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window --> split(y){~0.3:glass | 0.08:frame | ~1.22:A}
A --> split(x){~0.75:B | ~0.15:glass}
B --> repeat(x){~0.25:C}
C --> split(x){~0.2:glass | 0.05:frame}

Figure 1: We present an algorithm that automatically derives a split grammar for a given facade layout. A facade layout is given as a
segmented facade image (left and top middle). A short subset of the generated output grammar describing a window is shown in the bottom
middle. Grammars can be edited and combined to generate new stochastic split grammars. On the right we show a high-rise building that
was created by such a stochastic variation.

Abstract

In this paper, we address the following research problem: How can
we generate a meaningful split grammar that explains a given fa-
cade layout? To evaluate if a grammar is meaningful, we propose a
cost function based on the description length and minimize this cost
using an approximate dynamic programming framework. Our eval-
uation indicates that our framework extracts meaningful split gram-
mars that are competitive with those of expert users, while some
users and all competing automatic solutions are less successful.
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1 Introduction

Inverse procedural modeling is the problem of finding useful pro-
cedural descriptions for a given model or a set of given models. In
our work, we consider a facade layout as input and automatically
compute a useful procedural description as output.

There are multiple possible applications of procedural facade de-
scriptions, including compression, architectural analysis, facade
comparison and retrieval, encoding prior knowledge for urban re-
construction, and the generation of variations for large-scale urban
modeling. While our work is related to all these applications with
minor variations, we focus our exposition on the subset of appli-
cations that require a meaningful semantic hierarchy of a facade
layout and we use the generation of variations for large-scale urban
modeling as the main motivating example for our work.

We use split grammars [Wonka et al. 2003; Müller et al. 2006] for
procedural representation because they are often used in procedural
urban modeling. We can distinguish two types of split grammars:
deterministic split grammars that encode a single facade layout and
stochastic split grammars that encode multiple variations. Design-
ing stochastic split grammars from scratch is very challenging. This
task requires design skills, creativity, and programming experience.
Writing a procedural description for a new facade in a text file can
take many hours by expert users, e.g., technical artists. Therefore, it
is a common strategy to start by encoding a single example as a de-
terministic split grammar and then generalizing the design [Watson
and Wonka 2008]. Automatically converting a facade layout into a
split grammar would eliminate a time-consuming part of the proce-
dural modeling process and would make the process accessible to
non-experts.

But what is a useful split grammar? First, the split grammar should
be semantically meaningful, e.g., they should preserve meaningful
facade components in the splitting hierarchy (See Fig. 2). Second,
the procedural description should encode identical regions consis-
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Figure 2: Examples of how our algorithm is able to detect mean-
ingful semantic regions in an input layout. Note that the design of
the first facade is not symmetric. The colored regions correspond to
selected non-terminal regions in the grammars.

tently. If these goals are not met, it becomes difficult to use split
grammars to generate stochastic variations. For example, if differ-
ent instances of the same window are encoded in different ways,
the rules for each instance have to be changed separately instead of
changing only one rule. In addition, having multiple rules for the
same type of window leads to windows being chosen inconsistently
so that the facade variations are unrealistic.

One fundamental observation used in our work is that a shorter de-
scription is usually preferable to a longer one. For example, in DNA
analysis, music, and natural language processing, various authors
observed that short descriptions usually correspond to a semanti-
cally meaningful interpretation of the data (see discussion and refer-
ences in [Carrascosa et al. 2010]). We therefore expect that shorter
procedural descriptions will be more useful for editing and for gen-
eralizing them to stochastic procedural models. The usefulness of
short descriptions to explain data is also discussed in the context
of Kolmogorov complexity, Occam’s razor, and the Bayesian in-
formation criterion. One intuition to motivate short descriptions is
that split grammars become shorter if they reuse the same rules for
identical subregions.

To tackle our problem, we use two components. First, we propose a
cost function to evaluate how meaningful a grammar is. Second, we
propose an optimization framework based on approximate dynamic
programming [Powell 2011] to extract a grammar that minimizes
this cost function. The major contributions of this work are that:

• We formulate the inverse procedural modeling problem for
facade layouts as a smallest grammar problem.

• We propose an automatic algorithm to derive a meaningful
split grammar for a given facade layout.

In our results, we present a user evaluation that indicates that our
proposed metric is a good measure for the quality of a split gram-
mar. Further, we demonstrate that our results are competitive with
the best user-generated grammars, whereas many other users ex-
tracted grammars of lower quality than our automatic method. Fi-
nally, our results also indicate that our split grammars are signifi-
cantly better than grammars extracted by simpler heuristics. In this
paper, we use segmented, regularized, and labeled facade layouts
as input and do not derive the split grammars directly from pho-
tographs. We are only interested in grammars that can describe an
input layout exactly.

2 Related Work

Procedural Modeling Our work builds on grammar-based proce-
dural modeling. We mainly use splitting rules as they are commonly
employed for facade modeling [Wonka et al. 2003; Müller et al.
2006]. For the generation of mass models, turtle commands like
translate, rotate, and scale [Prusinkiewicz and Lindenmayer 1990;
Müller et al. 2006] are often more useful. One goal of our work is
the user-friendly generation of grammar rules. Here, the interactive

editing framework of Lipp et al. [2008] or a visual programming
interface [Patow 2012] are other useful tools that contribute to the
same goal. Finally, other approaches try to generate facade layouts
without the use of grammars. Lefebvre et al. [2010] work directly
on textures, Lin et al. [2011] and Bao et al. [2013] use optimization,
and Yeh et al. [2013] propose a sampling algorithm for a probabilis-
tic model using factor graphs.

Inverse Procedural Modeling There are several papers that pro-
pose initial solutions on deriving a shape grammar from facade im-
ages. The pioneering work by Bekins, Aliaga, and Rosen [Bekins
and Aliaga 2005; Aliaga et al. 2007] proposes a grammar that splits
a facade into floors and then encodes a one-dimensional sequence
of elements. The advantage of this approach is that it reduces the
problem to a sequence of one-dimensional problems, but the disad-
vantage is that it only applies to facades with this structure and is
not applicable to general two-dimensional layouts. This approach is
therefore more similar to finding the parameters of a pre-determined
shape grammar. Several other authors also follow this general ap-
proach [Müller et al. 2007; Becker 2009]. An important contribu-
tion is the inverse procedural modeling of vector art [Št’ava et al.
2010], because it is the first formal treatment of the inverse proce-
dural modeling problem in computer graphics.

There are several important research questions related to inverse
procedural modeling that are complementary to our work. When
dealing with noisy input or input that is not segmented, lower level
shape understanding, most importantly symmetry detection, is the
first important step to inverse procedural modeling [Müller et al.
2007; Bokeloh et al. 2010]. After a set of shape grammars has been
learned from typical input facades (e.g., using the method described
in this paper), they can be used as priors to guide further reconstruc-
tion efforts. This very exciting and important line of work has been
picked up by several research groups, e.g., [Hohmann et al. 2009;
Mathias et al. 2011; Ripperda and Brenner 2009; Vanegas et al.
2010; Toshev et al. 2010; Simon et al. 2011; Riemenschneider et al.
2012; Teboul et al. 2011; Teboul et al. 2013].

Three recent papers that independently developed algorithms to ex-
tract structure from facade layouts are similar to our work. Most
closely related is the work by Weissenberg et al. [2013] who devel-
oped an algorithm to extract grammars from facade layouts. This
algorithm works very nicely for simple facades, but our results will
show that our algorithm performs better on complex facade layouts
used in our test dataset. Zhang et al. [2013] propose alternative
subdivision rules to traditional split grammars. While their idea to
structure a facade is excellent, the actual algorithm to obtain the
subdivision leaves room for improvement. While this work is not
directly comparable, we can show that the heuristic they propose
for analysis (mirror symmetry) can be improved using our methods.
Finally, the idea of Bayesian model merging can be adapted to com-
bine multiple deterministic grammars into a stochastic one [Talton
et al. 2012; Martinovic and Van Gool 2013]. While this idea is or-
thogonal to our work, Bayesian model merging needs a good gram-
mar to start with. To this end, Martinovic et al. propose a heuristic
to extract a split grammar from a facade layout. While this heuris-
tic also works well on simple facades, our results will show that our
method is necessary to achieve good results on complex layouts.
For a more extensive survey on urban reconstruction and inverse
modeling we refer the reader to [Musialski et al. 2013].

3 Overview

In this section, we discuss necessary background information on
facade modeling with split grammars, the problem statement, and
the generation of the input layouts.
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Figure 3: Left: for a facade layout we show a terminal region,
Ri, with parameters (xi, yi,wi, hi). Right: a selection of terminal
regions that are used in the layout is shown on the top. Two non-
terminal regions are shown on the bottom. The location of these
regions in the layout is highlighted in red on the left.

3.1 Facade Modeling with Split Grammars

A facade layout is defined inside a rectangular domain by a set
of non-overlapping rectangular regions. A rectangular region, Ri,
is defined by parameters (xi, yi,wi, hi) denoting the position of the
lower left corner (xi, yi) and size (width wi and height hi). A la-
bel function, li(u, v) : R2 → N, describes the material at position
(xi + u, yi + v) as an integer label. Existing materials are stored in
a table, so that the integer label encodes the index into the material
table. Outside the rectangle, the label function is 0, denoting trans-
parency. An input facade layout is defined through all the terminal
regions, i.e., the regions that cannot be split any further. Other re-
gions are called non-terminal regions, e.g., the complete facade as
well as any compound region consisting of multiple terminal re-
gions would be non-terminal regions. See Fig. 3 for an illustration.
Each terminal region, Ri, is assigned a terminal symbol, symi ∈ T ,
so that two rectangles with the same material are assigned the same
symbol. A compound region, R j, is associated with a non-terminal
symbol in NT .

We encode facades as context free grammars of the form:
G(T ,NT , s0,P), with a set of symbols, S = T ∪ NT , a desig-
nated starting symbol, s0, and a set of splitting rules, P, which map
symbols to finite sequences of symbols. We use rules of the form
symi → opi αi, where symi ∈ NT , αi = (αi1, . . . , αik) and αi j ∈ S,
and where opi is a splitting operation that determines the geometric
arrangement of the successor symbols, αi. The number of succes-
sors, k ≥ 1, varies for each rule.

To simplify the exposition, we restrict our discussion to two-
dimensional rectangles (no depth) and the two most important rules:
the split rule and the repeat rule. Additional rules are discussed in
Sec. 4.7. The following shows an example of the two rules:

F1→ split(‘‘X”) { 1: A | 2: B | 1: A},
F2→ repeat(‘‘X”) { 1: A | 2: B}.

The first rule splits a rectangle, F1, along the x-axis into three sub-
regions with symbols A, B, and A. The repeat rule splits a rectangle,
F2, along the x-axis using a repeating AB pattern. The parameters 1
and 2 describe the size of the subregions. For notational simplicity,
we omit the geometric parameters in most of our discussions. See
Fig. 4 for an illustration of these two rules.

3.2 Problem Statement

We propose a cost function to evaluate a grammar. We would like
to find a grammar, G, that minimizes:

min
G

|P|∑
i=1

costr(rulei), where (1)
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Figure 4: A visual representation of the effect of the split rule, F1
(left), and the repeat rule, F2 (right), described in the text. The
rectangles of F1 and F2 are not drawn to scale.

costr(rulei) = costop(opi) + |αi|. (2)

The first term is a cost that depends on the type of rule used and
the second term is the length of the sequence, αi. We use 0.1 for a
splitting rule and 0.5 for a repeat rule. For example, the cost of rule
F1 in Sec. 3.1 would be 3.1 and the cost of rule F2 would be 2.5.
There are multiple ways to configure and adapt this cost function
based on the specific application. The cost of the repeat rule rela-
tive to the split rule determines how long a repetition needs to be
so that a repeat rule is preferred. The absolute cost of the split rule
determines if longer rules with many splits are preferred. A higher
cost for the split rule typically makes the grammars more similar to
certain user-generated grammars, but a lower cost might be better
for compression and structure analysis because even smaller reoc-
curring patterns will be encoded in the grammar. Other possible
variations of this cost function are to eliminate the first term (costop)
or the second term (|αi|). We determined the parameters by exten-
sively testing different cost functions and settling for the model that
produced the grammars we like best. Here is some intuition for
our choice: 1) the repeat rule is preferred to encode a sequence of
two or more repeating elements. If the cost of the repeat is too
expensive, only k ≥ 3 repeated elements will be encoded with a
repeat rule. 2) the split rule prefers longer splits, but subsequences
of length k ≥ 3 that occur two or more times receive separate rules.
For example, in a sequence abcdabc the subsequence abc should
be encoded by a separate rule. We will evaluate different choices of
the cost functions in Sec. 6.

This formulation is inspired by the smallest grammar problem for
processing a string of characters [Charikar et al. 2005]. In infor-
mation theory, this problem is linked to data compression and Kol-
mogorov complexity. Research on data compression indicates that
the grammar-based approach is competitive with other compres-
sion algorithms. Since almost all (non-organic) facade layouts can
be well represented by split grammars, we believe that the answer
to the smallest grammar problem for facades can lead to standard-
ized compression formats for urban data. Even more interesting is
the relation to Kolmogorov complexity. Instead of computing the
smallest Turing machine description (which is undeterminable), we
can ask for the smallest context-free grammar. Therefore, the result
of our computation can also be viewed as an estimate of the archi-
tectural complexity of a facade, which is an interesting contribution
to architectural analysis. It is our conjecture that this formulation
will extract meaningful patterns, similar to using the problem for
DNA analysis [Carrascosa et al. 2012] or text analysis [de Marcken
1996].

3.3 Input Layouts

We generate input layouts using vector graphics software for simple
test cases or manual segmentation of rectified photographs using a
reimplementation of the interactive splitting operations in [Musial-
ski et al. 2012]. While this editing framework already induces a user
suggested hierarchy, we only consider the decomposition into ter-
minal regions as input to our algorithm. In this way, our algorithm
is independent of the tool used to generate the input layout. Our



Figure 5: Left: a segmented facade image with region boundaries
shown in red. Right: terminal-regions labeled according to their
material.

input could also stem from vision algorithms that detect lattices of
repeated elements, e.g., [Zhao et al. 2012]. We also assume that our
input is regularized, i.e., different terminal regions depicting a re-
peated element are in fact the same size. In our implementation, we
use quadratic programming to regularize inputs if necessary. See
Fig. 5 for an example input.

4 Generating Deterministic Grammars

4.1 Approximate Dynamic Programming

The trademark of an efficient grammar is that it exploits transla-
tional (or reflective) symmetries in the layout so that regions with
identical content can be derived with the same rules. We used this
observation in two ways. First, we designed a bottom-up algorithm
that groups regions while maximizing translational symmetry of
grouped regions. Second, we designed a top-down algorithm that
splits regions. Our solution combines both ideas. We use bottom-up
analysis for symmetry detection, but we derive the grammar from
the top down so that we are guaranteed to obtain a valid grammar.

This discrete optimization problem (Eq. 1) is NP-complete, which
has been shown for the one-dimensional smallest grammar prob-
lem [Charikar et al. 2005]. We propose an approximate dynamic
programming formulation to tackle this problem. The top-down
splitting algorithm has a state, S t, consisting of all current rules
in the grammar. The starting state, S 0, is a grammar without any
rules. The state is best visualized by a splitting tree that encodes
the application of the current grammar to a starting region (e.g., see
Fig. 6). At each step, the algorithm chooses from a number of dis-
crete actions, at. An action, at, consists of adding one splitting rule,
sym→ op α, to the grammar.

The problem can be formulated using the deterministic version of
Bellman’s equation [Powell 2011]:

Vt(S t) = min
at

(Ct(S t, at) + Vt+1(S t+1)) (3)

The cost, Ct(S t, at), is the cost of adding action at to the rule as
defined in Eq. 2. The value, Vt, is defined recursively, so that the
value of a state is the sum of the cost of all rules that will be added
in the future assuming that there will be optimal decision making.
For example, the value of the starting state, V0(S 0), is the cost of the
optimal (minimal) grammar. The value of a final state (a complete
grammar) is 0.

4.2 Algorithm Overview

We propose an iterative algorithm that generates a deterministic
grammar for the input layout in each iteration (typically prepetitions >
1000 iterations). At the end, the grammar with the lowest cost is re-
ported as the solution.

First Floor

Floors
Floor

Floor
Window
Wall

Top

Ornament

Door

Figure 6: A splitting tree visualizing the application of a grammar
to an input layout. Non-terminal regions that occur on the left-
hand side of splitting rules are labeled with their corresponding
symbols (Top, Floors, First Floor, and Floor). Note that each region
labeled Floor is split using the same rule. Terminal regions are
shown in the legend on the bottom right. If new rules are added
to the grammar, terminal regions can become non-terminal regions
and be subdivided further.

Each iteration proceeds as follows: a) The grammar is initialized to
the starting state, S 0, a grammar without rules. b) A non-terminal
region without corresponding rule is selected for splitting in a fixed
order (bottom to top, left to right). c) A rule is selected for the
non-terminal region and added to the grammar, giving a new state,
S t+1. The rule selection algorithm is described below in more detail.
d) If no non-terminal region is left, the iteration terminates and a
complete grammar has been computed. Otherwise, go to step b).
Note that only the first instance of a non-terminal region can be
selected for splitting. All subsequent instances will already have a
rule associated with them.

Rule Selection: There are two possible ways to select a rule to split
a region, Ri. The algorithm chooses between exploration using a
splitting heuristic or exploitation using the value function approxi-
mation using the probabilities ε and 1−ε, respectively. The learning
rate, ε, decreases over time. In the exploration mode, the algorithm
randomly selects a rule according to the following probability:

Pi =
e−H(rulei)∑

j e−H(rule j)
.

This probability is derived from a splitting heuristic explained
in Sec. 4.4. In the exploitation mode, the algorithm selects a
rule according to a value function approximation, V̄ (described in
Sec. 4.5):

min
at

(Ct(S t, at) + V̄t+1(S t+1)). (4)

Our splitting heuristic is motivated by the observation that there can
be a large number of possible splitting rules to split a non-terminal
region. Therefore, we cannot rely on complete random sampling in
the exploration mode. We need to restrict the rules visited by our
algorithm to a subset of rules that seem reasonable.

4.3 Symmetry Detection

Since the input layouts are reasonably small, we propose to use
an exhaustive search to find all repeated (sub-)regions of a layout.
A hash data structure is used to facilitate finding sets of repeated
regions, Ti. Given a region, we can query the hash data structure to
get a list of all symmetric regions (via translational symmetry) or
determine that the region is not in the data structure and is unique.
Standard operations such as adding and deleting regions are also
used.

The algorithm is initialized by finding each terminal region that is
repeated at least twice in the input layout and inserting it into the
hash data structure. Then, we iteratively visit each repeated region
that has not been processed and try to grow it in four directions
(left, right, top, and bottom) to see if such a larger region also has
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Figure 7: Left: Region A can expand to the right to include regions
B, C, and D. Right: Region A can no longer expand to the right,
because the right borders of E, C, and B are not aligned. Before
region A can expand, the grouping first needs to combine E and F
and then expand upwards to include C and B.

two or more repetitions. If this is the case, we add the newly found
region to the hash table. The growing in four directions is necessary,
because the input is not a grid in the general case (See Fig. 7).

4.4 Splitting Heuristics

The splitting heuristic is used for exploration and it can estimate
how useful a rule is. The heuristic

H(rule) = λ1 costr(rule) + λ2

∑
sli∈rule

costsl(sli) (5)

consists of two components. The first component is the cost of the
rule itself (Eq. 2) and the second component is a cost heuristic eval-
uated for each splitting line, sli. The parameters λ1 and λ2 balance
these two terms (λ1 = 1 and λ2 = 1 in all our experiments). The
idea of evaluating a splitting line is to compute how many repeated
regions are cut and then to compute how much coherence gets lost
by not being able to reuse the same rules for a repeated region. The
extra cost is somewhat proportional to the complexity of the region
that is cut. A simple heuristic is therefore to use the number of
terminal regions in a repeated region that gets cut. See Fig. 8 for
examples.
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Figure 8: Visualization of the splitting heuristic. Left: region A and
region B are repeated. Therefore, each of the yellow splitting lines
incurs a cost of the sum of terminals in A plus the sum of terminals
in B divided by the number of terminals in the complete region.
Right: the yellow splitting line cuts three separate instances of the
repeated region C. The cost is three times the number of terminals
in region, C divided by the number of terminals in the shown region.

4.5 Value Function Approximation

Value function approximation is used for the exploitation part of
the algorithm. Since our algorithm will attempt to search the solu-
tion space in many iterations, we often encounter similar subprob-
lems. In our context, such a subproblem is to compute the smallest
grammar for a subregion, Ri, given that the set of subregions of
Ri (Ri1, . . . ,Rik) already have splitting rules associated with them.
We can store an approximate solution, V̄R(Ri, [Ri1, . . . ,Rik]), for a
region, Ri, and any possible combinations of subregions that are
already considered in the derivation. As there is an exponential
number of possible combinations of subregions, too much memory
would be required and it becomes difficult to exploit the coherence
between different tries. We therefore simplify the approximation to
just storing the best known V̄R(Ri) and ignoring the combinations
of subregions. We also store the best action (rule) to split Ri.

Figure 9: Grammar visualization of a facade layout. We use the
character “T” to denote the terminals and numbers to denote the
non-terminals (rules). There are a total of 4 terminals and 10 rules
in this grammar.

4.6 Example Result

We visualize the grammar of one layout example in Fig. 9. The
derived grammar for this input is given below (the use of semantic
names for symbols is our interpretation):

NT1→ split(y){Wall1 | NT2 | NT3 | Wall1 | NT4 | Wall1}
NT2→ repeat (y){NT5}
NT3→ split(x){NT6 | Wall1 | Window1 | Wall2 | Window1 | NT7}
NT4→ split(x){NT6 | Wall2 | Wall1 | NT8 | Wall2 | Window2 | Wall1 | NT9}
NT5→ split(y){NT10 | Wall1}
NT6→ split(x){Wall1 | Window1}
NT7→ split(x){Wall1 | Window2 | Wall2 | NT9}
NT8→ split(x){Window1 | Wall1 | Window1}.
NT9→ split(x){Window1 | Wall1}
NT10→ split{NT6 | Wall2 | NT8 | NT7}

In such an irregular facade layout, it is not evident how to group
facade elements to obtain optimal results. Our algorithm can find
a solution that is competitive with manual rule generation by an
expert and only ten rules are used in the solution.

4.7 Extensions

We also implemented several (optional) extensions to the basic al-
gorithm. The first extension is to increase the power of the rule
set. In general, the design of a procedural rule set is a trade off be-
tween expressiveness and modeling complexity. It is not the goal
of this paper to argue for a specific rule set, but rather to show that
our framework can be extened using new rules. There are three
rules that we propose to add: a rule that encodes repeats of the
form ABABA (repeatABA), a rule that encodes reflective symmetry
(symsplit), and a rule that splits in two dimensions at the same time
(gridsplit). Using these additional rules helps to make the grammar
more semantically meaningful. For example, in Fig. 11, we visual-
ize how adding the two rules repeatABA and symsplit change the
grammar of Fig. 9. We can see that the some non-terminals are
shorter than before or even disappear in the new grammar, which
decreases the overall cost of the grammar. The new rules in the
grammar are:

NT1→ split(y){NT2 | NT3 | Wall1 | NT4 | Wall1}
NT2→ repeatABA (y){T | NT10}
NT8→ symsplit(x){Window1 | Wall1}.
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Figure 10: Ten selected facades used for performance testing.

Figure 11: The non-terminals that have been changed after we add
the two rules of splitABA and symsplit to the grammar of Fig. 9.
Fewer terminals are used in non-terminals 1 and 8, while non-
terminal 5 (NT5) disappears in the new grammar.

A second extension is the detection and preservation of important
regions in the grammar. For each repeated region, we can compute
a score, f (a, o), consisting of the number of terminals, a, inside
the region and its number of occurrences in the layout, o, which is
formulated as:

f (a, o) = (a − 1) · (o − 1).

Then we select a non-overlapping, randomly sampled set of these
regions to be protected to ensure they are non-terminal symbols in
the grammar for the current iteration. In our algorithm, during the
grammar generation process, we preserve the selected important re-
gions not to be split until they are isolated from the other regions. In
other words, we do not allow split operations to cross these regions
until they are separated and become associated with a non-terminal
symbol.

5 Generating Variations

One main goal of split grammars is to generate a larger number of
variations.

Computing Size-Independent Grammars: Given a single input
grammar, the first step is to make the grammar size independent,
so that it can be applied to rectangular regions of different sizes.
This can be implemented by two changes to the grammar. The first
change happens implicitly by extending the meaning of the repeat
rule. If the available space is not exactly divisible by the given
spacing parameter, the repeat rule will place as many elements as
there are space available for and rescale the elements slightly. The
second step is to make use of absolute as well as relative size spec-
ifications [Müller et al. 2006]. An absolute size specification is

measured in meters and a relative size specification functions as a
weight. For example, if a split rule for a region, R, in the input fa-
cade splits a region into subregions of width 1, 1.6, and 1 meters,
these would become weights when being transformed to relative
sizes. If the rule is now applied to a region, R, with a width dif-
ferent than 3.6 meters, the region would be split in proportion to
1 : 1.6 : 1. Generally, all absolute sizes are converted to relative
sizes with the exception of certain thin structures identified by a
heuristic, e.g., window frames.

Generating Stochastic Grammars and Variations: We can also
generate new facade layouts by combining multiple grammars.
While such an approach has been proposed recently [Martinovic
and Van Gool 2013], this does not work well on complex or de-
tailed facade layouts considered in this paper. To generate high-
quality variations, we propose to use interactive editing. For this
purpose, we developed an interactive grammar editing framework.
Instead of editing the rules directly, the user performs edits on an
example facade that is randomly generated. The user can select
individual regions (terminal and non-terminal regions) and mod-
ify the size of splits, replace symbols, and edit the structure of the
splitting rules (e.g., to insert new floors or columns of windows).
Editing operations will change the underlying rules in the grammar.
The example facade is regenerated each time a rule is changed. As
a consequence, all regions in the facade that were generated by the
same rule will also change. The user can also regenerate and re-
size the facade to see how different variations of the facade look
like. This editing framework uses an example-based approach to
rule editing and is mainly a visual replacement for editing gram-
mars by text. Please note this framework is more direct than the
work by Lipp et al. [Lipp et al. 2008]. We do not offer some of the
more advanced editing possibilities, but the output of our edits is
always a split grammar.

Advanced Grammar Derivation: We modify the traditional
grammar derivation by post-processing the layout initially gener-
ated by the grammar to improve the alignment of the facade ele-
ments (e.g. windows). We use quadratic programming with linear
constraints to optimize alignments and ensure that equal terminals
have the same size [Bao et al. 2013] (See Fig. 12, video, and sup-
plementary materials).

6 Results

We structure the evaluation in two parts. First, we evaluate the qual-
ity of the grammars. Second, we evaluate the algorithm when used
for analysis, editing, and large-scale procedural modeling. We also



Figure 12: A size-independent grammar for an input layout (left)
can be used to resize a facade layout. Note the proper window
alignments computed by quadratic programming.

(b) (c)(a) (d)

Figure 13: Four facades used for joint grammar extraction. The
cost of the four separate grammars: (a) cost = 31.2, #rule = 10.
(b) cost = 37.3, #rule = 11. (c) cost = 44.3, #rule = 11. (d)
cost = 21.5, #rule = 9. The cost of the jointly extracted grammar:
cost = 100.9, #rule = 27 (compared to : cost = 134.3, #rule = 41
for the sum of the individual grammars).

provide a discussion of limitations. The running times are reported
for a PC with a Xeon(R) X5675 3.07G processor. We use a dataset
of 34 selected facades. In the paper itself, we present only the input
and results for a set of ten selected facades (Fig. 10). The remaining
facades and results are presented in the supplemental materials.

6.1 Quality

We first compare the results of five variations of our algorithm: a)
approximate dynamic programming (ADP) using 2000 iterations;
b) ADP using 10,000 iterations; c) a greedy algorithm always us-
ing the best split according to the heuristic defined in Sec. 4.4; d)
Importance sampling (IS) using the heuristic in Sec. 4.4 with 2000
iterations; e) IS using 10,000 iterations. The results are shown in
Table 1. We can observe that more iterations generally lead to better
results for our method as well as for importance sampling. Overall,
approximate dynamic programming using 10,000 iterations gives
the best results in 30 out of 34 cases.

In another comparison, we compare results from three indepen-
dently developed algorithms and grammars generated by seven
users (students and post-docs at our university). For this purpose,

PL BGL SM Ours U1 U2 U3 U4 U5 U6 U7
(a) 246 208 305 109 147 109 138 185 148 285 274
(b) 183 171 279 118 155 111 130 157 247 192 250
(c) 280 214 299 170 188 182 318 317 331 352 417
(d) 179 191 298 134 135 138 167 185 234 224 251
(e) 173 175 200 86 97 88 92 107 134 99 148
(f) 292 210 254 146 161 158 253 177 358 250 309
(g) 116 83 146 68 72 71 72 78 80 90 99
(h) 80 90 101 77 79 77 99 82 101 145 164
(i) 51 43 77 40 52 44 60 43 46 49 93
(j) 548 482 726 136 156 108 208 169 309 189 378

(avg) 215 187 269 108 124 109 154 150 199 188 238

Automatic grammar Manual grammar
F

Table 2: We compare the compactness of the grammar to manu-
ally generated grammars by seven users and other automatic al-
gorithms: PL [Weissenberg et al. 2013], BGL [Martinovic and
Van Gool 2013], and SM [Zhang et al. 2013]. We report the cost in
each cell of the table. The best values are highlighted in bold.

we implemented a visual framework to make manual grammar
modeling possible in a reasonable time. It takes a user five to thirty
minutes to model a single facade; so that modeling the complete test
dataset requires 10 to 12 hours. The three algorithms are PL: our
reimplementation of the algorithm from [Weissenberg et al. 2013],
BGL: our reimplementation of the initial step in [Martinovic and
Van Gool 2013], and SM: The splitting heuristic of [Zhang et al.
2013] to select split grammar rules. To standardize the results we
used only the split rule in our algorithm and we converted all user
generated repeat rules to split rules. The results show that our algo-
rithm is best suited to optimize for our cost function. We can also
observe that user-generated grammars sometimes have better val-
ues, but that all other automatic methods have significantly higher
cost. Speedwise, PL and BGL are comparable to our greedy algo-
rithm (assuming that the parameters for PL are known). For SM,
we implemented a greedy version and a stochastic search version.
The greedy version is comparable in speed to our greedy algorithm
and the stochastic search version is comparable in speed to our full
algorithm. Surprisingly, the results of both versions of SM were
quite similar, so that we opted to use the greedy version for the
comparisons. Table 2 presents the results.

The most important question is if our cost function is able to mea-
sure how meaningful a grammar is. We invited seven additional ex-
pert users to evaluate both the manually and the automatically gen-
erated grammars. This task is very time consuming; we therefore
limited it to five example facades. The users were asked to score
each grammar on a scale from 1 to 10. To calibrate the scores, we
also asked if the grammars could be considered as expert grammars
or not and we report the percentage of positive answers in Table 3.
We can observe that our grammar is ranked highly, only a single
user-generated grammar does better. We can also observe that our
cost function does a good job at predicting the quality of a gram-
mar. We show this by listing the rank of each grammar from the
user study and our scoring function. Further, we can see that the
task is difficult for users, because several user-generated grammars
are not highly ranked. This further underlines the importance of au-
tomating this process. Interestingly, BGL is the most highly ranked
grammar among other automatic methods. The reason is that two
users liked the simplicity of the generated results, even though they
do not group semantically meaningful regions. The users who par-
ticipated in the studies received some general instructions about the
user interface, the grammar, and how the grammar is used in an
editing application. We did not instruct the users about our cost
function or algorithm.

Finally, we wanted to measure how similar our grammar is to user-



cost #rule time(s) cost #rule time(s) cost #rule time(s) cost #rule time(s) cost #rule time(s)
(a) 1085 107.5/113.7 30/33 7.4/7.8 109.4/116.6 30/34 31.1/32.3 124.0/145.3 36/48 9.6/9.8 122.8/130.7 38/42 40.8/41.9 121.2 34 0.4
(b) 523 118.1/137.7 37/44 9.3/10.0 123.3/141.3 39/46 42.4/46.0 142.1/164.4 47/56 11.5/12.1 129.4/165.8 40/55 53.1/55.3 220.6 56 0.07
(c) 595 172.9/173.7 47/47 13.4/13.7 169.7/171.6 45/46 58.7/60.3 200.3/216.1 61/67 18.7/19.1 205.3/213.2 59/64 82.8/85.7 229.4 52 0.05
(d) 895 140.8/158.3 44/51 8.8/9.1 133.9/148.5 42/46 37.8/40.9 164.9/183.2 51/55 11/11.3 164.7/186.3 49/56 51.6/53.1 155.1 47 0.3
(e) 536 92.8/98.1 30/32 2.6/2.8 86/93.6 26/29 11.8/12.7 93.5/104.6 26/32 3.5/3.7 94.3/106.4 29/34 17/17.9 127.3 41 0.07
(f) 1121 147.4/151.9 52/55 10.8/11.2 146.4/152 52/56 39.2/42.4 174.2/192.9 54/63 14.6/14.9 174.6/204.4 56/65 59.9/62.0 187.5 55 0.1
(g) 103 67.9/84.2 19/25 5.5/5.8 68.8/80.1 18/24 27.6/28.4 75.2/86.6 21/25 7.7/8.2 78.5/95.9 23/29 37.2/39.3 102 24 0.07
(h) 71 77.1/77.7 21/21 6.3/6.5 77.1/77.1 21/21 30/32.1 83.4/88.6 24/27 7.8/8.2 77.1/86.7 21/26 38.9/40.8 128 30 0.03
(i) 50 40.3/43.3 7/9 0.8/0.9 41.2/43.1 7/8 4.4/4.5 41.3/45.1 8/10 0.8/0.9 43.5/45.9 9/11 4.9/5.0 71.5 21 0.01
(j) 839 135.5/179.1 39/58 28.1/28.8 138.6/174.0 40/54 71.7/77.1 141.7/173.1 41/55 32.7/35.3 150.8/177.5 48/57 99.3/105 184.5 49 1.8

(avg) 582 110/121.8 33/38 9.3/9.7 109.4/119.8 32/36 35.5/37.7 124.1/140 37/44 11.8/12.4 124.1/141.3 37/44 48.6/50.6 152.7 41 0.3

F
ADP(2K) ADP(10K) Importance Sampling (2K) Importance Sampling (10K) Greedy

#T

Table 1: Comparison details for the different methods described in the paper. For the heuristic algorithms (first four), we report the minimum
value (left) and the average value (right) from ten different runs of the algorithm for the categories cost, #rule, and time(s). The best values
are highlighted.

PL BGL SM Ours U1 U2 U3 U4 U5 U6 U7
S 5.1 6.3 4 8.2 7.7 8.9 7.2 6.8 6.4 5.3 3.6
E 0.2 0.3 0.1 0.8 0.5 0.8 0.4 0.4 0.3 0.2 0.1
C 136 124 173 77 86 79 99 103 127 126 154
R1 9 7 10 2 3 1 4 5 6 8 10
R2 9 6 11 1 3 2 4 5 8 7 10

Automatic  method Expert Non-Expert

Table 3: We invited seven additional expert users to evaluate both
the automatically and manually extracted grammars from five fa-
cades. Each user was asked to score each grammar on a scale from
1 to 10. We report the average score for all facades and all users in
row S. To calibrate the scores, we also asked each user if the result
could be considered to be expert work / high quality (reported in
row E). C is the cost. R1 is the rank based on the user evaluation
and R2 is the rank based on our cost function.

generated grammars. For this test, we compute the precision, recall
and F-score to calculate the similarity between all four automati-
cally generated grammars and the user-generated grammars. We
compare all non-terminal regions that are extracted by the differ-
ent grammars. Precision is computed as the number of common
non-terminal regions divided by the number of non-terminal re-
gions in the automatic grammar. Recall is computed as the number
of common non-terminal regions divided by the number of non-
terminal regions in the expert-generated grammar. See Table 4.
We can observe that our grammar is reasonably similar to the good
user-generated grammars, but less similar to the lower ranked user-
generated grammars. Other automatic methods are less similar to
high-quality user-generated grammars. We were actually surprised
by this high similarity, because there are often many equally good
design choices that can be considered.

Next, we evaluated the joint extraction of grammars from multiple
facades. Our current framework only works for facades with ap-
proximately identical element sizes so we cannot get meaningful
results on the complete dataset. We use a subset of four facades
with similar windows and few other ornaments. The jointly ex-
tracted grammar is about 25% cheaper.

Running Time: As shown in Table 1, we can see that, by using the
same number of iterations, the running times of our algorithm are
faster than the ones of the Importance Sampling (IS) method. We
additionally evaluate the running time of our algorithm for three se-
lected facades measuring the time every 500 iterations. We show
the improvement of the objective function over the number of it-

PL BGL SM Ours PL BGL SM Ours PL BGL SM Ours
(1) 0.21 0.53 0.16 0.73 0.18 0.27 0.18 0.72 0.18 0.34 0.16 0.71
(2) 0.19 0.46 0.14 0.73 0.21 0.3 0.18 0.85 0.18 0.35 0.15 0.77
(3) 0.21 0.55 0.16 0.54 0.2 0.31 0.2 0.57 0.19 0.38 0.16 0.55
(4) 0.21 0.63 0.19 0.57 0.15 0.28 0.17 0.46 0.16 0.37 0.16 0.49
(5) 0.19 0.58 0.18 0.42 0.17 0.32 0.22 0.44 0.16 0.4 0.18 0.4
(6) 0.26 0.81 0.19 0.45 0.17 0.3 0.17 0.32 0.19 0.43 0.17 0.37
(7) 0.22 0.66 0.19 0.35 0.12 0.2 0.13 0.19 0.15 0.3 0.14 0.24

Precision Recall F-score

Table 4: We asked four experts (the first four rows) and three non-
experts (the last three rows) to generate the grammars for all of our
data sets. Each row in the table shows the average values accross
the whole data set. The four automatic methods are: procedural
logic (PL) [Weissenberg et al. 2013], Bayesian grammar learning
(BGL) [Martinovic and Van Gool 2013], symmetry maximization
(SM) [Zhang et al. 2013] and our algorithm.

erations in Fig. 14(left). In this example, we can see that the cost
of the grammar decreases as the iteration number increases, while
the performance of the IS method does not depend on the iteration
number. In Fig. 14(right), we show that the running time per iter-
ation decreases in one run of the algorithm. This is due to the fact
that the exploitation phase is faster than the exploration phase.
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Figure 14: Left: cost value vs. number of iterations. Right: run-
ning time. The data are acquired from the processing of Fig. 5.

Parameter Evaluation: The most important parameters in our al-
gorithm are the costs of the split and repeat rules (Sec. 3.2). We use
the setting cost(repeat) = 0.5 and cost(split) = 0.1 in our experi-
ments, based on our own preferences. By testing many parameters,
we can observe that the chosen parameters lead to resulting gram-
mars that are more similar to grammars extracted by expert users
based on our precision-recall tests. In these tests, we also evaluate
other cost models by omitting the per rule cost or the cost for indi-



P R F
|α| = 0 0.45 0.53 0.48

costop = 0 0.53 0.5 0.51
split = 0.1, repeat = 0.5 0.73 0.72 0.71
split = 0.1, repeat = 1 0.62 0.58 0.59
split = 1, repeat = 0.1 0.67 0.62 0.64
split = 1, repeat = 1 0.67 0.63 0.64

Table 5: We use the precision-recall test to evaluate different pa-
rameters for our grammars. Here, we show the results from com-
paring to user 1. From the table, we can notice that the grammars
becomes worse when we omit either the first term (cost of the rule)
or the second term (cost per symbol in the rule) of the proposed
cost function. Overall, the grammars tend to be more similar with
the expert user grammars when the repeat rule is cheaper than the
split rule.

vidual symbols. See Table 5 for a small excerpt and the additional
materials for a more extensive evaluation.

We use the lambda parameters to balance the contribution of the
two components in Eq. 5. Both λ1 and λ2 are set to 1 based on
experiments on multiple facades. Our approximate dynamic pro-
gramming algorithm uses an exploration-and-exploitation frame-
work to search for the smallest grammar. The exploration phase
tends to search for more unknown grammars, while the exploitation
phase tends to use the best-known grammar. We use the ε parame-
ter (Sec. 4.2) to balance the probability of choosing exploration or
exploitation in each iteration. At the beginning, we do not have any
knowledge of the smallest grammar, so the exploration probability
is very high (we set ε = 0.9). Then the epsilon value decreases ex-
ponentially as the algorithm runs. This kind of epsilon setting has
been shown to be efficient in other contexts (simulated annealing,
Q-Learning), and we just follow these methods on its usage.

6.2 Editing and Large-scale Modeling

Editing Times: The initial segmentation of a facade image takes
about 5 to 20 minutes and generating a deterministic split grammar
with our interactive grammar generation framework takes about 5
to 30 minutes. A large portion of the time is spent on planning
the next steps and sometimes on correcting mistakes. Writing split
grammar rules for facades of comparable complexity from scratch
can easily take many hours. However, as our experiments indicate,
only skilled users are able to extract grammars that are competitive
with the automatic solution. Therefore, our solution contributes to
procedural modeling by saving modeling time for a task that re-
quires a skilled user.

Large-scale Modeling: For these examples, we use only the rule-
set of Cityengine and cannot make use of our alignment compu-
tations. The first example evaluates the automatic generation of
variations. In Fig. 16, we use three high-rise input facades for a
smaller test scene with automatically generated variations. This is
only possible because the input grammars were structurally similar.
In Fig. 15, twelve different low-rise facade layouts and their corre-
sponding grammars are used as input to generate a large scene with
more than 3500 buildings and 50 million polygons. To obtain high
quality grammars for this second test, we generated grammar varia-
tions using interactive editing of automatically extracted grammars.

6.3 Limitations

There are several limitations to the current algorithm. First, the
grammar is not powerful enough to encode free-form or organic fa-
cades. We see this as a minor limitation, because very few facade

Figure 15: A large procedural city model consisting of low-rise
buildings. We use 12 facade layouts as input.

Figure 16: An example of generated high-rise buildings. We use
three facade layouts as input. The corresponding deterministic
grammars contain 64, 47, and 57 non-terminals, respectively.

models fall into these categories. Second, the scope of the paper
is limited to analyzing facade layouts and we do not claim a con-
tribution to facade image segmentation. Reliable segmentation of
and symmetry detection in facade images is still a major challenge
in the procedural modeling pipeline. Third, the grammar can only
explain layouts that can be split by a single line. Layouts such as
Fig. 6 in [Lin et al. 2011] cannot be handled by our split grammar
rules, but additional split rules could be added.

7 Conclusions

In this paper, we presented an algorithm to derive meaningful split
grammars that explain facade layouts. These split grammars are
useful for compression, architectural analysis, facade comparison
and retrival, encoding prior knowledge for urban reconstruction,
and large-scale urban modeling. In future work, we hope to ex-
plore how split grammars can be applied in large-scale urban re-
construction. We would like to use shape grammars simultaneously
to encode prior knowledge and to refine the knowledge base as new
facades are being modeled.
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