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Abstract

The `1-regularized logistic regression (or sparse logistic regression) is a widely used method for si-
multaneous classification and feature selection. Although many recent efforts have been devoted to its
efficient implementation, its application to high dimensional data still poses significant challenges. In
this paper, we present a fast and effective sparse logistic regression screening rule (Slores) to identify
the “0” components in the solution vector, which may lead to a substantial reduction in the number
of features to be entered to the optimization. An appealing feature of Slores is that the data set needs
to be scanned only once to run the screening and its computational cost is negligible compared to that
of solving the sparse logistic regression problem. Moreover, Slores is independent of solvers for sparse
logistic regression, thus Slores can be integrated with any existing solver to improve the efficiency. We
have evaluated Slores using high-dimensional data sets from different applications. Extensive experi-
mental results demonstrate that Slores outperforms the existing state-of-the-art screening rules and the
efficiency of solving sparse logistic regression is improved by one magnitude in general.

1 Introduction

Logistic regression (LR) is a popular and well established classification method that has been widely used in
many domains such as machine learning [5, 8], text mining [4, 9], image processing [10, 17], bioinformatics
[1, 15, 22, 30, 31], medical and social sciences [2, 19] etc. When the number of feature variables is large
compared to the number of training samples, logistic regression is prone to over-fitting. To reduce over-
fitting, regularization has been shown to be a promising approach. Typical examples include `2 and `1
regularization. Although `1 regularized LR is more challenging to solve compared to `2 regularized LR, it
has received much attention in the last few years and the interest in it is growing [23, 27, 31] due to the
increasing prevalence of high-dimensional data. The most appealing property of `1 regularized LR is the
sparsity of the resulting models, which is equivalent to feature selection.

In the past few years, many algorithms have been proposed to efficiently solve the `1 regularized LR
[6, 14, 13, 20]. However, for large-scale problems, solving the `1 regularized LR with higher accuracy
remains challenging. One promising solution is by “screening”, that is, we first identify the “inactive”
features, which have 0 coefficients in the solution and then discard them from the optimization. This
would result in a reduced feature matrix and substantial savings in computational cost and memory size.
In [7], El Ghaoui et al. proposed novel screening rules, called “SAFE”, to accelerate the optimization for
a class of `1 regularized problems, including LASSO [25], `1 regularized LR and `1 regularized support
vector machines. Inspired by SAFE, Tibshirani et al. [24] proposed “strong rules” for a large class of `1
regularized problems, including LASSO, elastic net, `1 regularized LR and more general convex problems.
In [29, 28], Xiang et al. proposed “DOME” rules to further improve SAFE rules for LASSO based on the
observation that SAFE rules can be understood as a special case of the general “sphere test”. Although
both strong rules and the sphere tests are more effective in discarding features than SAFE for solving
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LASSO, it is worthwhile to mention that strong rules may mistakenly discard features that have non-zero
coefficients in the solution and the sphere tests are not easy to be generalized to handle the `1 regularized
LR. To the best of our knowledge, the SAFE rule is the only screening test for the `1 regularized LR that
is “safe”, that is, it only discards features that are guaranteed to be absent from the resulting models.

Figure 1: Comparison of Slores, strong rule
and SAFE on the prostate cancer data set.

In this paper, we develop novel screening rules, called
“Slores”, for the `1 regularized LR. The proposed screening
tests detect inactive features by estimating an upper bound of
the inner product between each feature vector and the “dual
optimal solution” of the `1 regularized LR, which is unknown.
The more accurate the estimation is, the more inactive fea-
tures can be detected. An accurate estimation of such an up-
per bound turns out to be quite challenging. Indeed most of
the key ideas/insights behind existing “safe” screening rules for
LASSO heavily rely on the least square loss, which are not ap-
plicable for the `1 regularized LR case due to the presence of
the logistic loss. To this end, we propose a novel framework to
accurately estimate an upper bound. Our key technical contri-
bution is to formulate the estimation of an upper bound of the
inner product as a constrained convex optimization problem
and show that it admits a closed form solution. Therefore, the
estimation of the inner product can be computed efficiently. Our extensive experiments have shown that
Slores discards far more features than SAFE yet requires much less computational efforts. In contrast with
strong rules, Slores is “safe”, i.e., it never discards features which have non-zero coefficients in the solution.
To illustrate the effectiveness of Slores, we compare Slores, strong rule and SAFE on a data set of prostate
cancer along a sequence of 86 parameters equally spaced on the λ/λmax scale from 0.1 to 0.95, where λ is
the parameter for the `1 penalty and λmax is the smallest tuning parameter [12] such that the solution of the
`1 regularized LR is 0 [please refer to Eq. (1)]. The data matrix contains 132 patients with 15154 features.
To measure the performance of different screening rules, we compute the rejection ratio which is the ratio
between the number of features discarded by screening rules and the number of features with 0 coefficients
in the solution. Therefore, the larger the rejection ratio is, the more effective the screening rule is. The
results are shown in Fig. 1. Clearly, Slores discards far more features than SAFE especially when λ/λmax is
large while the strong rule is not applicable when λ/λmax ≤ 0.5. We present more experimental results and
discussions to demonstrate the effectiveness of Slores in Section 6.

2 Basics and Motivations

In this section, we briefly review the basics of the `1 regularized LR and then motivate the general screening
rules via the KKT conditions. Suppose we are given a set of training samples {xi}mi=1 and the associate
labels b ∈ <m, where xi ∈ <p and bi ∈ {1,−1} for all i ∈ {1, . . . ,m}. The `1 regularized logistic regression
is:

min
β,c

1

m

m∑
i=1

log(1 + exp(−〈β, x̄i〉 − bic)) + λ‖β‖1, (LRPλ)

where β ∈ <p and c ∈ < are the model parameters to be estimated, x̄i = bixi, and λ > 0 is the tuning
parameter. Let the data matrix be X ∈ <m×p with the ith row being x̄i and the jth column being x̄j .

Let C = {θ ∈ <m : θi ∈ (0, 1), i = 1, . . . ,m} and f(y) = y log(y) + (1 − y) log(1 − y) for y ∈ (0, 1). The
dual problem of (LRPλ) (please refer to the supplement) is given by

min
θ

{
g(θ) =

1

m

m∑
i=1

f(θi) : ‖X̄T θ‖∞ ≤ mλ, 〈θ,b〉 = 0, θ ∈ C

}
. (LRDλ)

2



To simplify notations, we denote the feasible set of problem (LRDλ) as Fλ, and let (β∗λ, c
∗
λ) and θ∗λ be the

optimal solutions of problems (LRPλ) and (LRDλ) respectively. In [12], the authors have shown that for
some special choice of the tuning parameter λ, both of (LRPλ) and (LRDλ) have closed form solutions. In
fact, let P = {i : bi = 1}, N = {i : bi = −1}, and m+ and m− be the cardinalities of P and N respectively.
We define

λmax = 1
m‖X̄

T θ∗λmax‖∞, (1)

where

[θ∗λmax ]i =

{
m−

m , if i ∈ P,
m+

m , if i ∈ N ,
i = 1, . . . ,m. (2)

([·]i denotes the ith component of a vector.) Then, it is known [12] that β∗λ = 0 and θ∗λ = θ∗λmax whenever
λ ≥ λmax. When λ ∈ (0, λmax], it is known that (LRDλ) has a unique optimal solution. (For completeness,
we include the proof in the supplement.) We can now write the KKT conditions of problems (LRPλ) and
(LRDλ) as

〈θ∗λ, x̄j〉 ∈


mλ, if [β∗λ]j > 0,

−mλ, if [β∗λ]j < 0,

[−mλ,mλ], if [β∗λ]j = 0.

j = 1, . . . , p. (3)

In view of Eq. (3), we can see that

|〈θ∗λ, x̄j〉| < mλ⇒ [β∗λ]j = 0. (R1)

In other words, if |〈θ∗λ, x̄j〉 < mλ, then the KKT conditions imply that the coefficient of x̄j in the solution
β∗λ is 0 and thus the jth feature can be safely removed from the optimization of (LRPλ). However, for the
general case in which λ < λmax, (R1) is not applicable since it assumes the knowledge of θ∗λ. Although it is
unknown, we can still estimate a region Aλ which contains θ∗λ. As a result, if maxθ∈A |〈θ, x̄j〉| < mλ, we can
also conclude that [β∗λ]j = 0 by (R1). In other words, (R1) can be relaxed as

T (θ∗λ, x̄
j) := max

θ∈Aλ
|〈θ, x̄j〉| < mλ⇒ [β∗λ]j = 0. (R1′)

In this paper, (R1′) serves as the foundation for constructing our screening rules, Slores. From (R1′), it is
easy to see that screening rules with smaller T (θ∗λ, x̄

j) are more aggressive in discarding features. To give a
tight estimation of T (θ∗λ, x̄

j), we need to restrict the region Aλ which includes θ∗λ as small as possible. In
Section 3, we show that the estimation of the upper bound T (θ∗λ, x̄

j) can be obtained via solving a convex
optimization problem. We show in Section 4 that the convex optimization problem admits a closed form
solution and derive Slores in Section 5 based on (R1′).

3 Estimating the Upper Bound via Solving a Convex Optimiza-
tion Problem

In this section, we present a novel framework to estimate an upper bound T (θ∗λ, x̄
j) of |〈θ∗λ, x̄j〉|. In the

subsequent development, we assume a parameter λ0 and the corresponding dual optimal θ∗λ0
are given. In

our Slores rule to be presented in Section 5, we set λ0 and θ∗λ0
to be λmax and θ∗λmax given in Eqs. (1) and

(2). We formulate the estimation of T (θ∗λ, x̄
j) as a constrained convex optimization problem in this section,

which will be shown to admit a closed form solution in Section 4.
For the dual function g(θ), it follows that [∇g(θ)]i = 1

m log( θi
1−θi ), [∇2g(θ)]i,i = 1

m
1

θi(1−θi) ≥
4
m . Since

∇2g(θ) is a diagonal matrix, it follows that ∇2g(θ) � 4
mI, where I is the identity matrix. Thus, g(θ) is

strongly convex with modulus µ = 4
m [18]. Rigorously, we have the following lemma.
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Lemma 1. Let λ > 0 and θ1, θ2 ∈ Fλ, then

a). g(θ2)− g(θ1) ≥ 〈∇g(θ1), θ2 − θ1〉+ 2
m‖θ2 − θ1‖22. (4)

b). If θ1 6= θ2, the inequality in (4) becomes a strict inequality, i.e., “≥” becomes “>”.

Given λ ∈ (0, λ0], it is easy to see that both of θ∗λ and θ∗λ0
belong to Fλ0

. Therefore, Lemma 1 can be a
useful tool to bound θ∗λ with the knowledge of θ∗λ0

. In fact, we have the following theorem.

Theorem 2. Let λmax ≥ λ0 > λ > 0, then the following holds:

a). ‖θ∗λ − θ∗λ0
‖22 ≤

m

2

[
g
(
λ
λ0
θ∗λ0

)
− g(θ∗λ0

) +
(

1− λ
λ0

)
〈∇g(θ∗λ0

), θ∗λ0
〉
]

(5)

b). If θ∗λ 6= θ∗λ0
, the inequality in (5) becomes a strict inequality, i.e., “≤” becomes “<”.

Proof. a). It is easy to see that Fλ ⊆ Fλ0 , θ∗λ ∈ Fλ and θ∗λ0
∈ Fλ0 . Therefore, both of θ∗λ0

and θ∗λ belong to
the set Fλ0 . By Lemma 1, we have

‖θ∗λ − θ∗λ0
‖22 ≤ m

2

[
g(θ∗λ)− g(θ∗λ0

) + 〈∇g(θ∗λ0
), θ∗λ0

− θ∗λ〉
]
. (6)

Let θλ = λ
λ0
θ∗λ0

. It is easy to see that

θλ ∈ C, ‖X̄T θλ‖∞ = λ
λ0
‖X̄T θ∗λ0

‖∞ ≤ mλ, 〈θλ,b〉 = λ
λ0
〈θ∗λ0

,b〉 = 0.

Therefore, we can see that θλ ∈ Fλ and thus

g(θ∗λ) = min
θ∈Fλ

g(θ) ≤ g(θλ) = g
(
λ
λ0
θ∗λ0

)
.

Then the inequality in (6) becomes

‖θ∗λ − θ∗λ0
‖22 ≤ m

2

[
g
(
λ
λ0
θ∗λ0

)
− g(θ∗λ0

) + 〈∇g(θ∗λ0
), θ∗λ0

− θ∗λ〉
]
. (7)

On the other hand, by noting that (LRDλ) is feasible, we can see that the Slater’s conditions holds and thus
the KKT conditions [21] lead to:

0 ∈ ∇g(θ∗λ) +

p∑
j=1

η+
j x̄

j +

p∑
j′=1

η−i (−x̄i) + γb +NC(θ
∗
λ), (8)

where η+, η− ∈ <p+, γ ∈ < and NC(θ
∗
λ) is the normal cone of C at θ∗λ [21]. Because θ∗λ ∈ C and C is an open

set, θ∗λ is an interior point of C and thus NC(θ
∗
λ) = ∅ [21]. Therefore, Eq. (8) becomes:

∇g(θ∗λ) +

p∑
j=1

η+
j x̄

j +

p∑
j′=1

η−j′ (−x̄
j′) + γb = 0. (9)

Let I+
λ0

= {j : 〈θ∗λ0
, x̄j〉 = mλ0, j = 1, . . . , p}, I−λ0

= {j′ : 〈θ∗λ0
, x̄j

′〉 = −mλ0, j = 1, . . . , p} and Iλ0
=

I+
λ0
∪ I−λ0

. We can see that I+
λ0
∩ I−λ0

= ∅. By the complementary slackness condition, if k /∈ Iλ0 , we have

η+
k = η−k = 0. Therefore,

〈∇g(θ∗λ0
), θ∗λ0

〉+
∑
j∈I+λ0

η+
j 〈θ
∗
λ0
, x̄j〉+

∑
j′∈I−λ0

η−j′ 〈θ
∗
λ0
,−x̄j

′
〉+ γ〈θ∗λ0

,b〉 = 0

⇔− 1
mλ0
〈∇g(θ∗λ0

), θ∗λ0
〉 =

∑
j∈I+λ0

η+
j +

∑
j′∈I−λ0

η−j′

4



Similarly, we have

〈∇g(θ∗λ0
), θ∗λ〉+

∑
j∈I+λ0

η+
j 〈θ
∗
λ, x̄

j〉+
∑
j′∈I−λ0

η−j′ 〈θ
∗
λ,−x̄j

′
〉+ γ〈θ∗λ,b〉 = 0

⇔− 〈∇g(θ∗λ0
), θ∗λ〉 =

∑
j∈I+λ0

η+
j 〈θ
∗
λ, x̄

j〉+
∑
j′∈I−λ0

η−j′ 〈θ
∗
λ,−x̄j

′
〉

≤
∑
j∈I+λ0

η+
j |〈θ

∗
λ, x̄

j〉|+
∑
j′∈I−λ0

η−j′ |〈θ
∗
λ,−x̄j

′
〉|

≤ mλ
{ ∑
j∈I+λ0

η+
j +

∑
j′∈I−λ0

η−j′

}
= − λ

λ0
〈g(θ∗λ0

), θ∗λ0
〉

Recall (7), the inequality in (5) follows.
b). The proof is the same as part a) by noting part b) of Lemma 1.

Theorem 2 implies that θ∗λ is inside a ball centred at θ∗λ0
with radius

r =

√
m
2

[
g
(
λ
λ0
θ∗λ0

)
− g(θ∗λ0

) + (1− λ
λ0

)〈∇g(θ∗λ0
), θ∗λ0

〉
]
. (10)

Recall that to make our screening rules more aggressive in discarding features, we need to get a tight upper
bound T (θ∗λ, x̄

j) of |〈θ∗λ, x̄j〉| [please see (R1′)]. Thus, it is desirable to further restrict the possible region
Aλ of θ∗λ. Clearly, we can see that

〈θ∗λ,b〉 = 0 (11)

since θ∗λ is feasible for problem (LRDλ). On the other hand, we call the set Iλ0
defined in the proof of

Theorem 2 the “active set” of θ∗λ0
. In fact, we have the following lemma for the active set.

Lemma 3. Given the optimal solution θ∗λ of problem (LRDλ), the active set Iλ = {j : |〈θ∗λ, x̄j〉| = mλ, j =
1, . . . , p} is not empty if λ ∈ (0, λmax].

Since λ0 ∈ (0, λmax], we can see that Iλ0
is not empty by Lemma 3. We pick j0 ∈ Iλ0

and set

x̄∗ = sign(〈θ∗λ0
, x̄j0〉)x̄j0 . (12)

It follows that 〈x̄∗, θ∗λ0
〉 = mλ0. Due to the feasibility of θ∗λ for problem (LRDλ), θ∗λ satisfies

〈θ∗λ, x̄∗〉 ≤ mλ. (13)

As a result, Theorem 2, Eq. (11) and (13) imply that θ∗λ is contained in the following set:

Aλλ0
:= {θ : ‖θ − θ∗λ0

‖22 ≤ r2, 〈θ,b〉 = 0, 〈θ, x̄∗〉 ≤ mλ}.

Since θ∗λ ∈ Aλλ0
, we can see that |〈θ∗λ, x̄j〉| ≤ maxθ∈Aλλ0

|〈θ, x̄j〉|. Therefore, (R1′) implies that if

T (θ∗λ, x̄
j ; θ∗λ0

) := max
θ∈Aλλ0

|〈θ, x̄j〉| (UBP)

is smaller than mλ, we can conclude that [β∗λ]j = 0 and x̄j can be discarded from the optimization of
(LRPλ). Notice that, we replace the notations Aλ and T (θ∗λ, x̄

j) with T (θ∗λ, x̄
j ; θ∗λ0

) and Aλλ0
to emphasize

their dependence on θ∗λ0
. Clearly, as long as we can solve for T (θ∗λ, x̄

j ; θ∗λ0
), (R1′) would be an applicable

screening rule to discard features which have 0 coefficients in β∗λ. We give a closed form solution of problem
(42) in the next section.
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4 Solving the Convex Optimization Problem (UBP)

In this section, we show how to solve the convex optimization problem (42) based on the standard Lagrangian
multiplier method. We first transform problem (42) into a pair of convex minimization problem (UBP′) via
Eq. (15) and then show that the strong duality holds for (UBP′) in Lemma 6. The strong duality guarantees
the applicability of the Lagrangian multiplier method. We then give the closed form solution of (UBP′) in
Theorem 8. After we solve problem (UBP′), it is straightforward to compute the solution of problem (42)
via Eq. (15).

Before we solve (42) for the general case, it is worthwhile to mention a special case in which Px̄j = x̄j −
〈x̄j ,b〉
‖b‖22

b = 0. Clearly, P is the projection operator which projects a vector onto the orthogonal complement

of the space spanned by b. In fact, we have the following theorem.

Theorem 4. Let λmax ≥ λ0 > λ > 0, and assume θ∗λ0
is known. For j ∈ {1, . . . , p}, if Px̄j = 0, then

T (θ∗λ, x̄
j ; θ∗λ0

) = 0.

Because of (R1′), we immediately have the following corollary.

Corollary 5. Let λ ∈ (0, λmax) and j ∈ {1, . . . , p}. If Px̄j = 0, then [β∗λ]j = 0.

For the general case in which Px̄j 6= 0, let

T+(θ∗λ, x̄
j ; θ∗λ0

) := max
θ∈Aλλ0

〈θ,+x̄j〉, T−(θ∗λ, x̄
j ; θ∗λ0

) := max
θ∈Aλλ0

〈θ,−x̄j〉. (14)

Clearly, we have

T (θ∗λ, x̄
j ; θ∗λ0

) = max{T+(θ∗λ, x̄
j ; θ∗λ0

), T−(θ∗λ, x̄
j ; θ∗λ0

)}. (15)

Therefore, we can solve problem (42) by solving the two sub-problems in (14).
Let ξ ∈ {+1,−1}. Then problems in (14) can be written uniformly as

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = max

θ∈Aλλ0
〈θ, ξx̄j〉. (UBPs)

To make use of the standard Lagrangian multiplier method, we transform problem (UBPs) to the following
minimization problem:

−Tξ(θ∗λ, x̄j ; θ∗λ0
) = min

θ∈Aλλ0
〈θ,−ξx̄j〉 (UBP′)

by noting that maxθ∈Aλλ0
〈θ, ξx̄j〉 = −minθ∈Aλλ0

〈θ,−ξx̄j〉.

Lemma 6. Let λmax ≥ λ0 > λ > 0 and assume θ∗λ0
is known. The strong duality holds for problem (UBP′).

Moreover, problem (UBP′) admits an optimal solution in Aλλ0
.

Because the strong duality holds for problem (UBP′) by Lemma 6, the Lagrangian multiplier method
is applicable for (UBP′). In general, we need to first solve the dual problem and then recover the optimal
solution of the primal problem via KKT conditions. Recall that r and x̄∗ are defined by Eq. (10) and (12)
respectively. Lemma 7 derives the dual problems of (UBP′) for different cases.

Lemma 7. Let λmax ≥ λ0 > λ > 0 and assume θ∗λ0
is known. For j ∈ {1, . . . , p} and Px̄j 6= 0, let

x̄ = −ξx̄j. Denote

U1 = {(u1, u2) : u1 > 0, u2 ≥ 0} and U2 =
{

(u1, u2) : u1 = 0, u2 = − 〈Px̄,Px̄∗〉
‖Px̄∗‖22

}
.

6



a). If 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ (−1, 1], the dual problem of (UBP′) is equivalent to:

max
(u1,u2)∈U1

ḡ(u1, u2) = − 1
2u1
‖Px̄ + u2Px̄∗‖22 + u2m(λ0 − λ) + 〈θ∗λ0

, x̄〉 − 1
2u1r

2. (UBD′)

Moreover, ḡ(u1, u2) attains its maximum in U1.

b). If 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = −1, the dual problem of (UBP′) is equivalent to:

max
(u1,u2)∈U1∪U2

¯̄g(u1, u2) =

{
ḡ(u1, u2), if (u1, u2) ∈ U1,

− ‖Px̄‖2
‖Px̄∗‖2mλ, if (u1, u2) ∈ U2.

(UBD′′)

We can now solve problem (UBP′) in the following theorem.

Theorem 8. Let λmax ≥ λ0 > λ > 0, d = m(λ0−λ)
r‖Px̄∗‖2 and assume θ∗λ0

is known. For j ∈ {1, . . . , p} and

Px̄j 6= 0, let x̄ = −ξx̄j.

a). If 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ≥ d, then

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = r‖Px̄‖2 − 〈θ∗λ0

, x̄〉; (16)

b). If 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 < d, then

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = r‖Px̄ + u∗2Px̄∗‖2 − u∗2m(λ0 − λ)− 〈θ∗λ0

, x̄〉, (17)

where

u∗2 =
−a1 +

√
∆

2a2
, (18)

a2 = ‖Px̄∗‖42(1− d2),

a1 = 2〈Px̄,Px̄∗〉‖Px̄∗‖22(1− d2),

a0 = 〈Px̄,Px̄∗〉2 − d2‖Px̄‖22‖Px̄∗‖22,
∆ = a2

1 − 4a2a0 = 4d2(1− d2)‖Px̄∗‖42(‖Px̄‖22‖Px̄∗‖22 − 〈Px̄,Px̄∗〉2).

Notice that, although the dual problems of (UBP′) in Lemma 7 are different, the resulting upper bound
Tξ(θ

∗
λ, x̄

j ; θ∗λ0
) can be given by Theorem 8 in a uniform way. The tricky part is how to deal with the extremal

cases in which 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ {−1,+1}. To avoid the lengthy discussion of Theorem 8, we omit the proof in

the main text and include the details in the supplement.

5 The proposed Slores Rule for `1 Regularized Logistic Regression

Using (R1′), we are now ready to construct the screening rules for the `1 Regularized Logistic Regression.
By Corollary 5, we can see that the orthogonality between the jth feature and the response vector b implies
the absence of x̄j from the resulting model. For the general case in which Px̄j 6= 0, (R1′) implies that if
T (θ∗λ, x̄

j ; θ∗λ0
) = max{T+(θ∗λ, x̄

j ; θ∗λ0
), T−(θ∗λ, x̄

j ; θ∗λ0
)} < mλ, then the jth feature can be discarded from the

optimization of (LRPλ). Notice that, letting ξ = ±1, T+(θ∗λ, x̄
j ; θ∗λ0

) and T−(θ∗λ, x̄
j ; θ∗λ0

) have been solved
by Theorem 8. Rigorously, we have the following theorem.

Theorem 9 (Slores). Let λ0 > λ > 0 and assume θ∗λ0
is known.

1. If λ ≥ λmax, then β∗λ = 0;

2. If λmax ≥ λ0 > λ > 0 and either of the following holds:
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(a) Px̄j = 0,

(b) max{Tξ(θ∗λ, x̄j ; θ∗λ0
) : ξ = ±1} < mλ,

then [β∗λ]j = 0.

Based on Theorem 9, we construct the Slores rule as summarized below in Algorithm 1.

Algorithm 1 R = Slores(X,b, λ, λ0, θ
∗
λ0

)

Initialize R := {1, . . . , p};
if λ ≥ λmax then

set R = ∅;
else

for j = 1 to p do

if Px̄j = 0 then
remove j from R;

else if max{Tξ(θ∗λ, x̄j ; θ∗λ0
) : ξ = ±1} < mλ then

remove j from R;
end if

end for
end if
Return: R

Notice that, the output R of Slores is the in-
dices of the features that need to be entered to the
optimization. As a result, suppose the output of
Algorithm 1 is R = {j1, . . . , jk}, we can substitute
the full matrix X in problem (LRPλ) with the sub-
matrix XR = (x̄j1 , . . . , x̄jk) and just solve for [β∗λ]R
and c∗λ.

On the other hand, Algorithm 1 implies that
Slores needs five inputs. Since X and b come with
the data and λ is chosen by the user, we only need
to specify θ∗λ0

and λ0. In other words, we need to
provide Slores with an dual optimal solution of prob-
lem (LRDλ) for an arbitrary parameter. A natural
choice is by setting λ0 = λmax and θ∗λ0

= θ∗λmax
given in Eq. (1) and Eq. (2).

6 Experiments

We evaluate our screening rules using the newgroup data set [12] and Yahoo web pages data sets [26]. The
newgroup data set is cultured from the data by Koh et al. [12]. The Yahoo data sets include 11 top-level
categories, each of which is further divided into a set of subcategories. In our experiment we construct five
balanced binary classification datasets from the topics of Computers, Education, Health, Recreation, and
Science. For each topic, we choose samples from one subcategory as the positive class and randomly sample
an equal number of samples from the rest of subcategories as the negative class. The statistics of the data
sets are given in Table 1.

Table 1: Statistics of the test data sets.
Data set m p no. nonzeros

newsgroup 11269 61188 1467345

Computers 216 25259 23181

Education 254 20782 28287

Health 228 18430 40145

Recreation 370 25095 49986

Science 222 24002 37227

Table 2: Running time (in seconds) of Slores, strong
rule, SAFE and the solver.

Slores Strong Rule SAFE Solver

0.37 0.33 1128.65 10.56

We compare the performance of Slores and the
strong rule which achieves state-of-the-art perfor-
mance for `1 regularized LR. We do not include
SAFE because it is less effective in discarding fea-
tures than strong rules and requires much higher
computational time [24]. Fig. 1 has shown the per-
formance of Slores, strong rule and SAFE. We com-
pare the efficiency of the three screening rules on
the same prostate cancer data set in Table 2. All
of the screening rules are tested along a sequence of
86 parameter values equally spaced on the λ/λmax
scale from 0.1 to 0.95. We repeat the procedure 100
times and during each time we undersample 80% of
the data. We report the total running time of the
three screening rules over the 86 values of λ/λmax
in Table 2. For reference, we also report the total
running time of the solver1. We observe that the running time of Slores and strong rule is negligible compared
to that of the solver. However, SAFE takes much longer time even than the solver.

1In this paper, the ground truth is computed by SLEP [16].
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In Section 6.1, we evaluate the performance of Slores and strong rule. Recall that we use the rejection
ratio, i.e., the ratio between the number of features discarded by the screening rules and the number of
features with 0 coefficients in the solution, to measure the performance of screening rules. Note that,
because no features with non-zero coefficients in the solution would be mistakenly discarded by Slores, its
rejection ratio is no larger than one. We then compare the efficiency of Slores and strong rule in Section 6.2.

The experiment settings are as follows. For each data set, we undersample 80% of the date and run
Slores and strong rules along a sequence of 86 parameter values equally spaced on the λ/λmax scale from
0.1 to 0.95. We repeat the procedure 100 times and report the average performance and running time at
each of the 86 values of λ/λmax. Slores, strong rules and SAFE are all implemented in Matlab. All of the
experiments are carried out on a Intel(R) (i7-2600) 3.4Ghz processor.

6.1 Comparison of Performance

In this experiment, we evaluate the performance of the Slores and the strong rule via the rejection ratio.
Fig. 2 shows the rejection ratio of Slores and strong rule on six real data sets. When λ/λmax > 0.5, we can
see that both Slores and strong rule are able to identify almost 100% of the inactive features, i.e., features
with 0 coefficients in the solution vector. However, when λ/λmax ≤ 0.5, strong rule can not detect the
inactive features. In contrast, we observe that Slores exhibits much stronger capability in discarding inactive
features for small λ, even when λ/λmax is close to 0.1. Taking the data point at which λ/λmax = 0.1
for example, Slores discards about 99% inactive features for the newsgroup data set. For the other data
sets, more than 80% inactive features are identified by Slores. Therefore, in terms of rejection ratio, Slores
significantly outperforms the strong rule. It is also worthwhile to mention that the discarded features by
Slores are guaranteed to have 0 coefficients in the solution. But strong rule may mistakenly discard features
which have non-zero coefficients in the solution.

(a) newsgroup (b) Computers (c) Education

(d) Health (e) Recreation (f) Science

Figure 2: Comparison of the performance of Slores and strong rules on six real data sets.
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(a) newsgroup (b) Computers (c) Education

(d) Health (e) Recreation (f) Science

Figure 3: Comparison of the efficiency of Slores and strong rule on six real data sets.

6.2 Comparison of Efficiency

We compare efficiency of Slores and the strong rule in this experiment. The data sets for evaluating the
rules are the same as Section 6.1. The running time of the screening rules reported in Fig. 3 includes the
computational cost of the rules themselves and that of the solver after screening. We plot the running time of
the screening rules against that of the solver without screening. As indicated by Fig. 2, when λ/λmax > 0.5,
Slores and strong rule discards almost 100% of the inactive features. As a result, the size of the feature matrix
involved in the optimization of problem (LRPλ) is greatly reduced. From Fig. 3, we can observe that the
efficiency is improved by about one magnitude on average compared to that of the solver without screening.
However, when λ/λmax < 0.5, strong rule can not identify any inactive features and thus the running time
is almost the same as that of the solver without screening. In contrast, Slores is still able to identify more
than 80% of the inactive features for the data sets cultured from the Yahoo web pages data sets and thus
the efficiency is improved by roughly 5 times. For the newgroup data set, about 99% inactive features are
identified by Slores which leads to about 10 times savings in running time. These results demonstrate the
power of the proposed Slores rule in improving the efficiency of solving the `1 regularized LR.

7 Conclusions

In this paper, we propose novel screening rules to effectively discard features for `1 regularized LR. Exten-
sive numerical experiments on real data demonstrate that Slores outperforms the existing state-of-the-art
screening rules. We plan to extend the framework of Slores to more general sparse formulations, including
convex ones, like group Lasso, fused Lasso, `1 regularized SVM, and non-convex ones, like `p regularized
problems where 0 < p < 1.
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Appendix

In this appendix, we will provide detailed proofs of the theorems, lemmas and corollaries in the main text.

A Deviation of the Dual Problem of the Sparse Logistic Regres-
sion

Suppose we are given a set of training samples {xi}mi=1 and the associate labels b ∈ <m, where xi ∈ <p and
bi ∈ {1,−1} for all i ∈ {1, . . . ,m}. The logistic regression problem takes the form as follows:

min
β,c

1

m

m∑
i=1

log(1 + exp(−〈β, x̄i〉 − bic)) + λ‖β‖1,

where β ∈ <p and c ∈ < are the model parameters to be estimated, x̄i = bixi and λ > 0. Let X̄ denote the
data matrix whose rows consist of x̄i. Denote the columns of X̄ as x̄j , j ∈ {1, . . . , p}.

A.1 Dual Formulation

By introducing the slack variables qi = 1
m (−〈β, x̄i〉 − bic) for all i ∈ {1, . . . ,m}, problem (LRPλ) can be

formulated as:

min
β,c

1

m

m∑
i=1

log
[
1 + exp(mqi)

]
+ λ‖β‖1, (19)

s.t. qi =
1

m
(−〈β, x̄i〉 − bic), i ∈ {1, . . . ,m}.

The Lagrangian is

L(q, β, c; θ) =
1

m

m∑
i=1

log
[
1 + exp(mqi)

]
+ λ‖β‖1 +

m∑
i=1

θi
[ 1

m
(−〈β, x̄i〉 − bic)− qi

]
(20)

=
1

m

m∑
i=1

log
[
1 + exp(mqi)

]
− 〈θ,q〉+ λ‖β‖1 −

1

m
〈
m∑
i=1

θix̄i, β〉 −
c

m
〈θ,b〉

In order to find the dual function, we need to solve the following subproblems:

min
q
f1(q) =

1

m

m∑
i=1

log
[
1 + exp(mqi)

]
− 〈θ,q〉, (21)

min
β
f2(β) = λ‖β‖1 −

1

m
〈
m∑
i=1

θix̄i, β〉, (22)

min
c
f3(c) = − c

m
〈θ,b〉. (23)

Consider f1(q). It is easy to see

[∇f1(q)]i =
exp(mqi)

1 + exp(mqi)
− θi.

By setting [∇f1(q)]i = 0, we get

exp(mq′i) =
θi

1− θi
, q′i =

1

m
log(

θi
1− θi

).
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Clearly, we can see that θi ∈ (0, 1) for all i ∈ {1, . . . ,m}. Therefore,

min
q
f1(q) = f1(q′) = − 1

m

m∑
i=1

[
θi log(θi) + (1− θi) log(1− θi)

]
.

Consider f2(β) and let β′ = argminβ f2(β). The optimality condition is

0 ∈ λv − 1

m
θix̄i, ‖v‖∞ ≤ 1, 〈v, β′〉 = ‖β′‖1.

It is easy to see that

〈 1

m

m∑
i=1

θix̄i, β
′〉 = ‖β′‖1,

and thus

〈θ, x̄j〉 ∈


mλ, if β′j > 0,

−mλ, if β′j < 0,

[−mλ,mλ], if β′j = 0.

Moreover, it follows that

min
β
f2(β) = f2(β′) = 0.

For f3(c), we can see that

f ′3(c) = − 1

m
〈θ,b〉.

Therefore, we have

〈θ,b〉 = 0,

since otherwise infc f3(c) = −∞ and the dual problem is infeasible. Clearly, minc f3(c) = 0.
All together, the dual problem is

min
θ

g(θ) =
1

m

m∑
i=1

[
θi log(θi) + (1− θi) log(1− θi)

]
, (LRDλ)

s.t. ‖X̄T θ‖∞ ≤ mλ,
〈θ,b〉 = 0,

θ ∈ C,

where C = {θ ∈ <m : θi ∈ (0, 1), i = 1, . . . ,m}.

B Proof of the Existence of the Optimal Solution of (LRDλ)

In this section, we prove that problem (LRDλ) has a unique optimal solution for all λ > 0.
Therefore, in Lemma A, we first show that problem (LRDλ) is feasible for all λ > 0. Then Lemma B

confirms the existence of the dual optimal solution θ∗λ.

Lemma 10. A 1. For λ > 0, problem (LRDλ) is feasible, i.e., Fλ 6= ∅.
2. The Slater’s condition holds for problem (LRDλ) in which λ > 0.
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Proof. 1. When λ ≥ λmax, the feasibility of (LRDλ) is trivial because of the existence of θ∗λmax . We focus
on the case in which λ ∈ (0, λmax] below.

Recall that [12] λmax is the smallest tuning parameter such that β∗λ = 0 and θ∗λ = θ∗λmax whenever
λ ≥ λmax. For convenience, we rewrite the definition of λmax and θ∗λmax as follows.

λmax = max
j∈{1,...,p}

1

m
|〈θ∗λmax , x̄

j〉|,

[θ∗λmax ]i =


m−

m , if i ∈ P,

m+

m , if i ∈ N ,
i = 1, . . . ,m.

Clearly, we have θ∗λmax ∈ Fλmax , i.e., θ∗λmax ∈ C, ‖X̄
T θ∗λmax‖∞ ≤ mλmax and 〈θ∗λmax ,b〉 = 0.

Let us define:

θλ =
λ

λmax
θ∗λmax .

Since 0 < λ
λmax

≤ 1, we can see that θλ ∈ C. Moreover, it is easy to see that

‖X̄T θλ‖∞ =
λ

λmax
‖X̄T θ∗λmax‖∞ ≤ mλ,

and

〈θλ,b〉 =
λ

λmax
〈θ∗λmax ,b〉 = 0.

Therefore, θλ ∈ Fλ, i.e., Fλ is not empty and thus (LRDλ) is feasible.

2. The constraints of (LRDλ) are all affine. Therefore, the Slater’s condition reduces to the feasibility
of (LRDλ) [3]. When λ ≥ λmax, θ∗λmax is clearly a feasible solution of (LRDλ). When λ ∈ (0, λmax],
we have shown the feasibility of (LRDλ) in part 1. Therefore, the Slater’s condition always holds for
(LRDλ) in which λ > 0.

Lemma 11. B Given λ ∈ (0, λmax], problem (LRDλ) has a unique optimal solution, i.e., there exists a
unique θ∗λ ∈ Fλ such that g(θ) achieves its minimum over Fλ at θ∗λ.

Proof. Let C̃ := {θ ∈ <m : θi ∈ [0, 1], i = 1, . . . ,m} and

F̃λ := {θ ∈ <m : θ ∈ C̃, ‖X̄T θ‖∞ ≤ mλ, 〈θ,b〉 = 0}.

Clearly, Fλ ⊆ F̃λ and F̃λ is compact.
We show that g(θ) can be continuously extended to F̃λ. For y ∈ (0, 1), define

f(y) = y log(y) + (1− y) log(1− y).

By L′Hôpital′s rule, it is easy to see that limy↓0 f(y) = limy↑1 f(y) = 0. Therefore, let

f̃(y) =

{
f(y), y ∈ (0, 1),

0, y ∈ {0, 1},

and

g̃(θ) =
1

m

m∑
i=1

f̃(θi).
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Clearly, when θ ∈ Fλ, we have g̃(θ) = g(θ), i.e., g(θ) is the restriction of g̃(θ) over Fλ.

On the other hand, the definition of g̃(θ) implies that g̃(θ) is continuous over F̃λ. Together with the fact

that F̃λ is compact, we can see that there exists θ∗λ ∈ F̃λ and g̃(θ∗λ) = minθ∈F̃λ g̃(θ).
Consider the optimization problem

min
θ∈F̃λ

g̃(θ) (LRD′λ)

Because of Lemma A, we know that Fλ 6= ∅ and thus F̃λ 6= ∅ either. Therefore, problem (LRD′λ) is feasible.
By noting that the constraints of problem (LRD′λ) are all linear, the Slater’s condition is satisfied. Hence,
there exists a set of Lagrangian multipliers η+, η− ∈ <p+, ξ+, ξ− ∈ <m+ and γ ∈ < such that

∇g̃(θ∗λ) +

m∑
i=1

η+
i x̄

i +

m∑
i=1

η−i (−x̄i) + ξ+ − ξ− + γb = 0. (24)

We can see that if there is an i0 such that [θ∗λ]i0 ∈ {0, 1}, i.e., θ∗λ /∈ Fλ, Eq. (24) does not hold since
|[∇g̃(θ∗λ)]i0 | = ∞. Therefore, we can conclude that θ∗λ ∈ Fλ. Moreover, it is easy to see that θ∗λ =
argminθ∈F̃λ g̃(θ) = argminθ∈Fλ g(θ), i.e. θ∗λ is a minimum of g(θ) over Fλ. The uniqueness of θ∗λ is due to
the strict convexity of g(θ) (strong convexity implies strict convexity), which completes the proof.

C Proof of Lemma 1

Proof. Recall that the domain of g is C = {θ ∈ <m : [θ]i ∈ (0, 1), i = 1, . . . ,m}.

a. It is easy to see that

[∇g(θ)]i =
1

m
log(

[θ]i
1− [θ]i

), [∇2g(θ)]i,i =
1

m

1

[θ]i(1− [θ]i)
≥ 4

m
, [∇2g(θ)]i,j = 0, i 6= j.

Clearly, ∇2g(θ) is a diagonal matrix and

∇2g(θ) ≥ 4

m
I. (25)

Therefore, g is a strong convex function with convexity parameter µ = 4
m [18]. The claim then follows

directly from the definition of strong convex functions.

b. If θ1 6= θ2, then there exists at least one i′ ∈ {1, . . . ,m} such that [θ1]i′ 6= [θ2]i′ . Moreover, at most
one of [θ1]i′ and [θ2]i′ can be 1

2 . Without loss of generality, assume [θ1]i′ 6= 1
2 .

For t ∈ (0, 1), let θ(t) = tθ2 + (1− t)θ1. Since [θ1]i′ 6= 1
2 , we can find t′ ∈ (0, 1) such that [θ(t′)]i′ 6= 1

2 .
Therefore, we can see that

〈∇2g(θ(t′))(θ2 − θ1), θ2 − θ1〉 =

m∑
i=1

[∇2g(θ(t′))]i,i([θ2]i − [θ1]i)
2 (26)

=
∑

i∈{1,...,m},
i 6=i′

[∇2g(θ(t′))]i,i([θ2]i − [θ1]i)
2

+ [∇2g(θ(t′))]i′,i′([θ2]i′ − [θ1]i′)
2.

Clearly, when i ∈ {1, . . . ,m} \ i′, we have [∇2g(θ(t′))]i,i ≥ 4
m and thus∑

i∈{1,...,m},
i 6=i′

[∇2g(θ(t′))]i,i([θ2]i − [θ1]i)
2 ≥

∑
i∈{1,...,m},

i 6=i′

4

m
([θ2]i − [θ1]i)

2. (27)
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Since [θ(t′)]i′ 6= 1
2 , we have [∇2g(θ(t′))]i,i >

4
m which results in

[∇2g(θ(t′))]i′,i′([θ2]i′ − [θ1]i′)
2 >

4

m
([θ2]i′ − [θ1]i′)

2. (28)

Moreover, because [θ1]i′ 6= [θ2]i′ , we can see that

([θ2]i′ − [θ1]i′)
2 6= 0. (29)

Therefore, Eq. (26) and the inequalities in (27), (28) and (29) imply that

〈∇2g(θ(t′))(θ2 − θ1), θ2 − θ1〉 >
4

m
‖θ2 − θ1‖22. (30)

Due to the continuity of∇2g(θ(t)), there exist a small number ε > 0 such that for all t ∈ (t′− 1
2ε, t

′+ 1
2ε),

we have

〈∇2g(θ(t))(θ2 − θ1), θ2 − θ1〉 >
4

m
‖θ2 − θ1‖22, (31)

It follows that

g(θ2)− g(θ1) =

∫ 1

0

∇g(θ(t))(θ2 − θ1)dt (32)

=

∫ 1

0

[
∇g(θ(0)) +

∫ t

0

∇2g(θ(τ))(θ2 − θ1)dτ

]
(θ2 − θ1)dt

= 〈∇g(θ1), θ2 − θ1〉+

∫ 1

0

∫ t

0

〈∇2g(θ(τ))(θ2 − θ1), θ2 − θ1〉dτdt.

Let

∆t2
t1 :=

∫ t2

t1

∫ t

0

〈∇2g(θ(τ))(θ2 − θ1), θ2 − θ1〉dτdt.

Clearly, the second term on the right hand side of Eq. (32) is ∆1
0, which can be written as

∆1
0 = ∆

t′− 1
2 ε

0 + ∆
t′+ 1

2 ε

t′− 1
2 ε

+ ∆1
t′+ 1

2 ε
.

Due to the inequality in (31), we can see that

∆
t′+ 1

2 ε

t′− 1
2 ε

=

∫ t′+ 1
2 ε

t′− 1
2 ε

∫ t

0

〈∇2g(θ(τ))(θ2 − θ1), θ2 − θ1〉dτdt (33)

>

∫ t′+ 1
2 ε

t′− 1
2 ε

4

m
‖θ2 − θ1‖22tdt

=
4

m
‖θ2 − θ1‖22 · (t′ε).

Due to the inequality in (25), it is easy to see that

〈∇2g(θ(t))(θ2 − θ1), θ2 − θ1〉 ≥
4

m
‖θ2 − θ1‖22 (34)

for all t ∈ (0, 1). Therefore,

∆
t′− 1

2 ε
0 =

∫ t′+ 1
2 ε

t′− 1
2 ε

∫ t

0

〈∇2g(θ(τ))(θ2 − θ1), θ2 − θ1〉dτdt (35)

≥
∫ t′− 1

2 ε

0

4

m
‖θ2 − θ1‖22tdt

=
4

m
‖θ2 − θ1‖22 ·

[
1

2

(
t′ − 1

2
ε

)2
]
.
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Similarly,

∆1
t′+ 1

2 ε
=

∫ 1

t′+ 1
2 ε

∫ t

0

〈∇2g(θ(τ))(θ2 − θ1), θ2 − θ1〉dτdt (36)

≥
∫ 1

t′+ 1
2 ε

4

m
‖θ2 − θ1‖22tdt

=
4

m
‖θ2 − θ1‖22 ·

1

2

[
1−

(
t′ +

1

2
ε

)2
]
.

The inequalites in (33), (35) and (36) imply that

∆1
0 >

2

m
‖θ2 − θ1‖22. (37)

Therefore, the inequality in (37) and Eq. (32) lead to the following strict inequality

g(θ2)− g(θ1) > 〈∇g(θ1), θ2 − θ1〉+
2

m
‖θ2 − θ1‖22, (38)

which completes the proof.

D Proof of Lemma 3

Proof. According to the definition of λmax in Eq. (1), there must be j0 ∈ {1, . . . , p} such that λmax =
1
m |〈θ

∗
λmax

, x̄j0〉|. Clearly, j0 ∈ Iλmax and thus Iλmax is not empty.
For λ ∈ (0, λmax), we prove the statement by contradiction. Suppose Iλ is empty, then the KKT condition

for (LRDλ) at θ∗λ can be written as:

0 ∈ ∇g(θ∗λ) +

p∑
j=1

η+
j x̄

j +

p∑
j′=1

η−i (−x̄i) + γb +NC(θ
∗
λ),

where η+, η− ∈ <p+, γ ∈ < and NC(θ
∗
λ) is the normal cone of C at θ∗λ. Because θ∗λ ∈ C and C is an open set,

θ∗λ is an interior point of C and thus NC(θ
∗
λ) = ∅. Therefore, the above equation becomes:

∇g(θ∗λ) +

p∑
j=1

η+
j x̄

j +

p∑
j′=1

η−j′ (−x̄
j′) + γb = 0. (39)

Moreover, by the complementary slackness condition [3], we have η+
j = η−j = 0 for j = 1, . . . , p since Iλ is

empty. Then, Eq. (39) becomes:

∇g(θ∗λ) + γb = 0. (40)

By the similar argument, the KKT condition for (LRDλmax) at θ∗λmax is:

∇g(θ∗λmax) +

p∑
j=1

η̄+
j x̄

j +

p∑
j′=1

η̄−j′ (−x̄
j′) + γ′b = 0, (41)

where η̄+, η̄− ∈ <p+ and γ′ ∈ <.
Since Iλ = ∅, we can see that |〈θ∗λ, x̄j〉| < mλ < mλmax for all j ∈ {1, . . . ,m}. Therefore, θ∗λ also satisfies

Eq. (41) by setting η+ = η̄+, η− = η̄− and γ = γ′ without violating the complementary slackness conditions.
As a result, θ∗λ is an optimal solution of problem (LRDλmax) as well.

Moreover, it is easy to see that θ∗λ 6= θ∗λmax because |〈θ∗λ, x̄j0〉| < mλ < mλmax = |〈θ∗λmax , x̄
j0〉|. Conse-

quently, (LRDλmax) has at least two distinct optimal solutions, which contradicts with Lemma B. Therefore,
Iλ must be an nonempty set. Because λ is arbitrary in (0, λmax), the proof is complete.
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E Proof of Theorem 4

Proof. Recall that we need to solve the following optimization proble:

T (θ∗λ, x̄
j ; θ∗λ0

) := max
θ

{
|〈θ, x̄j〉| : ‖θ − θ∗λ0

‖22 ≤ r2, 〈θ,b〉 = 0, 〈θ, x̄∗〉 ≤ mλ
}
. (42)

The feasibility of θ implies that
〈θ,b〉 = 0,

i.e., θ belongs to the orthogonal complement of the space spanned by b. As a result, θ = Pθ and

|〈θ, x̄j〉| = |〈Pθ, x̄j〉| = |〈θ,Px̄j〉| = 0.

Therefore, we can see that T (θ∗λ, x̄
j ; θ∗λ0

) = 0, which completes the proof.

F Proof of Corollary 5

Proof. We set λ0 = λmax and θ∗λ0
= θ∗λmax . Clearly, we have λ0 > λ > 0 and θ∗λ0

is known. Therefore, the

assumptions in Theorem 4 are satisfied and thus T (θ∗λ, x̄
j ; θ∗λ0

) = 0.
By the rule in (R1′), it is straightforward to see that [β∗λ]j = 0, which completes the proof.

G Proof of Lemma 6

Proof. We show that the Slater’s condition holds for (UBP′).
Recall that the feasible set of problem (UBP′) is

Aλλ0
=
{
θ : ‖θ − θ∗λ0

‖22 ≤ r2, 〈θ,b〉 = 0, 〈θ, x̄∗〉 ≤ mλ
}
.

To show that the Slater’s condition holds, we need to seek a point θ′ such that

‖θ′ − θ∗λ0
‖22 < r2, 〈θ′,b〉 = 0, 〈θ′, x̄∗〉 ≤ mλ.

Consider θ∗λ, since θ∗λ ∈ Aλλ0
, the last two constraints of Aλλ0

are satisfied by θ∗λ automatically.
On the other hand, because λ0 ∈ (0, λmax], Lemma 3 leads to the fact that the active set Iλ0 is not

empty. Let j0 ∈ Iλ0 , we can see that
|〈θ∗λ0

, x̄j0〉| = mλ0.

However, because θ∗λ ∈ Fλ, we have
|X̄T θ∗λ|∞ ≤ mλ,

and thus
|〈θ∗λ, x̄j0〉| ≤ mλ < mλ0.

Therefore, we can see that θ∗λ 6= θ∗λ0
. By part b of Theorem 2, it follows that

‖θ∗λ − θ∗λ0
‖22 < r2.

As a result, the Slater’s condition holds for (UBP′) which implies the strong duality of (UBP′).
Moreover, it is easy to see that problem (UBP′) admits optimal solution in Aλλ0

because the objective

function of (UBP′) is continuous and Aλλ0
is compact.
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H Proof of Lemma 7

Proof. The Lagrangian of (UBP′) is

L(θ;u1, u2, v) = 〈θ, x̄〉+
u1

2

(
‖θ − θ∗λ0

‖22 − r2
)

+ u2(〈θ, x̄∗〉 −mλ2) + v〈θ,b〉 (43)

= 〈θ, x̄ + u2x̄
∗ + vb〉+

u1

2

(
‖θ − θ∗λ0

‖22 − r2
)
− u2mλ2.

where u1, u2 ≥ 0 and v ∈ < are the Lagrangian multipliers. To derive the dual function ĝ(u1, u2, v) =
minθ L(θ;u1, u2, v), we can simply set ∇θL(θ;u1, u2, v) = 0, i.e.,

∇θL(θ;u1, u2, v) = x̄ + u1(θ − θ∗λ1
) + u2x̄

∗ + vb = 0.

When u1 6= 0, we set

θ = − 1

u1
(x̄ + u2x̄

∗ + vb) + θ∗λ0
(44)

to minimize L(θ;u, v) with (u, v) fixed. By plugging Eq. (44) to Eq. (43), we can see that the dual function
ĝ(u1, u2, v) is:

ĝ(u1, u2, v) =− 1

2u1
‖x̄ + u2x̄

∗ + vb‖22 + 〈θ∗λ0
, x̄ + u2x̄

∗ + vb〉 − 1

2
u1r

2 − u2mλ2 (45)

=− 1

2u1
‖x̄ + u2x̄

∗ + vb‖22 + u2m(λ1 − λ2) + 〈θ∗λ0
, x̄〉 − 1

2
u1r

2.

The second line of (45) is due to the fact that 〈θ∗λ0
, x̄∗〉 = mλ1 and 〈θ∗λ0

,b〉 = 0.
When u1 = 0, it is not straightforward to derive the dual function. The difficulty comes from the fact

that x̄ + u2x̄
∗ + vb might be 0 for some u′2 ≥ 0 and v′.

a). Suppose 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ (−1, 1], we show that x̄ + u2x̄

∗ + vb 6= 0 for all u2 ≥ 0 and v.

Suppose for contradiction that
x̄ + u′2x̄

∗ + v′b = 0,

in which u′2 ≥ 0 and v′. Then we can see that

P (x̄ + u′2x̄
∗ + v′b) = 0.

Since Pb = 0, it follows that
Px̄ + u′2Px̄∗ = 0, (46)

and thus

u′2 = −〈Px̄,Px̄∗〉
‖Px̄∗‖22

. (47)

Clearly, Eq. (46) implies that Px̄ and Px̄∗ are collinear, i.e., 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ {−1, 1}. Moreover, by

Eq. (47), we know that 〈Px̄,Px̄∗〉 ≤ 0. Therefore, it is easy to see that 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = −1, which

contradicts the assumption. Hence, x̄ + u2x̄
∗ + vb 6= 0 for all u2 ≥ 0 and v.

We then show that ĝ(u1, u2, v) = −∞ when u1 = 0 for all u2 ≥ 0 and v.

Since ĝ(u1, u2, v) = minθ L(θ;u1, u2, v), for u1 = 0, u2 ≥ 0 and v, we have

ĝ(0, u2, v) = min
θ
L(θ; 0, u2, v) (48)

= min
θ
〈θ, x̄ + u2x̄

∗ + vb〉 − u2mλ2.
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Let θ = −t(x̄ + u2x̄
∗ + vb), it follows that

〈θ, x̄ + u2x̄
∗ + vb〉 − u2mλ2 = −t‖x̄ + u2x̄

∗ + vb‖22 − u2mλ2, (49)

and thus

lim
t→∞

−t‖x̄ + u2x̄
∗ + vb‖22 − u2mλ2 = −∞. (50)

Therefore, ĝ(u1, u2, v) = minθ L(θ;u1, u2, v), for u1 = 0, u2 ≥ 0 and v.

All together, the dual function is

ĝ(u1, u2, v) =


− 1

2u1
‖x̄ + u2x̄

∗ + vb‖22 + u2m(λ1 − λ2) + 〈θ∗λ0
, x̄〉 − 1

2u1r
2,

if u1 > 0, u2 ≥ 0,

−∞, if u1 = 0, u2 ≥ 0.

(51)

Because the dual problem is to maximize the dual function, we can write the dual problem as:

max
u1>0,u2≥0,v

ĝ(u1, u2, v) = − 1

2u1
‖x̄ + u2x̄

∗ + vb‖22 + u2m(λ1 − λ2) + 〈θ∗λ0
, x̄〉 − 1

2
u1r

2. (52)

Moreover, it is easy to see that problem (52) is an unconstrained optimization problem with respect
to v. Therefore, we set

∂ĝ(u1, u2, v)

∂v
= − 1

u1
〈x̄ + u2x̄

∗ + vb,b〉 = 0,

and thus

v = −〈x̄ + u2x̄
∗,b〉

‖b‖22
. (53)

By plugging (53) into ĝ(u1, u2, v) and noting that U1 = {(u1, u2) : u1 > 0, u2 ≥ 0}, problem (52) is
equivalent to

max
(u1,u2)∈U1

ḡ(u1, u2) = − 1

2u1
‖Px̄ + u2Px̄∗‖22 + u2m(λ1 − λ2) + 〈θ∗λ1

, x̄〉 − 1

2
u1r

2. (UBD′)

By Lemma 6, we know that the Slater’s conditions holds for (UBP′). Therefore, the strong duality
holds for (UBP′) and (UBD′). By the strong duality theorem [11], there exists u∗1 ≥ 0, u∗2 ≥ 0 and
v∗ such that ĝ(u∗1, u

∗
2, v
∗) = maxu1≥0,u2≥0,v ĝ(u1, u2, v). By Eq. (51), it is easy to see that u∗1 > 0.

Therefore, ḡ(u1, u2) attains its maximum in U1.

b). Suppose 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = −1, it is easy to see that

x̄ + u2x̄
∗ + vb = 0⇔ u2 = −〈Px̄,Px̄∗〉

‖Px̄∗‖22
and v = −〈x̄ + u2x̄

∗,b〉
‖b‖22

.

Let u′2 = − 〈Px̄,Px̄∗〉
‖Px̄∗‖22

and v′ = − 〈x̄+u2x̄
∗,b〉

‖b‖22
, we have

L(θ; 0, u′2, v
′) = −u′2mλ2 =

〈Px̄,Px̄∗〉
‖Px̄∗‖22

mλ = − ‖Px̄‖2
‖Px̄∗‖2

mλ,

and thus

ĝ(0, u′2, v
′) = min

θ
L(θ; 0, u′2, v

′) = − ‖Px̄‖2
‖Px̄∗‖2

mλ.
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By a similar argument as in the proof of part 1, we can see that the dual function is

ĝ(u1, u2, v) =



− 1
2u1
‖x̄ + u2x̄

∗ + vb‖22 + u2m(λ1 − λ2) + 〈θ∗λ0
, x̄〉 − 1

2u1r
2,

if u1 > 0, u2 ≥ 0,

−∞, if u1 = 0, u2 ≥ 0, u2 6= u′2, v 6= v′,

− ‖Px̄‖2
‖Px̄∗‖2mλ, if u1 = 0, u2 = u′2, v = v′,

(54)

and the dual problem is equivalent to

max
(u1,u2)∈U1∪U2

¯̄g(u1, u2) =

{
ḡ(u1, u2), if (u1, u2) ∈ U1,

− ‖Px̄‖2
‖Px̄∗‖2mλ, if (u1, u2) ∈ U2.

(UBD′′)

I Proof of Theorem 8

I.1 Proof for the Non-Collinear Case

In this section, we show that the results in Theorem 8 holds for the case in which 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ (−1, 1),

i.e., Px̄ and Px̄∗ are not collinear.

Proof. As shown by part a) of Lemma 7, the dual problem of (UBP′) is equivalent to (UBD′). Since the
strong duality holds by Lemma 6, we have

− Tξ(θ∗λ, x̄j ; θ∗λ0
) = max

u1>0,u2≥0
ḡ(u1, u2). (55)

Clearly, problem (UBD′) can be solved via the following minimization problem

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = min

u1>0,u2≥0
−ḡ(u1, u2). (56)

Let u∗1 and u∗2 be the optimal solution of problem (56). By part a) of Lemma 7, the existence of u∗1 > 0 and
u∗2 ≥ 0 is guaranteed. By introducing the slack variables s1 ≥ 0 and s2 ≥ 0, the KKT conditions of problem
(56) can be written as follows:

− 1
2(u∗1)2 ‖Px̄ + u∗2Px̄∗‖22 +

1

2
r2 − s1 = 0, (57)

1
u∗1
〈Px̄ + u∗2Px̄∗,Px̄∗〉 −m(λ0 − λ)− s2 = 0, (58)

s1u
∗
1 = 0, s2u

∗
2 = 0. (59)

Since u∗1 > 0, then s1 = 0 and Eq. (64) results in

u∗1 = ‖Px̄ + u∗2Px̄∗‖2/r. (60)

By plugging u∗1 into (65), we have

ϕ(u∗2) :=
〈Px̄ + u∗2Px̄∗,Px̄∗〉
‖Px̄ + u∗2Px̄∗‖2‖Px̄∗‖2

=
m(λ0 − λ) + s2

r‖Px̄∗‖2
= d+

s2

r‖Px̄∗‖2
. (61)

It is easy to observe that

m1). since 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ (−1, 1), i.e., Px̄ and Px̄∗ are not collinear, ϕ(u∗2) monotonically increases when

u∗2 →∞ and limu2→∞ ϕ(u∗2) = 1;
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m2). d ∈ (0, 1] due to the fact that λ0 > λ and Eq. (68) (note s2 ≥ 0).

a): Assume 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ≥ d. We divide the proof into two cases.

a1) Suppose 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 > d, Eq. (68) and the monotonicity of ϕ imply that

d+
s2

r‖Px̄∗‖2
= ϕ(u∗2) ≥ ϕ(0) =

〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2

> d.

Therefore, we can see that s2 > 0 and thus u∗2 = 0 due to the complementary slackness condition. By

plugging u∗2 = 0 into Eq. (67), we can get u∗1 = ‖Px̄‖2
r . The result in part a) of Theorem 8 follows by

noting that Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = −ḡ(u∗1, u

∗
2).

a2) Suppose 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = d. If u∗2 > 0, then s2 = 0 by the complementary slackness condition. In view

of Eq. (68) and m1), we can see that

d = ϕ(u∗2) > ϕ(0) =
〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2

= d,

which leads to a contradiction. Therefore u∗2 = 0 and the result in part a) of Theorem 8 follows by a
similar argument as in the proof of a1).

b): Assume 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 < d. If u∗2 = 0, Eq. (68) results in

d+
s2

r‖Px̄∗‖2
= ϕ(0) =

〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2

< d,

which implies that s2 < 0, a contradiction. Thus, we have u∗2 > 0 and s2 = 0 by the complementary slackness
condition. Eq. (68) becomes:

〈Px̄ + u∗2Px̄∗,Px̄∗〉
‖Px̄ + u∗2Px̄∗‖2‖Px̄∗‖2

=
m(λ0 − λ)

r‖Px̄∗‖2
= d. (62)

Expanding the terms in Eq. (62) yields the following quadratic equation:

a2(u∗2)2 + a1u
∗
2 + a0 = 0, (63)

where a0, a1 and a2 are given by Eq. (86).

On the other hand, Eq. (62) implies that d ≤ 1. In view of the assumptions 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 < d and

〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 6= −1, we can see that Px̄∗ and Px̄ are not collinear. Therefore, m1) and Eq. (62) imply that

d < 1. Moreover, the assumption λ0 > λ leads to d > 0. As a result, we have (1− d2) > 0 and thus

a2a0 < 0,∆ = a2
1 − 4a2a0 = 4d2(1− d2)‖Px̄∗‖42(‖Px̄‖22‖Px̄∗‖22 − 〈Px̄,Px̄∗〉2) > 0.

Consequently, (63) has only one positive solution which can be computed by the formula in Eq. (86). The
result in Eq. (85) follows by a similar argument as in the proof of a1).

I.2 Proof for the Collinear and Positive Correlated Case

We prove for the case in which 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = 1.
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Proof. Because 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = 1, by part a) of Lemma 7, the dual problem of (UBP′) is given by (UBD′).

Therefore, the following KKT conditions hold as well:

− 1
2(u∗1)2 ‖Px̄ + u∗2Px̄∗‖22 +

1

2
r2 − s1 = 0, (64)

1
u∗1
〈Px̄ + u∗2Px̄∗,Px̄∗〉 −m(λ1 − λ2)− s2 = 0, (65)

s1u
∗
1 = 0, s2u

∗
2 = 0 (66)

where u∗1 > 0 and u∗2 ≥ 0 are the optimal solution of (UBD′), and s1, s2 ≥ 0 are the slack variables. Since
u∗1 > 0, then s1 = 0 and Eq. (64) results in

u∗1 = ‖Px̄ + u∗2Px̄∗‖2/r. (67)

By plugging u∗1 into (65), we have

ϕ(u∗2) :=
〈Px̄ + u∗2Px̄∗,Px̄∗〉
‖Px̄ + u∗2Px̄∗‖2‖Px̄∗‖2

=
m(λ0 − λ) + s2

r‖Px̄∗‖2
= d+

s2

r‖Px̄∗‖2
, (68)

which implies
d ≤ 1. (69)

Moreover, we can see that the assumption 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = 1 actually implies Px̄ and Px̄∗ are collinear.

Therefore, there exists α > 0 such that
Px̄ = αPx̄∗. (70)

By plugging Eq. (70) into Eq. (68), we have

ϕ(u∗2) =
〈Px̄ + u∗2Px̄∗,Px̄∗〉
‖Px̄ + u∗2Px̄∗‖2‖Px̄∗‖2

=
(α+ u∗2)〈Px̄∗,Px̄∗〉

(α+ u∗2)‖Px̄∗‖2‖Px̄∗‖2
= 1, (71)

i.e., ϕ(u∗2) is a constant and does not depend on the value of u∗2.

As a result, we can see that 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = 1 ≥ d. Therefore, we need to show that the result in part a)

of Theorem 8 holds. We divide the proof into two cases.

Case 1. Suppose 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 > d, i.e., d < 1, Eq. (68) and Eq. (71) imply that

d+
s2

r‖Px̄∗‖2
= ϕ(u∗2) = 1 > d.

Therefore, we can see that s2 > 0 and thus u∗2 = 0 due to the complementary slackness condition. By

plugging u∗2 = 0 into Eq. (67), we can get u∗1 = ‖Px̄‖2
r . The result in part a) of Theorem 8 follows by

noting that Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = −ḡ(u∗1, u

∗
2).

Case 2. Suppose 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = d = 1. On the other hand, in view of Eq. (68) and Eq. (71), we can observe

that s2 = 0 because otherwise

ϕ(u∗2) = 1 = d+
s2

r‖Px̄∗‖2
> 1.

By plugging 70 into Eq. (67), we have u∗1 = (α+ u∗2)‖Px̄∗‖2/r and thus

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = −ḡ(u∗1, u

∗
2) = r(α+ u∗2)‖Px̄∗‖2 − u∗2m(λ0 − λ)− 〈θ∗λ0

, x̄〉. (72)

By noting d = 1, it follows that
m(λ0 − λ) = r‖Px̄∗‖2. (73)

Therefore, in view of Eq. (70) and Eq. (73), Eq. (72) becomes

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = r(α+ u∗2)‖Px̄∗‖2 − u∗2r‖Px̄∗‖2 − 〈θ∗λ0

, x̄〉 = r‖Px̄‖2 − 〈θ∗λ0
, x̄〉,

which is the same as the result in part a) of Theorem 8.
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I.3 Proof for the Collinear and Negative Correlated Case

Before we proceed to prove Theorem 8 for the case in which 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = −1, it is worthwhile to noting

the following lemma.

Lemma 12. C Let λmax ≥ λ0 > λ > 0, d = m(λ0−λ)
r‖Px̄∗‖2 and assume θ∗λ0

is known. Then d ∈ (0, 1].

Proof. Let x̄ := −ξ(−x̄∗). Clearly, we can see that

〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2

= 1.

Therefore, the results in Section I.2 apply. As a result, in view of the inequality in (69),
Notice that, d is independent of x̄. In other words, as long as there exists a j0 ∈ {1, . . . , p} such that

Px̄j0 6= 0 and 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 ∈ (−1, 1), one can see that

d ≤ 1.

Moreover, since λ0 > λ, it is easy to see that d > 0, which completes the proof.

We prove Theorem 8 for the case in which 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = −1.

Proof. Consider the case in which 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = −1. Clearly, Px̄ and Px̄∗ are collinear and there exists

α = − 〈Px̄,Px̄∗〉
‖Px̄∗‖22

such that

Px̄ = −αPx̄∗. (74)

As shown by part b) of Lemma 7, the dual problem is given by (UBD′′). Therefore, to find

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = min

(u1,u2)∈U1∪U2
−¯̄g(u1, u2), (75)

we can first compute
T ′ξ(θ

∗
λ, x̄

j ; θ∗λ0
) = inf

(u1,u2)∈U1
−¯̄g(u1, u2) (76)

and then compare T ′ξ(θ
∗
λ, x̄

j ; θ∗λ0
) with −¯̄g(u1, u2)|(u1,u2)∈U2 = ‖Px̄‖2

Px̄∗ mλ. Clearly, we have

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = min

{
T ′ξ(θ

∗
λ, x̄

j ; θ∗λ0
),
‖Px̄‖2
Px̄∗

mλ

}
(77)

Let us consider the problem in (76). From problem (UBD′′), we observe that

− ¯̄g(u1, u2)|(u1,u2)∈U1 = −ḡ(u1, u2). (78)

By noting Eq. (74), we have

− ¯̄g(u1, u2)|(u1,u2)∈U1 =
1

2u1
(u2 − α)2‖Px̄∗‖22 − u2m(λ0 − λ) +

1

2
u1r

2 − 〈θ∗λ0
, x̄〉. (79)

Suppose u1 is fixed, it is easy to see that

u∗2(u1) = argmin
u2≥0

−¯̄g(u1, u2)|(u1,u2)∈U1 =
u1m(λ0 − λ)

‖Px̄∗‖22
+ α (80)

and

h(u1) := min
u2

−¯̄g(u1, u2)|(u1,u2)∈U1 = −¯̄g(u1, u
∗
2(u1)) (81)

=
1

2
u1r

2(1− d2)− αm(λ0 − λ)− 〈θ∗λ0
, x̄〉.
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Clearly, the domain of h(u1) is u1 > 0 and T ′ξ(θ
∗
λ, x̄

j ; θ∗λ0
) = infu1>0 h(u1).

By Lemma C, one can see that that d ∈ (0, 1].
If d = 1, then

min
u1>0

h(u1) = −αm(λ0 − λ)− 〈θ∗λ0
, x̄〉.

Otherwise, if d ∈ (0, 1), it is easy to see that

inf
u1>0

h(u1) = lim
u1↓0

h(u1) = −αm(λ0 − λ)− 〈θ∗λ0
, x̄〉.

All together, we have
T ′ξ(θ

∗
λ, x̄

j ; θ∗λ0
) = −αm(λ0 − λ)− 〈θ∗λ0

, x̄〉. (82)

Moreover, we observe that

〈θ∗λ0
, x̄〉 = 〈Pθ∗λ0

, x̄〉 = 〈θ∗λ0
,Px̄〉 = 〈θ∗λ0

,−αPx̄∗〉 = −αmλ0.

Therefore, Eq. (82) can simplified as:

T ′ξ(θ
∗
λ, x̄

j ; θ∗λ0
) = −αm(λ0 − λ)− 〈θ∗λ0

, x̄〉 = αmλ = −〈Px̄,Px̄∗〉
‖Px̄∗‖22

mλ =
‖Px̄‖2
‖Px̄∗‖2

mλ. (83)

By Eq. (77), we can see that

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) =

‖Px̄‖2
‖Px̄∗‖2

mλ. (84)

Since 〈Px̄,Px̄∗〉
‖Px̄‖2‖Px̄∗‖2 = −1 and d ∈ (0, 1] by Lemma C, one can see that 〈Px̄,Px̄∗〉

‖Px̄‖2‖Px̄∗‖2 < d. Therefore, we

only need to show that part b) of Theorem 8 yields the same solution as Eq. (84) .
Recall that part b) of Theorem 8 says:

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = r‖Px̄ + u∗2Px̄∗‖2 − u∗2m(λ0 − λ)− 〈θ∗λ0

, x̄〉, (85)

where

u∗2 = −a1+
√

∆
2a2

,

a2 = ‖Px̄∗‖42(1− d2),

a1 = 2〈Px̄,Px̄∗〉‖Px̄∗‖22(1− d2),

a0 = 〈Px̄,Px̄∗〉2 − d2‖Px̄‖22‖Px̄∗‖22,
∆ = a2

1 − 4a2a0 = 4d2(1− d2)‖Px̄∗‖42(‖Px̄‖22‖Px̄∗‖22 − 〈Px̄,Px̄∗〉2).

(86)

In fact, if we plugging Eq. (74) into Eq. (86), we have

∆ = 0,

u∗2 =
−a1

2a2
= −〈Px̄,Px̄∗〉

‖Px̄∗‖22
.

Therefore, we can see that u∗2 = α, Px̄ + u∗2Px̄
∗ = 0 and thus Eq. (85) results in

Tξ(θ
∗
λ, x̄

j ; θ∗λ0
) = −αm(λ0 − λ)− 〈θ∗λ0

, x̄〉 = αmλ =
‖Px̄‖2
‖Px̄∗‖2

mλ. (87)

Clearly, Eq. (84) and Eq. (87) give the same result, which completes the proof.
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