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Figure 1: Farthest point optimization on the Dragon model (15k samples). From left to right: initial sampling, the result of the
initial optimization by shortest edge removal (Section 4.3), the final result and the remeshing. Bottom row left: spectral analysis
of the corresponding sampled point set. Bottom row right: angle and edge length distribution of the remeshing.

Abstract
In this paper, we present a novel method for surface sampling and remeshing with good blue-noise properties. Our
approach is based on the farthest point optimization (FPO), a relaxation technique that generates high quality
blue-noise point sets in 2D. We propose two important generalizations of the original FPO framework: adaptive
sampling and sampling on surfaces. A simple and efficient algorithm for accelerating the FPO framework is
also proposed. Experimental results show that the generalized FPO generates point sets with excellent blue-noise
properties for adaptive and surface sampling. Furthermore, we demonstrate that our remeshing quality is superior
to the current state-of-the-art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Blue-noise sampling and remeshing

1. Introduction

Generating uniformly distributed random point sets on sur-
faces is essential for many applications in computer graph-
ics, such as rendering, geometry processing, and physical
simulation. Among all the existing sampling techniques,
blue-noise sampling [Uli87] has received most of the atten-
tion.

† Corresponding authors: X. Zhang (xpzhang@ia.ac.cn), D.-M.
Yan (yandongming@gmail.com)

Most previous blue-noise sampling approaches only han-
dle the 2D Euclidean space. More recently, several clas-
sic 2D blue-noise sampling methods have been general-
ized to surfaces, such as Poisson-disk sampling [CJR∗09,
BWWM10,CCS12,YW13] and Lloyd relaxation [CYC∗12,
XHGL12]. Furthermore, Wei and Wang [WW11] propose a
new technique, called Differential Domain Analysis, to eval-
uate the Fourier power spectrum of non-uniformly sampled
point sets on surfaces. This work provides an evaluation tool
of the blue noise property and hence facilitates the compari-
son of different approaches.
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In rendering applications, blue-noise sampling is used for
anti-aliasing [Mit87] and raytracing [Mit91]. In the con-
text of surface sampling, recent work explained why blue-
noise properties are an important factor for solving cer-
tain PDEs [SB12] (like water animation), objects place-
ment [CYC∗12], and stippling [MIPS14], on surfaces. For
these applications, blue-noise properties of the point distri-
butions should therefore be considered as additional qual-
ity criterion in an addition to traditional mesh quality met-
rics [FB97], e.g., maximal smallest mesh angle.

In this paper, we propose a new method for surface sam-
pling and remeshing with high blue-noise properties based
on the farthest point optimization. We make two important
extensions of the FPO algorithm introduced by Schlömer
et al. [SHD11]. First, we generalize the concept of FPO to
non-uniform sampling according to a density function de-
fined over the sampling domain. Second, we generalize FPO
to mesh surfaces, e.g., see Figure 1. In Section 6, we will
demonstrate that the sampled point sets result in high quality
remeshings, which are superior to the current state-of-the-art
approaches. The main contributions of this paper include:

• A generalized version of the farthest point optimization
for non-uniform sampling.
• A complete framework for blue-noise sampling and

remeshing on surfaces using non-uniform FPO.
• A simple and efficient algorithm for acceleration of the

FPO computation.

1.1. Related work

We briefly review techniques for the generation of random
point sets in 2D and on surfaces.

2D Sampling: There are a large number of sampling
algorithms that produce point sets with different at-
tributes [Llo82, Coo86, Mit87, Mit91, MF92]. These tech-
niques can be classified into three types: 1) dart-throwing
and its variants, 2) iterative optimization and 3) patch-based
or rule-based synthesis. Here, we review only the iterative
optimization based approach, which is most related to our
approach. A more extensive survey of 2D blue-noise sam-
pling techniques is presented by Lagae and Dutré [LD08].

Iterative relaxation is one of the most important tech-
niques for point set sampling, and our approach falls into
this category. Lloyd [Llo82] first proposes such an algorithm
for signal quantization. Balzer et al. [BSD09] introduce the
capacity constrained Voronoi tessellation (CCVT), which it-
eratively equalizes the area of the Voronoi cells of a point
set. The generated point sets exhibit great blue-noise proper-
ties. Schmaltz et al. [SGBW10] formulate the point sampling
problem by simulating electrostatic forces. The stable status
is reached when the forces between particles are balanced.
Fattal [Fat11] presents an adaptive sampling algorithm based
on kernel density estimation. de Goes et al. [dGBOD12]
generate the blue-noise point sets using optimal transport.

Schlömer et al. [SHD11] propose to maximize the minimal
distance between points by Delaunay removal and inser-
tion, called farthest point optimization. The resulting point
set exhibits excellent blue-noise properties. Chen and Gots-
man [CG12] parallelize the FPO framework of [SHD11] via
local Delaunay triangulation. However, the above FPO ap-
proaches can handle only 2D uniform sampling.

Surfaces Sampling: The classic dart-throwing algo-
rithm [Coo86] has been generalized to surfaces. Cline
et al. [CJR∗09] maintain a hierarchical primitive list for
placing Poisson-disks on surfaces. Corsini et al. [CCS12]
first generate a dense point set by Monte-Carlo sampling,
and then compute a Poisson-disk set by hierarchical cell-
based subdivision. Yan and Wonka [YW13] propose a
framework for maximal Poisson-disk sampling and remesh-
ing on surfaces based on gap processing. Then, Yan et
al. [YWW14]generalize the MPS framework for unbiased
isosurface sampling and meshing. A typical drawback of the
dart-throwing based approach is that one cannot explicitly
control the number of sampled points, which might be im-
portant for certain applications. Öztireli et al. [OAG10] solve
the problem of finding optimal sampling conditions based on
the spectral analysis of manifolds. Bowers et al. [BWWM10]
extend the parallel Poisson-disk sampling technique [Wei08]
to surfaces. They first propose a spectral analysis method for
surfaces sampling, but this method can only be used for an-
alyzing uniform sampling. Wei and Wang introduce the Dif-
ferential Domain Analysis (DDA) technique for analyzing
the spectral properties of non-uniformly sampled point sets,
as well as for surface sampling. With this tool, one is able
to analyze the blue-noise properties of various methods on
surfaces.

More recently, Xu et al. [XHGL12] extend the
CCVT [BSD09] to surfaces, and Chen et al. [CYC∗12] com-
bine the Centroidal Voronoi Tessellation (CVT) [YLL∗09]
and the CCVT [BSD09] for blue-noise sampling on surfaces.
Both approaches are based on iterative optimization. Chen
et al. [CGW∗13] present a blue noise sampling method con-
sidering both spatial and non-spatial (feature) properties of
the sampling domain. The key idea is to modulate the spa-
tial sample position with a per sample attributes measure-
ment. Medeiros et al. [MIPS14] propose an algorithm for
fast blue-noise sampling on polygonal models. Applications
such as surface stippling and non-photo realistic rendering
are demonstrated. However, these approaches do not con-
sider remeshing as an application.

Once a point set is generated, a mesh can be extracted
using a mesh extraction algorithm. There are many possi-
ble choices, e.g., Delaunay mesh generation [CDS12]. For
remeshing without blue-noise properties, we refer the reader
to a survey paper by Alliez et al. [AUGA08]. In Section 6,
we make a detailed comparison of the blue-noise properties
and the remeshing quality of the current state-of-the-art ap-
proaches.
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2. Overview

In this paper, we present a new method for blue-noise surface
sampling and remeshing. Our approach is a generalization of
the farthest point optimization [SHD11] to non-uniform and
surface sampling. In this section, we first briefly review the
FPO framework, and then present our key ideas.

2.1. Farthest point optimization

The input is a sampling domain Ω (2D plane for the FPO al-
gorithm) and an initially sampled point set X = {xi}n

i=1. We
denote by dx the minimum distance for any other point in X
to the point x, dX the global minimum distance for any pair
of points, and d̄X the average of all the minimum distances
dx. Theoretically, the largest minimum distance between any

two points is dmax =
√

(2/
√

3n) if the points in X form a
hexagonal lattice [LD08, SHD11]. As a result, we can nor-
malize dX and d̄X by dmax to get δX = dX

dmax
and δ̄X = d̄X

dmax
,

which are used to measure the distribution quality of a point
set.

Starting from a random point set X, the FPO algorithm
iteratively optimizes the positions of the points by maxi-
mizing the minimal distance dx. In each iteration, this al-
gorithm proceeds by repeatedly removing each point from
X and reinserting it back to a new position (called “farthest
point") that is as far away from the remaining points X\{x}
as possible. Here a full iteration means that every point in
X has been moved once. In general, the farthest point is the
circumscribed center of the largest empty circle in the do-
main, which can be computed efficiently using the Delaunay
triangulation and the Voronoi diagram of the points. Since
δX does not decrease in each iteration, the FPO always con-
verges to get a well-distributed point set with a large global
minimum distance (δX > 0.9 ). The main steps of the FPO
algorithm are given in Algorithm 1.

Algorithm 1: Farthest point optimization algorithm

1 Initial point set X with n points;
2 repeat
3 foreach xi ∈ X do
4 Compute its local minimum distance

dxi = min
∀x j∈X\{xi}

distance(xi,x j) ;

5 Remove xi from X, then find the largest empty
circle cir(c,r) with center c and radius r;

6 if r > dxi then
7 Insert xi at the new position c;
8 else /* xi is not moved */
9 Re-insert xi back to X at its old position;

10 until no point xi moved, the algorithm has converged;

2.2. Generalizations

The main contribution of this paper is to generalize the FPO
to non-uniform sampling and surface sampling. In our ap-
proach, the sampling domain Ω is either a 2D plane or a 3D
surface. A sizing function ρ(x) is defined over the domain
to guide the sampling density. We iteratively optimize the
point positions to maximize the minimal distance between
samples according to this sizing function.

The optimization framework for non-uniform sampling
and surface sampling remains similar to [SHD11]. In non-
uniform sampling, each sampled point is equipped with a
weight. We use the weighted Delaunay triangulation (regu-
lar triangulation) and the power diagram instead of the or-
dinary Delaunay triangulation and the Voronoi diagram for
computation. In the following, we will explain the details
of non-uniform sampling (Section 3) and surface sampling
(Section 4).

3. Non-uniform FPO in 2D

In this section, we present the algorithm for non-uniform
sampling with the farthest point optimization in the 2D
plane. Our approach is based on the concept of the regular
triangulation and the power diagram [Aur87]. In the follow-
ing, we first give the definition of the regular triangulation
and the power diagram, and then explain the key ideas for
non-uniform sampling.

3.1. Regular triangulation and power diagram

The regular triangulation and power diagram are a general-
ization of the ordinary Delaunay triangulation and Voronoi
diagram. They are constructed based on a weighted point set
Pw = {pi,wi}n

i=1 in domain Ω, where each pi is a point and
each wi is a scalar value called the weight of point pi. Al-
ternatively, each weighted point (pi,wi) can be regarded as
a disk (e.g., a circle in 2D or a sphere in 3D) with center pi
and radius ri =

√
wi. To compute the distance between two

weighted points pi and p j, we use the power distance defined
by Equation 1 instead of the Euclidean distance.

Π(pi,wi;p j,w j) = ‖pi−p j‖2−wi−w j (1)

The power diagram of Pw, consisting of a collection of
power cells {Vi}n

i=1, is a weighted Voronoi tessellation of
the domain Ω, where the power cell Vi of a weighted point
pi is given by

Vi = {x ∈Ω |Π(pi,wi;x,0)< Π(p j,w j;x,0),∀ j 6= i}. (2)

The dual structure of the power diagram is the regular trian-
gulation. Figure 2 shows an example of the power diagram
and regular triangulation. If the weights of all points are the
same, the power diagram and regular triangulation are equiv-
alent to Voronoi diagram and Delaunay triangulation.

c© 2014 The Author(s)
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Figure 2: An example of the power diagram (left) and the
regular triangulation (right) of a weighted point set.

3.2. Implementation

Initially, we sample a random weighted point set Pw with re-
spect to a certain sizing function ρ(x), which indicates the
local edge length. In our 2D implementation, we use the lo-
cal feature size (lfs) introduced in [ABK98] as the sizing
function, as shown in Figure 4(a). For each point pi, we de-
fine its weight wi = r2

i , where ri = kρ(pi) is proportional to
its local edge length (k is a constant). Then our non-uniform
FPO algorithm iteratively optimizes the point positions. To
speed up the algorithm, we maintain a dynamic global reg-
ular triangulation RT (Pw), in which each triangle keeps its
dual power vertex of the power diagram. In addition, a prior-
ity queue PQ of the triangles in RT (Pw) is also maintained,
where the priority of a triangle t is the radius of its corre-
sponding circumcircle. Note that the radius of the circumcir-
cle is computed by the power distance between one vertex of
t and its dual power vertex.

p p
c

c

Figure 3: (Left) An initial point set, and p is to be deleted.
(Middle) Delete p from RT then find the farthest point at c.
(Right) Inset c back to RT. This illustration uses periodic
boundary conditions.

In each iteration, non-uniform FPO removes each point
from RT (Pw), finds the farthest point (the center of the first
circumscribed circle in PQ) from the remaining triangles and
finally reinserts the new point back to the RT (Pw). Figure 3
shows the process of deleting one point and inserting the far-
thest point. The algorithm converges when no point is moved
during one iteration. In our experience, we can stop the iter-
ation as soon as the global minimum distance δX is larger
than a threshold (we set it to 0.926). Similar to [SHD11],
the data structure changes of RT (Pw) and PQ caused by re-
moval or insertion operations are updated dynamically and

(a) Sizing field (b) Initial sampling (c) 1/2 iteration

(d) 1 iteration (e) 20 iterations (f) 78 iterations

Figure 4: 2D non-uniform FPO of 1024 random points. In
(a), red color indicates a higher value, and blue color indi-
cates a lower value of the sizing function.

locally. Since on average the local updating of RT (Pw) re-
quires O(1) time and maintaining PQ for the largest empty
circle requires O(logn) time, the runtime complexity for
each iteration is O(n logn), where n is the number of the
sample points. Though in the worst case, the local updating
of RT (Pw) could requires O(n) time, our approach performs
well in practice. Figure 4 shows one optimization result of
a random point set with 1024 points. After one iteration the
point set is already well-distributed.

4. FPO on Surfaces

In this section, we describe our approach for farthest point
optimization on surfaces. We assume a 2-manifold input do-
main Ω that consists of a set of triangles {ti}m

i=1. The sizing
function ρ(x) is typically defined by the curvature, or the
local feature size.

The main challenge of computing FPO on surfaces is to
find the largest empty circle around each point in the domain
and to insert new samples in the right location. Generally, it
might seem natural to use the geodesic power diagram for
optimization. However, the computation of geodesic power
diagram is time consuming and not robust if the input do-
main contains badly-shaped triangles. Hence, we opt for the
restricted power diagram on surfaces, which is a good ap-
proximation of the geodesic power diagram when the sam-
pling density is high. More importantly, the state of the art
remeshing algorithms are based on Euclidean distances and
not geodesic distances.

4.1. Restricted power diagram

The restricted power diagram (RPD) is defined as the inter-
section of the 3D power diagram {Vi} and the input mesh Ω.

c© 2014 The Author(s)
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Type A Type B Type C

Figure 5: Illustration of the RPD (left), three types of inter-
secting vertices (middle), and RRT (right) on a mesh surface.
The yellow triangle is a triangle of the input surface.

The dual of the RPD is called the restricted regular triangu-
lation (RRT). The concepts of RPD and RRT are the general-
izations of the restricted Voronoi diagram and the restricted
Delaunay triangulation [ES97,YLL∗09]. Figure 5 illustrates
the RPD and the RRT on a mesh surface. Each cell of the
RPD is called a restricted power cell and has three types of
vertices.

• Type A: the original vertex of the input mesh.
• Type B: the intersection of a bisecting plane of the power

diagram and an edge of the input mesh.
• Type C: the intersection of an edge of the power diagram

and a mesh triangle. We call this type of vertex a restricted
power vertex.

We use the implementation of [YLL∗09] for the symbolic
representation of the vertices of the RPD, so that each vertex
of the RPD is represented as the intersection of three planes.

4.2. Point insertion and deletion

We use the RPD and RRT for computing FPO on surfaces.
We first illustrate the general method directly derived from
Algorithm 1, which requires O(n2) time for each iteration,
where n is the number of sampling points. Then we present
a method to update the RPD and RRT locally to speed up
this process.

First, we generate an initial point set by randomly sam-
pling n points on the input triangles, where n is the user spec-
ified number of points. In the uniform case, to generate a ran-
dom point on the input mesh, we randomly select a triangle
with the probability proportional to the triangle area. Then
we randomly generate a point inside the selected triangle.
In the non-uniform case, the probability of the triangle se-
lection is proportional to the weighted area of each triangle.
Different from the 2D case, the farthest point is no longer
the center of the circumcircle of a restricted regular triangle,
because the center may not be located on the surface. In this
paper, we redefine the circumcircle of a restricted regular tri-
angle t as cirt(v,r) where v is the corresponding restricted
power vertex and r is the power distance between any vertex
of t and v. Figure 6 (a) shows an example of circumcircles.
The key insight for point insertion is that the farthest point

p3

p4

p1

p
2

v1
v2

(a)

p

(b)

v

(c)

Figure 6: (a) Illustration of the circumcircles of two re-
stricted regular triangles tp1,p2,p3 and tp3,p4,p1 on a surface.
The dashed lines indicate that the edges or the circles may
not be on the surface exactly. (b) and (c) shows the input tri-
angles (solid blue) and restricted regular triangles (dashed
rose-red) that will be influenced by deleting one point p or
inserting one point at position v.

is always one of the restricted power vertices. Now given an
initial sampling point set, we can iteratively optimize it just
as in the 2D domain. However, when removing one point
from the point set, we should compute the RPD and RRT
from scratch and traverse all the restricted power vertices
again to find the farthest point. As a result, the algorithm
requires O(n2) time for each iteration.

To compute the RPD, Yan and Wonka [YW13] start from
clipping one input triangle with its incident cells (the sam-
pling points) and computing the three types of vertices. Then
they use a propagation method to clip other triangles. Based
on this observation, we present a new method to modify the
RPD and RRT locally and apply this method to speed up
FPO. In the initial stage, we build a global RPD and RRT
of the point set, and use a priority queue to maintain the
restricted regular triangles (the priority is set to the radius
of its circumcircle). When deleting or inserting one point,
we can update the RPD and RRT locally. As shown in Fig-
ure 6(b), when deleting one point p, we first delete all the
restricted regular triangles (dashed rose-red ones in this fig-
ure) that contain p from the RRT. Then we find the input
triangles (solid blue) that are affected by p and re-clip them
with their other incident cells. Similarly, when inserting one
point at position v (Figure 6(c)), we first remove the affected
restricted regular triangles and then recompute the local RPD
and RRT in the neighborhood of v. The priority queue is also
updated in this process.

We analyze the runtime complexity of the proposed algo-
rithm. First, the local updating of RPD and RRT can be done
in constant time by using proper data structures. In our im-
plementation, we maintain a list of cell labels for each input
triangle. Each cell in this list will cover a part of this trian-
gle. For each cell, we record the input triangles that are fully
or partially covered by it and the restricted regular triangles
that connect to it. When deleting or inserting one point, we
just inspect the affected input or restricted regular triangles
in the neighborhood of that point. Thus, we can recompute

c© 2014 The Author(s)
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the RPD and the RRT locally in O(1) time. Second, we use
a max-heap to implement the priority queue, and deleting or
inserting one element costs O(logn) time. Overall, the time
required for one iteration is O(n logn).

4.3. Acceleration

Although FPO can generate point sets with good blue-noise
properties, the performance can be improved since it usu-
ally takes 60− 100 iterations to converge. In this section,
we present an efficient approach to accelerate the sampling
speed. This algorithm can be regarded as a preprocessing
step of the point set. After the preprocessing, we need fewer
FPO iterations to reach the convergence criteria.

Since the key point of FPO is to maximize the global min-
imum distance δX, the shortest edge between all pairs of
points must be removed until the algorithm converges. This
fact motivates us to present the shortest edge removal (SER)
algorithm. Starting from the initially sampled point set, we
select the shortest edge every time and remove one of its
endpoint. Then we search for the farthest point on the input
mesh to insert the point back into the point set. The strat-
egy of point insertion and deletion is the same as in FPO.
This process is performed repeatedly until no point is moved
(meaning that we insert the farthest point to the original po-
sition). As we will see in Section 6, a point set generated by
this algorithm already has good blue-noise properties.

In our experiments, there are about 15% to 20% points in
the initial set that have never been moved. The shortest edge
removal algorithm converges to achieve a global minimum
distance of δX ≈ 0.78, while δX in FPO is larger than 0.9.
Fortunately, if we perform our FPO algorithm after shortest
edge removal, almost all the points (the percentage is larger
than 99%) will be moved locally around their original po-
sitions. Thus instead of maintaining a priority queue for all
empty circles, we can search for the farthest point locally,
for example only inside the 2-ring neighborhood of the cur-
rent point. In this way, finding the largest empty circle only
requires O(g2) time, where g is the average number of neigh-
bors in the RRT. As g is usually independent of n, one itera-
tion requires only O(n) time. This idea is similar to the local
variant of FPO in [SHD11], but the convergence speed of
our new method is much faster.

5. Surface Remeshing

In our implementation, we use the lfs [ABK98] as the siz-
ing function to guide the sampling density. If the sampling
density satisfies the requirement of the ε-sampling prop-
erty [ABK98] and the topological ball property [ES97], then
each restricted power cell is a single connected component
and the RRT is homomorphic to the input mesh. After op-
timizing the point locations, we apply the mesh extraction
algorithm [YLL∗09] to compute the remeshing.

Angle optimization: Our uniform FPO sampling is always

a maximal Poisson-disk sampling (shown later in Section 6),
which exhibits an angle bound [30o,120o]. However, our
adaptive sampling does not have this property, and some an-
gles are smaller than 30o (termed as bad angles), although
the percentage is usually lower than 0.1%. To improve the
remeshing quality, we propose a simple method for angle
optimization. For each bad triangle in the output remeshing,
we find the vertex that corresponds to a bad angle and set the
weights of the other two vertices to smaller values (cwi, we
set c to be 0.4∼ 0.8 empirically). Then we simply resample
these vertices with the algorithm, respectively. The vertices
with bad angles should be handled first. The reason that we
decrease the weights of the vertices is that it can make the
bad samples move closer to them, so as to make the bad an-
gles larger. The optimization terminates when there are no
bad angles.

Feature preservation: To preserve the features or bound-
aries, we implement a feature-aware sampling step. We first
identify the features of the input mesh, including boundary
edges, creases and corners, which are organized in the form
of 1D curved skeletons. Then we use the method introduced
in [AVDI05] to determine how many points will be sampled
on the features. The corners are inserted directly as sample
points and we perform 1D FPO on the feature curves to gen-
erate other feature samples. Finally the feature samples re-
main fixed in the later FPO optimization to sample the inte-
rior of the surface.

6. Experimental Results

We first present the experimental results to demonstrate that
the proposed algorithm is able to generate high quality sam-
ple distributions and remeshing results. Then we evaluate the
convergence and performance of this algorithm. We use the
CGAL [cga] library for computing the regular triangulation
and the power diagram. Our tests are conducted on a PC with
Intel i7-3770, 3.40 GHz CPU, 16GB memory and a 64-bit
Windows 7 operating system.

Spectral analysis: First we apply the differential domain
analysis [WW11] to analyze the spectral properties of the
point sets sampled on surfaces, including the power spec-
trum, radially average and anisotropy. We show that our sam-
pling have better blue-noise properties compared with previ-
ous work. Figure 7 and Figure 8 illustrate the comparison re-
sults for uniform and adaptive sampling respectively. Table 1
lists the acronyms of different sampling methods used for
comparison. From these results, we can see that except CVT,
all the other algorithms can produce blue-noise distributions,
while the spectra of our FPO algorithm exhibit the best blue-
noise properties with low anisotropy and lack of low fre-
quencies around the origin. In addition, the power spectrum
of our algorithm has a residual peak decaying slower than
all the other methods. The point sets of CVT show strong
spikes in the power spectrum and fail to exhibit blue-noise
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Acro. Ref. Full Name

CVT [YLL∗09] Centroidal Voronoi Tessellation

MPS [YW13] Maximal Poisson-disk Sampling

VBS [CYC∗12] Variational Blue Noise Sampling

PPS [BWWM10] Parallel Poisson-disk Sampling

CCST [XHGL12] Capacity-Constrained Surf. Triangulation

CPS [CCS12] Constrained Poisson-disk Sampling

HPS [MIPS14] Hierarchical Poisson-disk Sampling

SER Ours Shortest Edge Removal

FPO Ours Farthest Point Optimization

Table 1: Acronyms of different sampling methods.

patterns. Figure 9 shows the spectral analysis of our feature-
aware samplings.

Remeshing results: Next, we list the statistics of remesh-
ing quality compared with previous methods. Table 2 is for
uniform remeshing and Table 3 is for adaptive remeshing.
The comparison contains various criteria that are used in re-
cent remehsing papers. The quality of a triangle is measured
by Qt =

6√
3

st
pt ht

, where st is the area of t, pt is the half-
perimeter of t and ht is the longest edge length of t [FB97].
Here Qmin and Qavg are the minimal and average triangle
quality; θmin and θmax are the minimal and maximal angle,
and θ̄min is the average of minimal angles of all triangles;
θ<30o is the ratio of angles smaller than 30o; V567 is the per-
cent of vertices with valences 5, 6 and 7; dH is the Hausdorff
distance (divided by the diagonal length of the input mesh
bounding box) between input mesh and remeshing result,
measured with the Metro tool [CRS98]. Both of these tables
suggest that our approach exhibits better Q, θ and V567 than
previous methods with blue-noise properties. Our dH is not
the best but it is still competitive with all the other methods.
The best results without blue-noise property are highlighted
in gray, while the best results with blue-noise property are
highlighted in bold font. For the uniform remeshing, CVT
always has the best meshing quality since it tends to gener-
ate a point distribution with regular patterns which is unde-
sirable for applications such as animating fluids [SB12]. Ta-
ble 4 lists the results of boundary and feature handling. We
only compare with CVT and MPS since the boundary and
feature preservation are not addressed by the other methods.
The remeshing results are provided in the supplemental ma-
terials.

Convergence: Figure 10 (left) illustrates the convergence
speed of our FPO algorithm. We compute the minimum (δX)
and average minimum (δ̄X) edge length from the remeshing
result after each iteration. The values are averaged over dif-
ferent models, including Venus, Eight, Homer and Bunny.
From this figure we can see that δx and δ̄X increase rapidly
at the first few iterations and then converge more slowly. On
average, after 60-100 iterations, they converge toward the
maximum values (0.926 for δX and 0.933 for δ̄X). It is also
interesting to note that after one or two iterations, our algo-
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Figure 7: Comparison of spectrum analysis for uniform
sampling on surfaces of Venus and Eight. Left: sampling
results; middle: power spectrum, and right: radial average
(top) and anisotropy (bottom) of the power spectrum. Each
case of both models is produced from 8 sets with about 1700
samples each.

rithm has produced well-distributed point sets with very sim-
ilar power spectrum to that of Poisson-disk sampling such as
MPS, as shown in Figure 1, 7 and 8.

Performance: We now evaluate the performance of our pre-
sented algorithm. For the 2D adaptive sampling, we test our
FPO algorithm in the unit square with periodic boundaries.
For the uniform/adaptive sampling on surface, we test our al-
gorithm with different number of samples generated on the
surface of the Homer model, in which there are 12k input
faces. We also provide the runtime of 2D uniform FPO algo-
rithm [SHD11] for ground truth.

Figure 10 (right) shows the timing curve of our approach.
It shows that our algorithms are reasonably fast. The main
difference between 2D_AFPO and the 2D_UFPO is that we

c© 2014 The Author(s)
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Figure 8: Comparison of spectrum analysis for Adaptive
sampling on surfaces of Bunny (with ∼ 6300 samples) and
Kitten (with ∼ 9700 samples).
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Figure 9: Spectrum analysis of our feature-aware sampling.

build a global regular triangulation at first instead of a De-
launay triangulation. Though building a regular triangulation
is nearly two times slower than building a Delaunay trian-
gulation by CGAL, the difference of updating them locally
(removal or insertion of a point) is not so much. Both of
them can be done in approximately constant time. Figure 10
(right) shows that the runtime of 2D_AFPO is similar to that
of 2D_UFPO. On surfaces, we use the restricted Delaunay
triangulation to track the farthest point for uniform sampling,

Model Method |X| Qmin Qavg θmin θ̄min θmax θ<30o V567 dH

Eight

CVT 1.7K 0.664 0.943 38.63 55.22 95.51 0 99.9 0.16
CPS 1.7K 0.424 0.791 25.05 43.82 123.07 0.406 94.3 0.38

PPS 1.7K 0.512 0.806 29.72 45.15 113.89 0.01 95.9 0.32

MPS 1.7K 0.478 0.805 30.24 45.15 112.23 0 96.8 0.24
CCST 1.7K 0.557 0.811 24.34 44.63 107.32 0.558 97.8 0.66

VBS 1.7K 0.415 0.812 26.54 48.33 109.43 0.019 99.5 0.29

SER 1.7K 0.517 0.814 31.49 46.17 113.50 0 96.5 0.31

FPO 1.7K 0.561 0.855 34.64 50.63 105.39 0 99.7 0.33

Venus

CVT 1.7K 0.665 0.937 39.97 54.88 95.81 0 100 0.67
CPS 1.7K 0.452 0.791 25.26 43.81 121.14 0.428 94.9 1.01

PPS 1.7K 0.506 0.805 27.68 45.07 114.52 0.019 96.1 0.76

MPS 1.7K 0.478 0.808 30.29 45.40 116.04 0 96.5 0.86

CCST 1.7K 0.272 0.810 9.92 44.54 115.96 0.834 98.4 2.50

VBS 1.7K 0.464 0.830 28.89 46.92 110.41 0.019 99.7 0.86

SER 1.7K 0.525 0.816 31.31 46.29 112.53 0 96.5 0.67
FPO 1.7K 0.552 0.860 33.88 51.28 109.20 0 99.7 0.85

Homer

CVT 7.9K 0.660 0.936 37.30 54.83 101.35 0 99.6 0.46

CPS 7.9K 0.431 0.792 24.61 43.96 123.92 0.523 94.7 0.55

PPS 7.9K 0.473 0.806 29.96 45.18 118.84 0.003 95.9 0.50

MPS 7.9K 0.483 0.808 30.54 45.39 117.11 0 96.0 0.59

VBS 7.9K 0.288 0.765 10.82 41.45 135.48 3.33 97.2 0.50

SER 7.9K 0.485 0.815 30.35 46.22 117.38 0 96.2 0.43
FPO 7.9K 0.528 0.855 33.04 50.85 112.17 0 99.2 0.53

Genus

CVT 6.5K 0.650 0.943 39.70 55.20 96.43 0 99.8 0.39
CPS 6.5K 0.441 0.793 25.18 43.91 122.81 0.478 95.8 0.59

PPS 6.5K 0.485 0.805 24.25 45.06 117.33 0.005 96.5 0.53

MPS 6.5K 0.469 0.807 30.32 45.35 119.27 0 96.4 0.58

VBS 6.5K 0.378 0.779 16.84 42.59 130.61 1.99 98.6 0.62

SER 6.5K 0.499 0.812 30.52 46.05 115.71 0 96.4 0.52
FPO 6.5K 0.551 0.856 33.08 50.93 109.31 0 99.6 0.54

Table 2: Comparison of uniform remeshing qualities. |X| is
the number of sampled points.

while we build the RRT and the RPD for adaptive sampling.
In our implementation, Surf_UFPO is also a little faster than
Surf_AFPO, as shown in Figure 10 (right).

In addition, we accelerate the computation of FPO based
on the proposed SER algorithm. After the preprocessing of
SER operations, we get a relatively well-distributed point
set. Then we perform the FPO locally to get the final re-
sult. Figure 11 (left) shows the runtime for the convergence
of adaptive SER operations in the 2D domain and on the sur-
face. We can see that the SER algorithm converges as fast as
one iteration of FPO. Figure 11 (right) illustrates the time
needed to get the final results by performing FPO with or
without SER operations. We can observe a nice performance
improvement by using the SER acceleration.

Relationship with MPS: An interesting question is what is
the relationship of FPO and MPS? We can verify that our
result is always maximal for uniform sampling, using the
global minimal edge length as the sampling radius. However,
the adaptive sampling is not always maximal, i.e., if we draw
a disk centered at each sample point, using the minimal edge
length incident to each point as its radius, the surface cannot
be fully covered. We would like to study this problem in our
future work.

c© 2014 The Author(s)
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Model Method |X| Qmin Qavg θmin θ̄min θmax θ<30o V567 dH

Bunny

CVT 6.3K 0.386 0.821 18.45 45.76 126.03 0.588 96.7 0.27
PPS 6.3K 0.216 0.769 10.28 42.34 149.91 3.068 93.1 0.30
MPS 6.3K 0.425 0.806 21.44 45.15 124.91 0.181 96.5 0.35

CCST 6.3K 0.018 0.752 0.262 40.65 150.41 4.469 92.0 0.35

VBS 6.3K 0.421 0.822 18.03 46.03 123.35 0.559 97.7 0.30
HPS 6.3K 0.276 0.778 14.18 43.05 140.99 2.122 92.4 0.33

SER 6.3K 0.374 0.809 22.12 45.69 126.94 0.332 95.7 0.49

FPO 6.3K 0.505 0.848 31.48 49.76 114.87 0 98.9 0.43

Kitten

CVT 9.8K 0.394 0.821 20.35 46.62 125.78 0.578 95.2 0.21

PPS 9.8K 0.275 0.791 12.64 44.02 143.96 1.183 94.6 0.26

MPS 9.8K 0.428 0.806 21.9 45.06 124.95 0.296 96.3 0.24

CCST 9.8K 0.218 0.777 11.01 41.92 150.93 3.601 96.7 0.42

VBS 9.8K 0.387 0.817 19.76 45.13 126.81 0.546 96.8 0.19
HPS 9.8K 0.221 0.791 11.54 44.52 148.74 2.242 92.1 0.26

SER 9.8K 0.399 0.810 24.42 45.72 128.06 0.188 95.6 0.35

FPO 9.8K 0.532 0.853 32.07 50.08 111.59 0 99.4 0.21

Elephant

CVT 11.3K 0.398 0.802 20.18 44.42 125.72 0.776 93.7 0.20
PPS 11.3K 0.343 0.794 15.73 44.14 134.53 0.987 94.4 0.28

MPS 11.3K 0.437 0.805 21.28 44.14 124.60 0.156 95.3 0.75

VBS 11.3K 0.357 0.803 20.32 44.57 133.28 0.793 94.1 0.22
SER 11.3K 0.366 0.805 20.43 44.78 125.16 0.225 95.3 0.38

FPO 11.3K 0.491 0.847 31.01 50.48 116.59 0 98.5 0.34

Homer

CVT 7.5K 0.420 0.825 19.82 46.16 127.51 0.373 96.1 0.19

PPS 7.5K 0.257 0.794 12.55 44.18 145.96 0.883 94.7 0.25

MPS 7.5K 0.422 0.806 21.69 45.11 126.58 0.176 95.3 0.32

VBS 7.5K 0.367 0.824 21.32 46.17 131.11 0.371 95.8 0.18
SER 7.5K 0.362 0.809 20.74 45.61 132.61 0.407 95.6 0.30

FPO 7.5K 0.494 0.849 31.12 49.62 116.35 0 99.0 0.23

Triceratops

CVT 8.5K 0.397 0.823 22.18 46.05 126.93 0.413 95.0 0.26

PPS 8.5K 0.357 0.796 16.52 44.29 128.62 0.858 92.9 0.34

MPS 8.5K 0.433 0.806 22.27 45.18 123.74 0.192 94.8 0.38

VBS 8.5K 0.385 0.817 20.07 44.64 129.57 0.472 96.8 0.25
SER 8.5K 0.368 0.802 19.87 45.12 126.31 0.404 95.2 0.34

FPO 8.5K 0.489 0.838 30.53 48.41 116.87 0 97.8 0.25

Table 3: Comparison of adaptive remeshing qualities.

Model Method |X| Qmin Qavg θmin θ̄min θmax θ<30o V567 dH

uniform remeshing

Mask

CVT 6.0K 0.627 0.942 38.56 55.13 100.22 0 96.2 0.34

MPS 6.0K 0.497 0.807 30.19 45.25 115.94 0 92.9 0.33

FPO 6.0K 0.549 0.856 34.06 50.83 110.75 0 96.8 0.28

Joint

CVT 3.4K 0.565 0.914 32.08 53.01 107.49 0 99.3 0.28

MPS 3.4K 0.518 0.815 30.85 45.93 114.34 0 98.3 0.32

FPO 3.4K 0.539 0.851 32.39 51.22 110.77 0 98.6 0.22

adaptive remeshing

Mask

CVT 3.3K 0.622 0.912 32.56 52.84 98.79 0 96.8 0.23
MPS 3.3K 0.437 0.805 22.80 44.91 123.31 0.501 92.2 0.26
FPO 3.3K 0.507 0.844 31.07 49.90 114.75 0 97.1 0.33

Joint

CVT 3.8K 0.508 0.890 31.33 51.35 114.39 0 98.3 0.31

MPS 3.8K 0.507 0.809 30.04 45.33 115.67 0 97.6 0.33

FPO 3.8K 0.526 0.852 31.73 49.55 111.79 0 98.8 0.27

Table 4: Results of feature and boundary handling.

7. Conclusion and Future Work

In this paper, we have presented a new technique for non-
uniform blue-noise sampling and remeshing on surfaces.
Our approach is based on the FPO framework, using the
concept of the regular triangulation and the power diagram.

0 20 40 60 80 100

0.4

0.6

0.8

1

0 5

0.9

1

Iteration

2 4 6 8

·105

0

20

40

60

Samples

T
im

e(
S
)

2D UFPO

2D AFPO

Surf UFPO

Surf AFPO

Figure 10: (Left) Convergence of the minimal (δX, solid
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(Right) Runtime of our FPO algorithms for one iteration.
2D_UFPO is the original 2D uniform FPO algorithm,
2D_AFPO, Surf_UFPO and Surf_AFPO represent our 2D
or surface uniform/adaptive FPO.
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Figure 11: (Left) Runtime for the convergence of the SER
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Moreover, we propose an efficient acceleration technique for
fast computation of a well distributed initial point set. We
show that our sampling results exhibit excellent blue-noise
properties, and we are able to achieve high quality remesh-
ing superior to the state-of-the-art approaches of blue-noise
remeshing.

One main limitation of our work is that we are not able to
handle noisy input meshes (especially the inputs with miss-
ing geometry), since our approach relies on the exact com-
putation of the RPD to find the farthest point location. Our
method is very robust, but it cannot be used for real-time ap-
plications. Since FPO is an iterative approach, it is slower
than MPS-based approaches, but it is competitive with CVT
and the other techniques based on iterative optimization. We
plan to look for GPU accelerations in the future. We would
also like to explore new applications that could benefit from
the meshes with blue-noise properties.
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