
Structure Completion for Facade Layouts

Lubin Fan1,2 Przemyslaw Musialski3 Ligang Liu4 Peter Wonka1,5

1KAUST 2Zhejiang University 3TU Vienna 4USTC 5Arizona State University

Input: Perspective Image

Rectification

Element Selection Structure Completion 2D/3D Rendering

Figure 1: Starting from a single image (Input) a user can specify a building mass model and mark shapes (windows, doors, ornaments) on
the observed part of a building facade in a rectified image (Element Selection). Our structure completion framework can complete the missing
part of the layout (Structure Completion). A 2D and a 3D rendering of the completed models is shown on the right.

Abstract

We present a method to complete missing structures in facade lay-
outs. Starting from an abstraction of the partially observed layout
as a set of shapes, we can propose one or multiple possible com-
pleted layouts. Structure completion with large missing parts is an
ill-posed problem. Therefore, we combine two sources of informa-
tion to derive our solution: the observed shapes and a database of
complete layouts. The problem is also very difficult, because shape
positions and attributes have to be estimated jointly. Our proposed
solution is to break the problem into two components: a statistical
model to evaluate layouts and a planning algorithm to generate can-
didate layouts. This ensures that the completed result is consistent
with the observation and the layouts in the database.

CR Categories: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications

Keywords: structure completion, facade modeling, urban recon-
struction, inpainting

Links: DL PDF WEB VIDEO DATA

1 Introduction

We are interested in the problem of completing a layout of shapes
from a partial observation. The main motivating application for
this work is urban reconstruction, where building faces are often
partially occluded by other buildings or vegetation. Our framework
can help to reconstruct missing parts of the building (see Figure 1).
Because it is often difficult to capture a complete facade in a single
image there exist an abundance of incomplete facade images, e.g.
from Google Street-View or Flickr, and there is great demand to
complete them in an urban modeling application.

The problem of structure completion can be interpreted as an ex-
tension to image completion. First approaches emphasized smooth-
ness as an important quality criterion to complete smaller scratches
in an image [Bertalmı́o et al. 2000]. Later approaches also included
mechanisms to enforce edge continuity, e.g. [Sun et al. 2005] and
most recent methods can continue repetitions, if they detect a few
existing elements, e.g. [He and Sun 2012; Dai et al. 2013]. We call
these approaches local structure completion, because they require
that each element in a layout is only concerned with its immedi-
ate neighbors. A great way to formulate local structure completion
is to use an MRF formulation. Such a formulation can work well
to estimate the label of one or a few missing elements, but a suit-
able heuristic for element positions has to be available. By contrast,
our approach tries to model and complete structures where a global
analysis of the data is necessary. We would like to complete struc-
tures where half or more of the layout is not visible. See Figure 2
for an example why structure completion is difficult.

One challenge in structure completion is that it is ill posed as there
exist many plausible solutions, especially if a large amount of in-
formation is missing. It is not sufficient to repeat the observed el-
ements in the layout using the observed spacing from the layout.
Our approach to this challenge is to model probability distribution-
s of layouts and learning these distributions from a database using
graphical models. A second challenge in structure completion is
that the number of missing shapes as well as their positions and at-
tributes have to be estimated. Estimating the positions is the most

http://doi.acm.org/10.1145/2661229.2661265
http://portal.acm.org/ft_gateway.cfm?id=2661265&type=pdf
https://sites.google.com/site/lubinfan/publications/2014-facade-completion
https://sites.google.com/site/lubinfan/publications/2014-facade-completion#Video
https://sites.google.com/site/lubinfan/publications/2014-facade-completion#Data

Figure 2: Challenges of structure completion. Left: an input do-
main with only few observed elements. Middle: it is not sufficient
to complete grids and to repeat elements using observed spacings.
The result is too simple and leads to many inconsistencies, e.g. bad
spacing with respect to a boundary as shown here. Right: A good
structure completion result needs to account for many subtle irregu-
larities in element position and also use additional knowledge, e.g.
to place a door and shop windows in the first floor.

difficult aspect of the problem. In our solution we propose a plan-
ning algorithm that can generate completion candidates by jointly
computing the position and attributes of the elements.

The main contributions of our work are:

• We pose the problem of global structure completion for facade
layouts.

• We propose a first solution to this problem and show that our
solution can complete facades with only a small number of
observed elements.

• We demonstrate an application in the area of urban recon-
struction.

The scope of our contribution is limited to the analysis and synthe-
sis of facade structures. We make no contribution to the problem of
extracting facade layouts from images (we assume abstracted lay-
outs as input) or the problem of facade texture synthesis (we show
textured results for visualization purposes only and assume texture
synthesis as a separate post-process).

2 Related Work

We review related work in three different areas: structural image
inpainting, facade modeling, and facade analysis.

Structural Image Inpainting: Our work builds on the concept of
image inpainting, especially algorithms that consider the structure
of the observed part of the image. Sun et al. [2005] introduce an
interactive system that synthesizes image patches by considering
user-specified structural information in the unknown region. He
and Sun [2012] propose an algorithm that is inspired by facade im-
ages. They assume that facade elements are repeated using only a
few dominant offsets. After extracting these offsets, they use the
offsets to generate a stack of shifted images and combine them via
optimization. Korah et al. [2008] complete the partially occluded
facade by modeling the grid patterns on facades as Near Regular
Texture. They use an MRF model with MCMC optimization to dis-
cover the occluded regions. The most advanced algorithm is proba-
bly the recent method by Dai et al. [2013]. These models are a good
starting point, but the most challenging problems remain unsolved:
how to jointly optimize element positions and element attributes as
well as completing structures with large unobserved regions?

Facade Modeling: During the last decade, various methods have
been proposed to model facade layouts. One approach to encod-
ing and generating facade layouts is to use grammars [Wonka et al.

2003; Müller et al. 2006]. The grammar rules encode shape re-
placement operations, typically splitting boxes (rectangles) into s-
maller boxes. While context free grammars are not as powerful for
modeling, they can be nicely combined with other energy functions
using rjMCMC [2011]. Grammars can also be used to parse facade
layouts given an input image [Koutsourakis et al. 2009]. Another
class of methods uses optimization techniques to generate facade
layouts, e.g. Lin et al. [2011] and Bao et al. [2013]. While Lefeb-
vre et al. [2010] work directly on pixels in an image, the method
could also be used to synthesize layouts directly. Two recent meth-
ods [Yeh et al. 2013; Dai et al. 2013] generate new facade with a
tile-based layouting algorithm. Yeh et al. [2013] propose a sam-
pling algorithm for a probabilistic model using factor graphs, and
Dai et al. [2013] propose a genetic algorithm to guide the consis-
tency between synthesized content and the example.

Facade Analysis: Facade analysis is a building block of urban re-
construction and a recent survey [Musialski et al. 2013] reviews
facade analysis in its broader context. One class of facade analysis
methods works directly on images. The main goal of these methods
is to segment a facade image into meaningful components. Müller
et al. [2007] build a bridge between facade modeling and facade
analysis by combining the procedural modeling pipeline of shape
grammars with image analysis to derive facade models from im-
ages. Teboul et al. [2010] perform supervised learning using shape
grammar priors to interpret building facades. The method has been
extended using recursive split grammar and reinforcement learn-
ing [Teboul et al. 2013]. Martinovie et al. [2012] propose a three-
layered approach for semantic segmentation of building facades.
Shen et al. [2011] propose a method to automatically partition a
facade in an adaptive manner, in which the splitting direction and
the number and location of splitting planes are all adaptively de-
termined. Musialski et al. [2012] propose a coherence-based in-
teractive system to support non-local operations. Alhalawani et
al. [2013] apply structure optimization to recover a semi-regular
grid of facade elements. Since most of the facade elements are
rectangles, a facade can be analyzed using low rank matrix decom-
position [Ali et al. 2009; Yang et al. 2012]. Another class of analy-
sis methods uses already segmented facade models as input. Three
recent methods try to compute shape grammars from segmented fa-
cade layouts [Weissenberg et al. 2013; Martinovic and Van Gool
2013; Wu et al. 2014]. Alternatively, Zhang et al. [2013] propose a
great facade representation based on layered grids that can also be
used to analyze segmented facade layouts.

3 Overview

3.1 Overview

Using urban reconstruction as motivational example, we show how
the core part of our work can be embedded in an application (See
Fig. 1). The core part itself is the structure completion. Starting
with a partial layout as input, we complete the layout using two
main components:

• The first component is a statistical model that can take a fa-
cade layout as input and assign a probability score to measure
how likely the layout is. The parameters of this model are
learned from a database of complete layouts (Section 4).

• The second component is a planning algorithm that computes
completed candidate structures. The candidate structures are
then evaluated by the statistical model to either select the best
one or to select a variety of possible completion results. The
parameters of the completion algorithm can be learned using
ideas from planning and reinforcement learning, i.e., policy
optimization (Section 5).

Parameters of g: Example Grid g:

g.xi = ...;

g.x0=1.0; g.y0=1.0; g.rows=2;

g.columns=4;

Figure 3: Top: a layout consists of a set of elements, each element
defined by a position, a bounding box, and appearance attributes.
For facade layouts, the elements are typically organized by a set of
grids. Bottom: the most important parameters of a single grid.

3.2 Definitions

A layout is defined by a set of shapes {Si} inside a two-dimensional
domain Ω. Ω is a polygon, typically a rectangle. A shape Si is de-
fined by a location Posi ∈ R2 inside the domain that denotes the
center of the shape. Further, the shape has a height hi and width
wi. For non-rectangular shapes, height and width refer to the size
of the bounding box. Each shape has a label li and appearance at-
tributes, such as color, material, and depth (offset from the main
facade plane). A grid layout is a layout where the shapes are or-
ganized by a set of grids (See Fig. 3 top). A similar structure was
proposed by Zhang et al. [Zhang et al. 2013]. A grid g is defined
by the dimensions of its bounding box (g.width and g.height), the
number of rows and columns in the grid (g.rows, g.columns), the
position of the lower left corner in the domain (g.position), and a
vector of spacing values for the rows and columns (g.xi and g.yj)
(See Fig. 3 bottom). In the context of a facade we also refer to
the shapes as elements. We say that a facade F consists of a grid
structure G = {gi}n−1

i=0 , where gi denotes the ith grid and n is the
number of grids. We denote the set of observed elements as {ei}.

3.3 Facade Database

We generated a facade database of 100 facade images by com-
bining our own images with the images collected from other au-
thors [Zhang et al. 2013; Teboul et al. 2010; Musialski et al. 2012].
This database contains complete, unoccluded facades that are use-
ful for learning facade structures and evaluating the algorithm. We
use manual segmentation tools to process the image database, but
automatic segmentation from previous work could also be used.

4 A Statistical Model for Grid Layouts

In this section, we define a set of attributes that contribute to good
grid structures, and learn distributions over the attributes from a
dataset of example facades. Then we use the learned distributions
to score the quality of given grid structures. We classify scoring
functions into three types, i.e., unary, binary, and global functions,
and combine them into one unified statistical model using a factor
graph. In the course of this project, we built and evaluated a large
number of similar statistical models and we experimented with di-
rected and undirected graphical models. The proposed model was

designed to be simple enough so that it can be learned from a small
database, but still expressive enough to handle challenging comple-
tion problems.

4.1 Unary Grid Functions

We first consider the scoring functions defined by the properties of
one single grid.

Element Aspect Ratio: The size of an element is determined by
its height and width. Instead of using a two parameters distribu-
tion we encode the element size as the aspect ratio. We build a
Gaussian mixture model for each type of element e to encode the
aspect ratio distribution as pas.We estimate the number of Gaus-
sian components automatically using the MDL criterion [Rissanen
1983]. The element types are defined by the different labels used in
the element database. For an element e in grid g, we then use the
scoring function:

fas(g) = ln pas

(
e.height

e.width

)
. (1)

Element Spacing: In our analysis, we observed that the spacing
between two elements in one grid is related to the size of the el-
ement, e.g., typically the spacing between two large elements is
larger than the spacing between two small elements. We build two
Gaussian mixture models to estimate the distribution of the ratio of
element size and average spacing in x and y directions separate-
ly, i.e., pHed(·) and pVed(·). For an element e in grid g, we use the
following scoring function:

fed(g) = ln pHed

(
e.width

d
H

)
+ ln pVed

(
e.height

d
V

)
, (2)

where d
H

and d
V

are the average horizontal and vertical spacing
between two elements in grid g respectively.

Grid Regularity: For each grid g, we define the grid regularity in
x and y directions as regH(g) = σH

g.width
and regV (g) = σV

g.height

separately, where σH and σV are the standard deviations of the hor-
izontal and the vertical spacing in grid g respectively. We analyze
the grid regularity by estimating the distribution of regH and regV

in the dataset. We define the following scoring function:

fgr(g) = ln pHgr

(
regH(g)

)
+ ln pVgr

(
regV (g)

)
. (3)

Grid Completeness: The grid completeness is a measure of
how completely a grid is filled. It is computed by comp(g) =

#elements
g.rows×g.columns , where #elements is the number of elements in
grid g. We encode the distribution of grid completeness pgc using
a Gaussian mixture model learned from all the grids in the dataset.
We define a scoring function based on grid completeness for grid g:

fgc(g) = ln pgc (comp(g)) . (4)

4.2 Binary Grid Functions

While unary terms model the properties of one grid, binary terms
capture relationships between two grids. We identified the pattern
of grid arrangement and the alignment of elements, as the two im-
portant appearance properties of a facade.

Pattern of Interleaved Grids: To simplify the pattern problem,
we only consider the patterns generated by two interleaved grids.
We first analyze the pattern styles in the dataset. We define the

A

A

A

A

B

B B

B

A

A

Figure 4: Left: a pattern of two interleaved grids. Here, the pattern
is AB because AB is the repeating sequence. Right: an example for
the grid alignment computation, where acV (gi, gj) = 2

5
.

pattern style as the minimal pattern presented by two interleaved
grids, e.g., AB, ABA, AAB, AABB. We extract the pattern style
of two interleaved grids by abstracting the element labels to A and
B without considering the specific labels. See Fig. 4 left for an
example. Then we list the patterns in the dataset, and create the
histogram by counting the pattern style of each interleaved grid pair.
The histogram is then normalized to form the discrete probability
distribution. Given two interleaved grids gi and gj , we can define a
scoring function as

fgp(gi, gj) = ln pgp (Θ(gi, gj)) , (5)

where Θ(·, ·) is the pattern operator.

Grid Alignment: The problem of defining and learning distribu-
tions of alignment between two grids is difficult. However, there
are a few ways to simplify the problem. First, we consider the
alignment in the x and y direction separately. Second, we on-
ly consider alignment between grids where the projections of the
grids overlap. For the vertical alignment problem, we first de-

fine the normalized vertical gap gapV (gi, gj) =
gapV (gi,gj)

F.height
be-

tween two grids. Then we define the alignment coefficient as
acV (gi, gj) = #aligned coloumns

#overlapping coloumns
. See Fig. 4 right for an

example. We encode the vertical alignment distribution using a
Gaussian mixture model. The horizontal alignment distribution is
learned in the same manner. The alignment scoring function is de-
fined as

fga(gi, gj) = ln pHga(acH |gapH) + ln pVga(acV |gapV). (6)

4.3 Global Grid Functions

We define four scoring functions to evaluate global properties of the
facade.

Element Compatibility: To enforce global consistency, we intro-
duce a function to evaluate the compatibility of element types in
the facade. First, we learn the element compatibility from example
facades. We analyze the facade database to model a set of element
types ElementTypes = {E0, E1, . . . , En−1}. The most impor-
tant goal is to find element types that work well together. We learn
the joint occurrence of different elements by analyzing the facades
and building coherence sets. Each facade contributes one coherence
set. A coherence set (CS) is a set of all element types that occur to-
gether in a facade. Each element in a coherence set is assigned a
probability. The probability of an element is estimated as the num-
ber of grids using the element divided by the total number of grids
contributing to the coherence set. See Fig. 5 for an example.

In a second pass we merge coherence sets that contain exactly the
same type of elements and update the probabilities accordingly. The
probability of a coherence set itself is how many individual coher-
ence sets were merged to build it. Given the set of all observed

Element
TypesDatabaseIncomplete

Facade

Figure 5: An example of element compatibility. Left: an incom-
plete facade with observed element types E2, E3, and E4. Mid-
dle: a facade database consisting of three facades. Right: The set
ElementList consisting of all elements in the database. At the
bottom we show the computation of element probabilities and the
computation of the GCS.

element types, e.g. OE = {E2, E3, E4}, we try to find the global
consistency set (GCS) that is a union of coherence sets {CSi} to
cover all observed elements. We define the GCS as the smallest
cover of OE using coherence sets:

GCS = arg min
∪CSi

#
{⋃

CSi
}
,

s.t. OE ⊆
⋃
CSi.

(7)

In practice we employ exhaustive search to find the GCS. If the
optimization has multiple solutions, we sample according to the
probability of the coherence sets to select one as GCS.

Given a set of grids G = {g0, g1, . . . , gn−1}, we evaluate the
compatibility of element type by fec(·) based on the GCS defined
above,

fec(G) = ln

(
1− #GCS(G)

#OE(G)

)
, (8)

where #GCS(G) is the number of the CSs in GCS covering
G and #OE(G) is the number of element types in G. Note that
#GCS(G)
#OE(G)

∈ [1
#OE(G)

, 1] and #GCS(G)
#OE(G)

→ 1 means that the com-
patibility of elements is weak, otherwise the compatibility is strong.

Grid Coverage: We define the grid coverage rate cr(G) = A(
⋃
gi)

A(F)

to describe the percentage of covered area of the facade. In this
equation A(

⋃
gi) is the area of the union of grid bounding boxes

and A(F) is the area of the facade. We learn the distribution of the
grid coverage rate and define the following scoring function:

fgc(G) = ln pgc(cr(G)). (9)

Facade Border: For realistic results, it is important to consider
both the spacing between elements and the spacing from elements
to the facade boundary. Here we define the border width as the dis-
tance between the facade boundary and the boundary of the nearest
element. We encode the distribution of the border width normalized
by the average element size in the facade. We learn the distributions
for the horizontal and the vertical border width separately. Given a
set of grids G, we define a scoring function as

ffb(G) = ln pHfb(G) + ln pVfb(G). (10)

Facade Symmetry: We observed that the symmetry of a facade is
typically related to the door position. Given example facades, we

𝑔1

𝑔2 𝑔4

𝑔3

ℱ𝑏𝑖𝑛𝑎𝑟𝑦
ℱ𝑢𝑛𝑎𝑟𝑦

ℱ𝑔𝑙𝑜𝑏𝑎𝑙

Figure 6: Left: a grid structure of the facade. Right: a factor graph
for the example on the left.Variable nodes are colored according to
their corresponding grids on the left.

compute the average door position and the area of the symmetric
region. Then we discretize the values and build a 2D histogram
of these two values. The histogram is then smoothed using kernel
density estimation [Wand and Jones 1994]. We define a scoring
function based on the learned distribution:

ffs(G) = ln pfs(A(Sym(G))|v), (11)

where v is the average door position and Sym(G) is the symmetric
region of grid structure G. If a door does not exist, we set v = 0.

4.4 Factor Graph Design

A factor graph is a probabilistic graphical model that decomposes
a complex probability distribution over multiple variables into a set
of smaller factors over subsets of the variables. In our problem,
each grid gi, i = 0, 2, . . . , n− 1 determines a group of variables in
the graphical model. The relationships between grids are encoded
by the factors F derived from our scoring functions. Following
common practice in the literature, each group of scoring functions is
combined into a single factor. See Fig. 6 for a factor graph example.
Note that the factor graph is dependent on the number of grids so
that the factor graphs for different facades are usually different.

The unary factor combines the scoring functions evaluated for each
grid by itself. It is connected to a single variable.

Funary(gi) = exp(wasfas(gi) + wedfed(gi)+

wgrfgr(gi) + wgcfgc(gi)). (12)

The binary factors connecting two grids are derived from the binary
scoring functions.

Fbinary(gi, gj) = exp(wgp
∑

fgp(gi, gj)+wga
∑

fga(gi, gj)).

(13)

The global factor connected to all grids inG = {g0, g1, . . . , gn−1}
enforces global goodness of the facade

Fglobal(G) = exp(wecfec(G) + wgcfgc(G)+

wfbffb(G) + wfsffs(G)). (14)

The overall probability distribution resulting from the factor graph
is defined as

p(G|w) =
1

Z(F,w)

∏
F

F(ScopeF (G)), (15)

where ScopeF denotes the variables connected to factor F and
Z(F,w) is the facade-dependent partition function that normalizes
the distribution. The distribution is parameterized by the vector of

factor weights w. These weights can be estimated using weight
learning described next.

Weight Learning: The weight learning problem can be formulat-
ed as maximum likelihood parameter estimation. This weight es-
timation is an important building block when working with factor
graphs. In computer graphics it was recently used in the context of
coloring 2D graphics [Lin et al. 2013].

Equation 15 can be reformulated to group the product according to
the different weights in the weight vector w.

p(G|F,w) =
1

Z(F,w)

∏
w∈w

exp(w · fw(G,F)), (16)

where fw(G) is the sum of all the scoring functions f that share the
weight w ∈ w.

The log-likelihood of the weights given a dataset D is

L(w|D) =
∑

(F,G)∈D

∑
w∈w

w · fw(G,F)− lnZ(w). (17)

Then, the optimal weight vector is computed as

w* = arg max
w
L(w|D). (18)

This problem can be solved using gradient ascent. The partial
derivatives with respect to the weights are

∇wL(w|D) =
∑

(F,G)∈D

fw(G,F)− Ew[fw(G,F)], (19)

where Ew is the expectation under the model with weights w. S-
ince the expectation term is extremely expensive to compute, we
apply Contrastive Divergence(CD) [Hinton 2002] to approximate
the likelihood gradient

CDk
w(w|D) =

∑
(F,G)∈D

fw(G,F)− fw(Ĝ, F), (20)

where Ĝ is a grid structure generated by the completion algorithm
described in the next section. We use a grid structure in which 10%
of the elements were randomly removed from G as input.

5 Structure Candidate Generation

In this section we present a method to complete an incomplete lay-
out. This problem is challenging, because only layouts with fairly
regular spacing and proper alignment are reasonable. In our exper-
iments, we observed that it is very difficulty to find local operations
that can convert a reasonable layout into another reasonable layout.
This is especially difficult, because the observed elements have to
be respected as hard constraints. Further, a straightforward random-
ized search algorithm such as simulated annealing fails completely
if only simple add, delete, and move operations are employed (See
Fig. 14). Therefore, instead of using MCMC to sample from the s-
tatistical model directly, we propose to draw from the planning and
reinforcement learning literature to design an algorithm that main-
ly generates reasonable completion candidates (See [LaValle 2006]
for an introduction to planning algorithms). We cast the problem
as an optimization problem to find a completion that maximizes the
layout score computed by Equation 15. As our algorithm generates
multiple variations during its execution, we can sort these variations
according to their score and either select the best one or use mul-
tiple solutions of different ranks to obtain different suggestions to

s

e’

es

Figure 7: A policy computes an action given the current state. The
action consists of selecting a seed element es and an extension ele-
ment e′ with spacing s.

complete a given layout. A limitation of this approach is that the
sampling of the statistical model is biased.

Our algorithm searches a state space S starting from a starting state
s0 ∈ S (the observed partial layout). Each state corresponds to a
layout. In a state si, we need to select an action ai from a possi-
bly (infinite) number of available actions A. Based on a heuristic
we can classify the layouts as complete or incomplete. A state s
corresponding to a complete layout is considered to be a goal state.
In a goal state s, the algorithm receives a reward R(s) computed
by Equation 15. We can now define the value of a state using the
Bellman equation:

V (s) = R(s) + γmax
a∈A

∑
s′∈S

T (s, a, s′)V (s′). (21)

The transition model T (s, a, s′) defines the transition probabilities
of ending up in state s′ when selecting action a from state s. In
our case, the transition model is deterministic given an action a and
we use γ = 1 for the discount factor. A policy π is a function that
maps a given state s to an action a = π(s) and we would like to
compute an optimal policy:

π∗(s) = arg max
a∈A

∑
s′∈S

T (s, a, s′)V (s′). (22)

Our first approach was to use feature extraction from states to learn
approximate values V (f(s)) by backpropagating the rewards to in-
termediate states (where f(s) is the function that extracts features
from states). Unfortunately, this proved to be quite challenging,
so we opted for a more direct approach using policy optimization.
Our proposed solution is to design a probabilistic policy that can be
configured by a parameter vector λ which is explained later.

An important component of our algorithm is that the policy π main-
ly generates actions that lead to meaningful layouts. To keep the
algorithm simple, the policy only considers actions that add one
facade element to the current layout. We do not use actions that
move or delete elements. Therefore, we generate completed struc-
ture candidates by adding elements successively to expand the ob-
served region.

5.1 Policy Design

A policy has a set of parameters and it generates an action based on
the following steps. First, we select a seed element es. Second, we
decide the extension direction. Third, we compute the extension
spacing s, and finally we decide the label of the new element e′.
See Fig. 7 for an example. The vector λ encodes the parameters of
the policy.

Seed Element Selection: We use two methods for selecting a seed
element es. The first method selects a seed element randomly a-

mong all candidates. The second method selects a seed element
based on a rank score. The parameter λ0 is used to define the prob-
ability of selecting the first method (the probability for selecting the
second method is then 1− λ0). Given a potential seed element es,
we define its rank as

r(es) = λ1 · δc(es) + (1− λ1) ·
(

1− A(g)

A(F)

)
. (23)

The first term computes the concavity of es and favors seed ele-
ments in concave regions. The second term favors seed elements
in small grids to be selected first. The parameter λ1 is a weight to
trade off the two different terms. δc(es) = 1 if es is inside of the
bounding box of its grid and 0 if it is on the boundary. g is the grid
that es belongs to and A(·) computes area.

Extension Direction: We use two methods to select the extension
direction. The first method selects the direction randomly. The sec-
ond method selects the direction according to fixed priorities. The
parameter λ2 specifies the probability of selecting the first method.
For the second method, the parameter λ3 encodes a permutation of
possible expansion directions to indicate their priority. We allow an
action to extend es in five directions, i.e., left, right, up, down, and
concave fill. The direction concave fill tries to extend in such a way
that the bounding box of the grid does not change.

Extension Label: We use two methods to select a label for the
extension element e′. The first method copies the label from es.
The second method itself chooses from three options: sampling the
label from the observed labels, from the database, or set the label to
be NULL (which creates some empty space). We use the parameter
λ4 to encode the probability of selecting the first method and the
parameters λ5, λ6, and 1− λ6 − λ5 to specify the probabilities for
the three options in the second method.

Extension Spacing: We use three methods to select the spacing
s between the seed element es and the extension element e′. The
first method copies the the spacing that the element es has with its
neighbor from the opposite direction. The second method samples
the spacing from the observed spacings. The third method samples
the spacing from observed spacings and adds a random offset. We
set the parameters λ7 and λ8 to encode the probabilities for select-
ing between these three methods.

Other Parameters: We also use two additional modifications. A
newly placed element can be snapped to the position of other ele-
ments already placed on the facade (with probability λ9). Further,
we use an operation that copies the seed element symmetrically to
the other side of the facade with probability λ10.

Based on the parameters λ = {λ0, λ1, . . . , λ10} a policy π can
select an action ai for each state si.

Figure 8: Effect of policy optimization. From left to right: incom-
plete facade, a completion result using policy optimization, and a
completion result with a fixed specified policy.

5.2 Policy Optimization

One important problem is how to set the parameters λ for policy π.
It is difficult for users to set λ directly, because it is hard to find a s-
ingle policy that works with all facades. We therefore formulate the
problem as policy optimization. For each facade, we compute the
optimal parameters by solving the following optimization problem:

λ∗ = arg max
λ

∑
s′∈S

T (s, π(s,λ), s′)V (s′), (24)

where π(s,λ) is the policy with parameters λ.

We employ a genetic algorithm to solve the problem. We set the
population size to 10. A crossover is computed by randomly se-
lecting a parent for each parameter λi. A mutation is computed by
randomly selecting a parameter λi ∈ λ and then randomly mutat-
ing by sampling an offset from a Gaussian distribution. As initial-
ization, we first learn optimal policies for facades in the database
and select the 10 most different ones. We use these 10 policies as
initial policies for each facade. Figure 8 shows two completion re-
sults of the same incomplete facade, one facade is completed with
a fixed user specified policy and the other one is completed using
policy optimization. The policy optimization correctly interprets
the column structure and can also generate an interleaved pattern.
The result of the fixed policy is not plausible.

6 Results

We implemented the framework in C++ and MATLAB. For our
evaluation we used a computer with two 2.53Ghz Intel core i5 pro-
cessors and 4GB main memory.

Qualitative Analysis: We selected a set of facades not used as
training data in the database for all results shown in the paper.
While there is some existing work on structure completion, it can-
not really be applied to our problem for two reasons. First, we
compute structure completion from abstracted layouts and not from
images. Second, previous work is only able to complete smaller
missing regions. We believe that the most promising competitor of
our work is a recent paper by Dai et al. [2013]. They kindly agreed
to send us completed versions based on our image data or images
of abstracted layouts. However, they reported that they would need
additional extensions to handle this type of data. In our observa-
tion, this competing algorithm is good at completing a single grid
of facade elements, when each row and column has at least one (but
better two) observed elements. Therefore, we opted to perform an
informal user study where we show users our completion result and
the ground truth (in randomized order). Then we ask the users to s-
elect which facade layout appears more plausible (reasonable). The
user can select one of the layouts or choose the option that both
are equally plausible. We had 134 users participate in an online s-
tudy. In total, among all users the votes were distributed as follows.
Ground truth data received 31.5%, our completion received 40.2%,
and both equally received 28.3% of all votes. In Fig. 9 we show
the samples used in the user study and the breakdown of votes per
completion result. Interestingly, we can observe a slight preference
for our completions and also some facades where either our com-
pletion or the ground truth was strongly preferred. Based on this
user study and our own visual analysis of the results, we conclude
that most of our results have very high quality.

There are two main ways to categorize the input to a structure com-
pletion problem: completeness and coherence. Completeness cor-
responds to how much information is missing and coherence mea-
sures how spread out the observed elements are. In the user study
we tried to mix examples of coherent and incoherent input as well

65%

23%

50%

11%

40%

49%

12%11%

60%58%

25%

10%

28%31%

13%14%

7%
13%

46%

29%29%

55%

9%

28%

69%

21%

37%

19%

38%
33%

72%

16%

53%
48%

8%

25%

46%

69%

13%

67%

41%
44%

11%

22%

12%10%10%

22%

9%

42%

30%

13%

34%

12%

45%23%

10%
15%

31%

28%

69%

15%

67%

24%

78%

83%

77%

10%

43%

53%

63%

40%

86%

69%

25%

35%

58%

69%

55%

42%

15%

57%

40%

10%

11%

64%

44%

16%

72%

24%

54%48%

13%

73%

10%

7%

84%

24%

13%

28%

5%

63%

16%

77%

16%

28%

78%
74%

9%
13%

5%

75%

4%

46%

9%
3%

16%

77%

12%
18%

8%
4% 5% 4% 6%

44%

4%

11%
7%

25%

13%

28%

7%

43%

81%

10%10%
15%15%

9%
5%

8%

76%

5%

78%
83%

6%

54%

78%

31%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

I like the ground truth I like the completion I like both equally / they are the same

Figure 9: Top: thumbnails of all 50 examples used in our user s-
tudy (see Sec. 6, and additional materials), each image pair shows
the ground truth (left) and our completion (right). We asked 126
persons in an online study to decide which of the two possible com-
pletions appears more plausible. Bottom: results of the study. Dur-
ing the study the user does not know which of the two facades is the
ground truth.

as vary the amount of structure that is missing. We selected two ex-
ample facades to show how the completion changes when more and
more information is available (See Fig. 10). As expected, the result
is more similar to the ground truth layout when more elements are
observed. However, all completions seem plausible. Fig. 11 illus-
trates two examples of incoherent inputs used in the user study.

Our algorithm computes multiple variations for each completion
example that are ranked by the proposed statistical model. In the
user study we always use the highest ranked completion. In Fig. 12
we illustrate multiple different completions for the same facade.

Limitations: Our statistical model typically ranks regular facades
higher. It is therefore not possible to match the ground truth if
part of an irregular facade is observed (See Fig. 13). Further, we
can automatically select the 3D models for facade elements from a
database. However, we did not implement an automatic solution to
extract the wall texture from an input image. Therefore, the wall
textures in all realistic renderings are generated semi-automatically
using Photoshop. Only the abstracted layouts shown in the user s-
tudy can be generated automatically. In future work, we would like

Figure 10: Three examples how the number of observed elements
influences the completion results. Left: input layout. Middle to
Right: completions for a decreasing number of observed elements.
The bottom row is a stylized visualization.

Figure 11: Two examples of the completion results for observed
elements in disconnected regions. From left to right: ground truth,
incomplete facade, and completion results.

Figure 12: Given the same incomplete facade, our algorithm can
generate multiple different completions. Top: ground truth, styl-
ized visualization and observed elements. Bottom: three possible
completions.

to evaluate if existing work can be used to solve this problem, or if
a new texture synthesis method is required.

Comparison to Simulated Annealing: We demonstrate some as-
pects of the difficulty of the completion problem by comparing to a

Figure 13: Limitations of our algorithm. In these examples the
ground truth is shown left, the observed elements in the middle, and
our completion on the right. Since our completion favors regularity,
the highest ranked completion does not match the ground truth in
irregular facades.

Figure 14: A straightforward implementation of simulated anneal-
ing is not able to generate meaningful completions, because the
algorithm is not able to iteratively improve the layouts to become
more plausible. From left to right: ground truth, observations, sim-
ulated annealing, our completion.

straightforward implementation of simulated annealing. We use the
following operations: add an element at a random position, delete a
random element, move an element along a randomly sampled off-
set vector (drawn from a Gaussian distribution). Despite our effort
in tuning the parameters (probabilities) and a long running time,
the algorithm is completely unable to find meaningful completion
results (See Fig. 14).

Timing: For all examples used in the user study, we generate
10,000 structure candidates during policy optimization for each in-
complete facade and select the best one. We timed the computation
times for all examples. The average time for the complete algorith-
m is 16.7 seconds. The timing depends on how many elements are
missing and the complexity of the facade layout. But since we gen-
erate the structure candidates using simple actions, the variance of
computation time is not high. Parameter learning of the statistical
model takes 44.1 seconds for the weights of the factor graph.

Training Set Size: We perform a stress test to estimate the nec-
essary size of the training dataset for our statistical model. At the
beginning we learn a weight of each scoring function in the statis-
tical model with the original training dataset (100 facades). Then
we gradually reduce the size of it to analyze the changes of the
weights. At each time we randomly exclude 10 facades from the
dataset and learn the weights. We repeat the process three times for
each case. Fig. 16 reports the average and the standard deviation of

(a) (b) (c)

(d) (e) (f)

Figure 15: A facade sketching application. The user sketches
four elements (a) and the system selects suitable elements from a
database (b) and suggests a completion (c). The user moves the
door to a new position resulting in completion (d). Then, the user
changes an element type leading to facade (e). Finally, the user
moves a column of windows so that more windows are generated in
the final result (f).

each weight. We believe that this test shows that our model can be
learned with a comparatively small number of training layouts. The
main reason is that the model itself is not very complex and has a
low number of parameters.

Scoring Functions: We complete a facade with parts of the mod-
el disabled to demonstrate the effect of each term in the statistical
model. In Fig. 17 we show the effect of the facade symmetry term.
The effects of the other terms are shown in Fig. 18. We can see that
each of the terms contributes to the final result and that leaving out
any term reduces the overall quality.

incomplete facade all terms included facade symmetry term excluded

Figure 17: The effect of the facade symmetry scoring function.
From left to right: incomplete facade, a completion with all the
scoring functions, and completion without symmetry function.

Applications: Our structure completion can be used in multiple ap-
plications. One application is for urban reconstruction where a user
can fit 3D mass models to buildings and complete facades to gen-
erate 3D models of partially occluded buildings (See Figs. 1, 20,
and 21). The facade structure and the 3D model for doors and win-
dows are placed automatically. Another example application is a
structure suggestion module for a facade modeling interface. A us-
er can sketch facade elements on a facade and ask the system to
complete a design. Then, the completed result can be further edited
and new completions can be generated. We show such an editing
sequence in Fig. 15. The second application has not been fully im-
plemented, but the completions are computed with our algorithm.
In future work, we would like to explore the integration of our struc-
ture completion framework to multiple applications in more detail.

Alternative Approaches: One idea to complete a missing facade
would be to adapt the idea of low rank matrix completion. As other

authors noted before, low rank matrices are a good model for fa-
cade structures, e.g. [Yang et al. 2012]. However, low-rank matrix
completion cannot be applied directly, because it requires that each
row or column has at least some observations. Most of the exam-
ples shown in this paper do not fulfill this criteria. An illustration
why low rank completion does not work, is given in Fig. 19. While
the result is a rectangular pattern, there is no control over window
spacing and window size. To extend the low rank matrix idea to
layout completion, one possible approach could be to add addition-
al priors on the size and spacing of the patterns encoded in the basis
vectors. We believe that this is an interesting problem for future
work in low rank matrix completion.

Another idea to approach the facade completion problem is to de-
rive a grammar consistent with the observations. This idea was used
in facade reconstruction to make a grammar consistent with an im-
age [Koutsourakis et al. 2009]. A general problem with grammars
is that it is difficult to write a single grammar that can capture the
complete design space of all possible facades. Since we are in-
terested in more complex structures, we conjecture that only some
of our examples could be generated with existing shape grammars.
Current grammars are only suitable to encode a small class of fa-
cade layouts, e.g. Haussmannian facades. We consider the idea
of grammar-based completion another promising approach to solve
the layout completion problem. One challenge to tackle would be
the generation of better shape grammars to encode a wider class of
facade designs.

Figure 19: Left: observed elements. Right: low rank completion.
There is no control over window spacing and window size.

7 Conclusions

We proposed a framework for structure completion for facade lay-
outs. In contrast to previous work we pose the question for partial-
ly observed and segmented facades. While the pre-segmentation
makes the problem easier, we solve a significantly more difficult
problem. The first challenge of this work is to jointly estimate the
position as well as the attributes of missing elements. The second
challenge is to complete structures with only a few observations by
learning plausible completions from a database. We tackle these
challenges and present the first solution to this problem. We use
a statistical model that can help to evaluate layouts and a planning
algorithm that generates candidate layouts.

Acknowledgement

We thank the anonymous reviewers for their constructive com-
ments. This research was partially funded by the Visual Comput-
ing Center of King Abdullah University of Science and Technol-
ogy (KAUST), the National Natural Science Foundation of China
(No. 61222206), the One Hundred Talent Project of the Chinese A-
cademy of Sciences, the U.S. National Science Foundation (CCF
0643822), and the Austrian Science Funds (FWF P24600-N23).

References

ALHALAWANI, S., YANG, Y.-L., LIU, H., AND MITRA, N. J.
2013. Interactive facades analysis and synthesis of semi-regular

Figure 16: Statistics of weight values on the different sizes of dataset. The average of each weight changes significantly and the standard
deviation gets larger when the size of training dataset is smaller than 70.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

incomplete facade all terms included element aspect ratio term excluded element spacing term excluded grid regularity term excluded grid completeness term excluded

pattern term excluded grid alignment term excluded element compatibility term excluded grid coverage term excluded facade border term excluded

Figure 18: The effect of each scoring function. (a) Incomplete facade. (b) A completion result generated with all the scoring functions. (c-k)
Ablation of individual scoring functions and its effect on the completion.

Figure 21: Several 3D models created using completion results.

Figure 20: Completion of a series of buildings along a street oc-
cluded by trees.

facades. Computer Graphics Forum 32, 2, 215–224.

ALI, S., YE, J., RAZDAN, A., AND WONKA, P. 2009. Com-
pressed facade displacement maps. IEEE Trans. on Vis. and
Comp. Graph 15, 2, 262–273.

BAO, F., SCHWARZ, M., AND WONKA, P. 2013. Procedural fa-
cade variations from a single layout. ACM Trans. Graph. 32, 1
(Jan.), 8:1–8:13.

BERTALMÍO, M., SAPIRO, G., CASELLES, V., AND BALLESTER,
C. 2000. Image inpainting. In Proc. of SIGGRAPH 2000, 417–
424.

DAI, D., RIEMENSCHNEIDER, H., SCHMITT, G., AND
VAN GOOL, L. 2013. Example-based facade texture synthe-
sis. In ICCV, 1065–1072.

HE, K., AND SUN, J. 2012. Statistics of patch offsets for image
completion. In ECCV, 16–29.

HINTON, G. E. 2002. Training products of experts by minimizing
contrastive divergence. Neural Computation 14, 8, 1771–1800.

KORAH, T., AND RASMUSSEN, C. 2008. Analysis of building
textures for reconstructing partially occluded facades. In ECCV,
359–372.

KOUTSOURAKIS, P., SIMON, L., TEBOUL, O., TZIRITAS, G.,
AND PARAGIOS, N. 2009. Single view reconstruction using
shape grammars for urban environments. In ICCV, 1795–1802.

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge Univer-
sity Press.

LEFEBVRE, S., HORNUS, S., AND LASRAM, A. 2010. By-
example synthesis of architectural textures. ACM Trans. Graph.
29, 4 (July), 84:1–84:8.

LIN, J., COHEN-OR, D., ZHANG, H., LIANG, C., SHARF, A.,
DEUSSEN, O., AND CHEN, B. 2011. Structure-preserving re-
targeting of irregular 3D architecture. ACM Trans. Graph. 30, 6,
183:1–183:10.

LIN, S., RITCHIE, D., FISHER, M., AND HANRAHAN, P. 2013.
Probabilistic color-by-numbers: Suggesting pattern coloriza-
tions using factor graphs. ACM Trans. Graph. 32, 4 (July), 37:1–
37:12.

MARTINOVIC, A., AND VAN GOOL, L. 2013. Bayesian grammar
learning for inverse procedural modeling. In CVPR, 201–208.

MARTINOVIĆ, A., MATHIAS, M., WEISSENBERG, J., AND VAN
GOOL, L. 2012. A three-layered approach to facade parsing. In
ECCV, 416–429.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Trans. Graph. 25, 3 (July), 614–623.

MÜLLER, P., ZENG, G., WONKA, P., AND GOOL, L. V. 2007.
Image-based procedural modeling of facades. ACM Trans.
Graph. 26, 3 (July), 85:1–85:9.

MUSIALSKI, P., WIMMER, M., AND WONKA, P. 2012. Inter-
active coherence-based façade modeling. Computer Graphics
Forum 31, 2, 661–670.

MUSIALSKI, P., WONKA, P., ALIAGA, D. G., WIMMER, M.,
VAN GOOL, L., AND PURGATHOFER, W. 2013. A Survey of
Urban Reconstruction. Computer Graphics Forum 32, 6, 146–
177.

RISSANEN, J. 1983. A universal prior for integers and estimation
by minimum description length. The Annals of statistics, 416–
431.

SHEN, C.-H., HUANG, S.-S., FU, H., AND HU, S.-M. 2011.
Adaptive partitioning of urban facades. ACM Trans. Graph. 30,
6 (Dec.), 184:1–184:10.

SUN, J., YUAN, L., JIA, J., AND SHUM, H.-Y. 2005. Image
completion with structure propagation. ACM Trans. Graph. 24,
3 (July), 861–868.

TALTON, J. O., LOU, Y., LESSER, S., DUKE, J., MĚCH, R., AND
KOLTUN, V. 2011. Metropolis procedural modeling. ACM Tran-
s. Graph. 30, 2 (Apr.), 11:1–11:14.

TEBOUL, O., SIMON, L., KOUTSOURAKIS, P., AND PARAGIOS,
N. 2010. Segmentation of building facades using procedural
shape priors. 3105–3112.

TEBOUL, O., KOKKINOS, I., SIMON, L., KOUTSOURAKIS, P.,
AND PARAGIOS, N. 2013. Parsing facades with shape grammars
and reinforcement learning. IEEE Trans. Pattern Anal. Mach.
Intell 35, 7, 1744–56.

WAND, M. P., AND JONES, M. C. 1994. Kernel Smoothing. Crc
Press.

WEISSENBERG, J., RIEMENSCHNEIDER, H., PRASAD, M., AND
VAN GOOL, L. 2013. Is there a procedural logic to architecture?
In CVPR, 185–192.

WONKA, P., WIMMER, M., SILLION, F. X., AND RIBARSKY, W.
2003. Instant architecture. ACM Trans. Graph. 22, 3 (July),
669–677.

WU, F., YAN, D.-M., DONG, W., ZHANG, X., AND WONKA,
P. 2014. Inverse procedural modeling of facade layouts. ACM
Trans. Graph. 33, 4 (July), 121:1–121:10.

YANG, C., HAN, T., QUAN, L., AND TAI, C.-L. 2012. Parsing
façade with rank-one approximation. 1720–1727.

YEH, Y.-T., BREEDEN, K., YANG, L., FISHER, M., AND HAN-
RAHAN, P. 2013. Synthesis of tiled patterns using factor graphs.
ACM Trans. Graph. 32, 1 (Jan.), 3:1–3:13.

ZHANG, H., XU, K., JIANG, W., LIN, J., COHEN-OR, D., AND
CHEN, B. 2013. Layered analysis of irregular facades via sym-
metry maximization. ACM Trans. Graph. 32, 4 (July), 121:1–
121:10.

