w is optional (defaults to 1),

Fig. 11. Screenshots from our procedural lighting design system.

as is the case with the goal’s weight, which can be specified via an
argument weight(g).

The objectives are recorded in the model tree, with the operation
creating a goal node and inserting it as child of the currently ac-
tive node, where the initial active node on executing a rule is the
shape node for which the rule is applied. The generated goal node
also becomes the new active node, and thus all nodes created by
subsequent actions in the rule are successors of this goal node.

In a second step, the goal sites the objectives relate to are speci-
fied with the operation lightingGoalSite(goal). It takes the current
shape, whose geometry is required to be a polygon in our proto-
type implementation, and creates a new goal site node for the cor-
responding surface. This node is added as a child to the current
active node and, hence, is a leaf node in the model tree. Note that
by modifying the current shape and creating only a goal site but no
new shape node for this shape state, virtual surfaces, like a plane
above the floor, can easily be realized. The goal site is added to
the site set of the goal that corresponds to the closest goal node
ancestor of the goal site’s node whose identifying number matches
goal.

Luminaire installation sites. Candidate installation sites for
placing luminaires are specified with the lumSite() operation,
which creates a new leaf installation-site node as child of the cur-
rent active node. The line segments Lp and La defining the instal-
lation point are specified relative to the current shape using a local
parameterization of its geometry, which must be a polygon.

Luminaire constraints. The lumConstraints() operation cre-
ates a new luminaire-constraints node and makes it the active node.
The constraints are assigned to succeeding installation sites via an
identifying number, analogous to how lighting goals are referenced
by goal sites. This also makes it possible to initialize the new con-
straints with those of an ancestor luminaire-constraints node, facil-
itating a hierarchical constraint management.

Inter-site constraints. Analogously, inter-site constraints can
be defined with the interLumSiteConstraints() operation. It gener-
ates a corresponding constraints node that becomes the active node.
Again, the association with installation sites is based on an identi-
fying number, where the mutual constraints apply to the group of
all installation sites that reference the constraints node.

Further extensions. In addition to the discussed new opera-
tions that are directly concerned with lighting design, we incor-
porated several further extensions over CGA shape [Müller et al.
2006] and its CityEngine realization [Esri 2012] into our system
that benefit the modeling capabilities and are useful for lighting de-
sign. Examples include a new split operation that yields the unoc-
cluded parts of a shape, the notion of explicit construction stages,
which may be referenced by occlusion-related operations, an ex-
tended type system, and roofs with overhangs of nonzero thickness.
More details are provided in Appendix A.
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Table I. Statistics for Selected Examples

Scene Goals Goal sites Calculation
points

Luminaire
installation sites

Permissible
luminaires1

Groups of
constrained sites2

Inter-site
constraints

Installed
luminaires

Time3

Figure 1 10 10 16,325 12 19 3 10 26 10.66 s
Figure 2 c 18 18 35,374 8 19 1 1 8 13.58 s
Figure 3 c 32 32 73,704 72 7 2 8 72 121.23 s
Figure 3 d 32 32 73,704 44 3 1 4 44 72.37 s
Figure 13 a 4 4 36,000 8 19 1 1 8 8.20 s
Figure 13 d 4 4 36,000 4 19 1 2 4 5.46 s
Figure 14 a 7 7 14,217 12 14 4 14 28 17.36 s
Figure 14 b 11 810 42,852 20 6 4 12 22 18.66 s
Figure 15 a 1 2 88,676 14 8 2 6 14 48.08 s
Figure 15 b 1 3 195,764 24 12 2 4 24 77.67 s
Figure 15 c 1 12 204,303 32 5 2 8 32 95.19 s
Figure 16 a 1 12 214,368 12 16 6 18 50 22.65 s
Figure 16 d 3 8 10,842 7 17 1 1 12 6.96 s

The optimization was run for 2,000 iterations. 1Number of different luminaires permitted by the design’s luminaire constraints. 2Number of groups of installation
sites mutually constrained by inter-site constraints. 3Average over five runs.

7. RESULTS AND DISCUSSION

Our system was implemented as part of a procedural modeling
application (see Figure 11). After a grammar describing both the
building and its lighting specification has been loaded, concrete
instances of this procedural description can be created and in-
spected. To generate a lighting solution, the user selects a luminaire
database, and the system then verifies whether a configuration ex-
ists at all that satisfies the constraints. If this is not the case, an
according message is shown to the user. Otherwise, the optimiza-
tion procedure can be run, and after it has stopped, either because
a configuration that satisfies all goals was found, a maximum num-
ber of iterations was reached, or the user aborted it, the lighting
solution can be viewed and exported. The application also provides
functionality to explore the evolution of the solution, the installed
luminaires, and the illumination and goal satisfaction at the goals
and their sites.

For rendering, the system uses Direct3D 11 and pursues a
deferred lighting approach, employing cube shadow maps and
texture-based luminous intensity distributions for the point lights
(Section 5.6). Moreover, irradiance environment map lighting [Ra-
mamoorthi and Hanrahan 2001] is performed and modulated by an
approximate ambient occlusion solution. All results presented in
this paper are direct captures from our application, using the global
photographic operator [Reinhard et al. 2002] for tonemapping. On
our GeForce GTX 680 card, they can be rendered in real-time with
triple-digit frame rates at full-HD resolution.

7.1 Examples

The system has been successfully employed for modeling and
designing the lighting of various architectural structures, ranging
from residential buildings (Figures 1, 14, 16 b–d) over larger struc-
tures, like office buildings (Figures 2, 3), skyscrapers (Figure 16 a),
and warehouses (Figure 15), to monuments (Figure 13). Most of
these structures and their lighting designs were motivated by real-
world examples. For all results, we employed a common luminaire
database populated with 3D models and photometric data made
publicly available by lighting manufacturers; it comprises 19 lu-
minaires, using 11 different luminaire models, which span a wide
range of luminaire types (see Figure 5 for some examples).

Table I provides a statistic overview of the modeled goals, in-
stallation sites, and constraints, as well as the shown results. The
optimization was run for 2,000 iterations, generally yielding good
solutions that satisfy the specified goals reasonably well.

The required optimization time, measured on a system with
an Intel Xeon X5675 and a GeForce GTX 680, depends heavily
on the concrete scene and its design specification. Rendering af-
fected shadow maps (and deriving luminaire effectivenesses) usu-
ally dominates the time consumed by a single iteration in the op-
timization; consequently, this time is influenced by both the geo-
metric complexity of the scene and how many light positions and
directions were changed. Note that an installation site with poten-
tially many installed luminaires and especially an inter-site con-
straint comprising many installation sites can cause a change to a
single installed luminaire to trigger changes to many others, which
entails a high iteration time.

7.2 Modeling example

To provide an idea of what a lighting design specification may
comprise, we consider the example in Figure 1. Overall, ten goals
were defined for different façade parts, the court, and the driveway.
Each goal aims for the illumination to fall into a certain luminance
range and features a single goal site. In (b), the (visible) goal sites
are shown in red, while the yellow surfaces correspond to installa-
tion sites. At each installation site, the design allows for translation
along the blue line segment, and if a green line is shown, the site
may additionally accommodate more than one luminaire, arranged
along this line (Section 4.3). For instance, for each of the two sites
on either side of the driveway, we permit between two and six lu-
minaires. These two sites are further subjected to an inter-site con-
straint to ensure that both employ the same number of luminaires,
the same spacing, the same luminaires, and the same flux per lu-
minaire. Another inter-site constraint requires the two sites left and
right of the garage door to use the same luminaire with the same
flux and the same model parameter values (i.e., the same tilt an-
gles) and to position them at the same height.

Respecting all constraints, the obtained result in Figure 1 c sat-
isfies the goals well, as also evidenced by the visualization of the
scene luminance in Figure 1 d.
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a b c

Fig. 12. Progression of the optimization for the design in Figure 3 c. The
graph shows the cost of the accepted candidate solutions, with the red line
indicating the cost of the best encountered solution.

7.3 Optimization progress

For the final result in Figure 3 c, the graph in Figure 12 shows how
the cost C of the accepted solutions evolved during the optimiza-
tion. Moreover, three of these intermediate solutions are shown
above the graph. Please consult the supplemental video to view a
full sequence of the accepted solutions.

The large cost increases in the graph correspond to starts of new
chains, performed to avoid getting trapped in a local minimum of
the solution space. In these situations, the optimizer sometimes re-
sumed further refining the best solution known at that point. The
graph also illustrates that due to the stochastic nature of the opti-
mization, it can never be known whether a significantly better so-
lution will be found soon. We observe, however, that after coarsely
exploring the solution space with several generated initial config-
urations, generally a configuration is found that can be refined to
a good result and that the optimization manages to perform such a
refinement.

In practice, this means that good results can usually be achieved
by running only a few thousand iterations, as demonstrated by the
shown examples, which all relied on 2,000 iterations. Indeed, even
the intermediate solutions (b) and (c) in Figure 12 already consti-
tute reasonable results after less than 500 iterations. Note that given
the complexity of the problem, the many degrees of freedom, and
the constraints they are subjected to, a few thousand iterations seem
a rather low number, even for producing merely reasonable results,
which hints at the efficiency of our optimization approach.

7.4 Variations

Luminaire installation sites and constraints. The monu-
ment example in Figure 13 showcases different luminaire instal-
lation site designs, all of them aiming at reaching a target illumi-
nance value at all four sides of the obelisk. In variant (a), eight
installation sites are specified that are constrained to use the same
luminaire; variant (b) additionally fixes the orientation towards the
center. Variant (c) partitions the sites into two interleaved groups,
further requiring each to use the same model parameter value and
the same flux. Only four installation sites are modeled in variant
(d), constraining them to use the same luminaire and the same flux.

The example demonstrates the usefulness of constraints to im-
plement a certain aesthetic taste. In general, the optimization may
come up with solutions that are unexpected and potentially un-

a b c d

Fig. 13. Variants of lighting a monument, using different installation site
specifications and constraints.

a b

Fig. 14. Two examples of residential houses lit with our system.

wanted by the modeler because they are visually unpleasing or
structurally objectionable to him, despite actually satisfying the
goals rather well. This is highly subjective, though, and basically
means that the modeler omitted some constraints from the design
specification that establish his taste, which can be easily remedied
by adding them.

Lighting goals. Figure 3 demonstrates varying lighting goals
for a model. In (d), the top floor is to be illuminated while the
brick columns are supposed to remain dark, which is specified via a
maximum target value of zero. By contrast, variant (c) aims at illu-
minating the building’s façades and provides additional luminaire
installation sites at the brick columns.

Building model. Applying a lighting design to varying instan-
tiations of a procedural building model is shown in Figure 16 b–d.
The model offers several degrees of variation, like the number of
stories or whether to include certain installation sites (e.g., the one
behind the hedge). The lighting goals always aim at illuminating
the driveway, the entrance, and the front façade with the ground-
level windows.

A more complex example, yielding widely different instances, is
depicted in Figure 15. In all variants, the goal is to illuminate the
parking space surrounding the warehouse.

7.5 Direct modeling of lighting solutions

Even in seemingly simple examples, usually many complex deci-
sions have to be made to arrive at a luminaire configuration that
satisfies the goals well, like choosing the correct luminaire, direct-
ing it appropriately, and determining the right flux. Obtaining a
good solution by directly modeling luminaires as part of a build-
ing (rather than using our system) is hence extremely hard, and
especially when procedural variations are in place, this is basically
impractical. In particular, the necessary direct reasoning about the
cumulative effect of all lights and the geometric relationships in-
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a b c

Fig. 15. Three example instances of a procedural warehouse model, where the lighting design aims at illuminating the parking space.

a b

c

d

Fig. 16. (a) A skyscraper with its top being illuminated, and (b–d) three
variants of a procedural residential house model.

duced by the existing procedural rules is generally not feasible, let
alone the entailed challenge of formulating it in the modeling sys-
tem’s grammar language. Note that such procedural languages de-
scribe successive local refinements of shapes and (currently) lack
specific means for global coordination (beyond limited occlusion
queries) and referencing other shapes. Any non-local decision af-
fecting more than one shape has hence to be expressed as a local
decision no later than when their common parent shape gets refined
(at which point these shapes consequently do not even exist yet).

Figure 2 shows a specific example where direct modeling ap-
pears comparatively simple. To reach the goal of illuminating all
façades, we selected a promising luminaire and directed all lumi-
naire instances inwards. While this indeed manages to illuminate
the façades (a), for considerable parts of them the illumination is
very weak, as can be clearly seen in the illuminance visualization
(b). Of course, we could incrementally try different luminaires or
adapt the flux, rotation, and tilt angle to improve the solution, but
this requires many manual iterations and only holds for a single
variation. By contrast, the result obtained by specifying goals and
running the optimization directly provides good results (c, d), and
specifying the lighting design is comparatively easy.

7.6 Importance of hard constraints

A key characteristic of our optimization approach is that the mod-
eled constraints are always satisfied. To test the importance of this
feature for the progress and success of the optimization, we treat

all inter-site constraints as soft constraints. A penalty is determined
for all violated constraints, scaled by a weighting constant, and
added to the overall solution cost C. Alternatively, the soft con-
straints could be encoded as factors [Yeh et al. 2012] (a test did not
indicate any improvement). We also don’t explicitly account for
inter-site constraints when generating the initial solution and per-
form only random (elementary and focus) mutations. Altogether,
this brings the optimization procedure closer to a “standard” simu-
lated annealing approach.

Soft constraints obviously don’t guarantee that the constraints
are eventually satisfied. Moreover, their penalty cost may have
undesirable effects, like trading goal fulfillment for reduction in
penalty. It is hence not surprising that such an approach performs
badly, especially for heavily constrained models. As an example,
Figure 3 a, b show results after 2,000 and 200,000 iterations. Even
in the latter case, important constraints are violated, yielding a vi-
sually unsatisfying luminaire pattern. On top of that, the lighting
solution leaves room for improvement (e.g., the façades end up too
dark). It is particularly revealing to compare these results with the
intermediate solutions in Figure 12 b, c, obtained with our approach
after less than 500 iterations.

7.7 Scalability to many buildings

In principle, our system could be directly applied to larger envi-
ronments comprising many buildings, where the lighting of one
building accounts for the influence of the neighboring buildings’
lighting. However, if an optimization across multiple, independent
building groups were indeed desired, it would be better to first op-
timize per building group (e.g., all buildings on a lot) and then run
the optimization on all buildings for fine-tuning the illumination,
which benefits from the influence of individual luminaires being
rather localized.

We reckon that in practice, especially in residential areas, the
lighting design for most building is usually performed in isolation,
not least because one can generally hardly rely on the lighting from
surrounding lots. Consequently, we focus on lot-level scenarios and
leave exploring large-scale scenes, which also entails extensions to
the modeling system like street network support, for future work.

7.8 Limitations and future work

For a first-time user, our system requires some time to learn how to
effectively specify a lighting design, and if no prior experience with
procedural modeling exists the initial learning curve can be clearly
steep. For instance, the examples in Figure 16 b–d were created by
a computer-science undergraduate student with no background in
procedural modeling and lighting design. After receiving our ap-
plication and an 11-page manual, it took him about twenty hours
to come up with the first reasonable models with some variations.
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A considerable amount of the time was spent getting familiar with
procedural modeling in general.

While we currently account only for direct illumination during
lighting evaluation, it would be interesting to incorporate a fast
global illumination algorithm. However, despite the wide variety
of proposed interactive approaches [Ritschel et al. 2012], none
of them appears to be particularly well suited for dealing with
many primary lights with complex emission profiles. Moreover,
any method can be expected to entail substantially increased itera-
tion times.

Owing to the procedural modeling context considered, the light-
ing design specification is currently explicitly defined. An interest-
ing direction is to further automate this design task. For instance,
one might try to learn goals, installation sites and constraints from
example models. Alternatively, semantic annotations and attributes
of scene elements may be harnessed to derive a specification from
recommendations in lighting standards. Another avenue is offering
an interactive design component that allows the user to edit spec-
ification parameters, to modify and add constraints, and to trigger
changes like choosing a different or selecting a specific luminaire.

8. CONCLUSION

We have presented a system for lighting design where the design is
specified in terms of lighting goals, luminaire installation sites and
constraints, and an according lighting solution, which comprises
luminaires placed in the scene, is automatically determined. The
specification is expressed procedurally using extensions to a gram-
mar language for the procedural modeling of buildings. This allows
both for a natural integration into the modeling workflow and for
the direct application of a design to varying instances of a building
model. The intricate problem of determining a luminaire configu-
ration that respects all constraints of the specification and satisfies
the goals as well as possible is addressed by an advanced stochastic
approach that navigates directly in the complex subspace of valid
configuration. We applied our system to various examples, demon-
strating its effectiveness.

APPENDIX

A. GENERAL EXTENSIONS TO CGA SHAPE

In order to better address some modeling challenges we encoun-
tered, our procedural modeling system provides several extensions
(in addition to those related to lighting design) over CGA shape
[Müller et al. 2006] and its subsequent commercial realizations
[Esri 2012]. In the following, we discuss some of them.

Unoccluded parts. During modeling, often simple base
masses are intentionally placed such that intersections and thus sur-
face occlusions occur to form a more complex mass. While the
result of an occlusion query may then frequently be sufficient to
decide how to further refine a shape, like whether to make it a (par-
tially hidden) wall or develop it into a (fully visible) window, it
clearly is not enough once simply keeping the occluded part is not
an option, like when the visible part of a wall should be uniformly
split and then refined. In particular, for specifying a goal site, it is
mandatory to avoid any occluded parts as these can never be illu-
minated, precluding meeting constraints like minimum and biasing
the solutions for others like mean. To address this, we introduced
a new split operation unoccludedParts() that determines the unoc-
cluded parts of the current shape and executes the actions specified

in the operation’s argument list on them. Optionally, the occluder
tested against can be enlarged in the direction normal to the cur-
rently considered face to improve robustness.

Construction stages. For correct results, it is necessary that
when an occlusion test is executed all relevant occluding shapes
have already been generated. However, sometimes neither CGA
shape’s original approach of statically assigning priorities to rules
and selecting the next shape to refine based on these priorities nor
CityEngine’s new solution of constructing the model twice, with
the second pass using the first pass’ result for occlusion testing,
provide enough control.

We address this by allowing the whole model generation to be
structured into multiple construction stages. A crucial role is played
by the new operation stage(k), which indicates that in the current
branch of refinement the construction stage k has been reached.
This is reflected in the model tree by adding a new stage node,
which then becomes the new active node. If k is higher than the
globally achieved construction stage K, which is initially zero, then
the execution of the current rule is suspended, and the processing
continues with a shape that has not been refined yet. If no more
such shapes exist, K is increased to the lowest stage reached by
all suspended rule executions, and the according rule executions
are resumed one after another. This process is run until no more
pending executions exist.

To ensure that a certain stage k′ has been reached before the
action A is executed, it thus suffices to precede A with stage(k′).
Moreover, we augmented some operations to optionally take stage
information into account. Occlusion computations, for instance,
may be restricted to consider only the shapes that were available
at a certain stage. If this stage has not yet been reached globally,
the rule execution is suspended until K has advanced accordingly.

It is interesting to note that stage(k) allows guiding the deriva-
tion process into a growth process with discrete growth steps (as k
can be any expression, the number of steps is basically unbound).
This operation also naturally serves as a synchronization point and
hence offers the possibility for a controlled communication be-
tween different branches of construction; augmenting the expres-
siveness of the grammar language accordingly remains for future
work, though.

Materials. We further extended the type system to treat entities
like assets and materials as first-class objects; these can be defined
globally (with a unique identifier) but also constructed on the fly.
This enables operations like replacing one specific material used in
an asset with a user-defined one and restricting the texture coor-
dinate projection operation to faces with selected materials, which
we use to adjust parts of an imported asset to match the rest of the
model, like making all wall parts consistently textured.

Roofs. Our system supports common roof types, like hipped
and gabled, where all roof overhangs produced are of nonzero
thickness and thus feature an eave or rake-board face and sepa-
rate faces for the rooftop and soffit parts. To facilitate selecting a
specific part of a roof in a component split, we further introduced
semantic tags that can be associated with parts of a shape.
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