
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

Parallel Generation of Architecture on the GPU

Markus Steinberger1, Michael Kenzel1, Bernhard Kainz1, Jörg Müller1, Peter Wonka2, and Dieter Schmalstieg1

1Graz University of Technology, Austria
2King Abdullah University of Science and Technology, Saudi Arabia

Figure 1: With our parallel approach to procedural architecture, large cities can be generated in less than a second on the GPU.
The city overview shows a scene with 38 000 low-detail buildings generated in 290ms (left). The 520 buildings in the skyscraper
scene consist of 1.5 million terminal shapes evaluating to 8 million vertices and 4 million triangles, all generated in 120ms
(center). The highly detailed skyscrapers are built using context-sensitive rules, to, e. g., avoid overlapping balconies (right).

Abstract
In this paper, we present a novel approach for the parallel evaluation of procedural shape grammars on the
graphics processing unit (GPU). Unlike previous approaches that are either limited in the kind of shapes they allow,
the amount of parallelism they can take advantage of, or both, our method supports state of the art procedural
modeling including stochasticity and context-sensitivity. To increase parallelism, we explicitly express independence
in the grammar, reduce inter-rule dependencies required for context-sensitive evaluation, and introduce intra-rule
parallelism. Our rule scheduling scheme avoids unnecessary back and forth between CPU and GPU and reduces
round trips to slow global memory by dynamically grouping rules in on-chip shared memory. Our GPU shape
grammar implementation is multiple orders of magnitude faster than the standard in CPU-based rule evaluation,
while offering equal expressive power. In comparison to the state of the art in GPU shape grammar derivation, our
approach is nearly 50 times faster, while adding support for geometric context-sensitivity.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—I.3.1 [Computer Graphics]: Hardware Architecture—Parallel processing

1. Introduction

During the last years, the demand for larger, more realistic,
and more vivid virtual environments has seen an upsurge.
Games such as Grand Theft Auto, The Elder Scrolls series,
or World of Warcraft offer a first glimpse into a fascinating
future of truly-open virtual worlds. The appeal of films like
Thor or Man of Steel partially stems from the visuals their
characters’ fantastic universes offer. Gamers and moviego-
ers expect these worlds to be unique, stunning, and studded
with detail. In both the game and movie industry, crafting

ever larger and yet more detailed environments is a time con-
suming, tedious task for artists. Procedural modeling has the
potential to drastically reduce manual efforts for creating
such huge environments: Given just a small set of rules, a
procedural grammar can generate entire worlds from only
a single input seed. If large parts of a new world could be
generated with little human effort, artists could focus their
creativity on the elements relevant to narrative and gameplay.
Unfortunately, the grammar derivation of cities the size of
Manhattan can take up hours, even on a modern CPU, greatly
limiting the practical usefulness of such approaches.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

With the stagnating increase in clock rate, the only way
towards still higher performance seems to be going parallel.
Procedural grammar derivation holds great potential for paral-
lelization. During the generation of large scenes, millions of
intermediate symbols have to be processed. A large portion
of these symbols are independent and thus fit for massively
parallel execution. Consisting of up to thousands of cores,
the graphics processing unit (GPU) puts itself forward for
parallel grammar derivation. Using the GPU also has the
advantage that the generated geometry already resides on
the rendering device. However, due to the peculiarities of
modern GPU architectures, all previous attempts to GPU-
based grammar derivation were only mildly successful, at
best achieving moderate speed-ups over derivation on the
CPU, while relying on substantially simplified grammars.

While the GPU potentially offers tremendous process-
ing power, the workload presented by grammar derivation
does not easily translate to the GPU execution model. The
throughput-oriented architecture of the GPU heavily relies on
hiding slow memory access with large amounts of arithmetic
computation to achieve peak performance. Grammars, how-
ever, consist of small rules, performing just a few arithmetic
computations each. During evaluation of large grammars,
large numbers of intermediate symbols are created and need
to be stored. Additionally, the choice of which rule takes
effect might depend on random variables and complicated,
nested branches. Tasks with little arithmetic load, but lots of
complex control flow, are pathological for the single instruc-
tion, multiple data (SIMD) model of the GPU. Execution of
branches on the same SIMD unit has to be serialized. Thus,
parallelism is easily lost to suboptimal execution configura-
tions. The fact that state of the art context sensitive shape
grammars such as CGA shape [MWH∗06] introduce complex
interdependencies between rules further adds to the complex-
ity of the problem. Taking into account geometric context,
is essential to avoid generation of implausible scenery such
as windows partially covered by a wall or a fence blocking
a door. Such dependencies, however, imply that execution
of the dependent rules has to be serialized. In sequential
grammar evaluation, this problem can be ignored; one sim-
ply keeps choosing a rule for which all dependencies can
be evaluated next. In a parallel derivation scheme, however,
the additional complexity and the loss in parallelism due to
context sensitivity are major issues.

In summary, we identify three obstacles for efficient evalu-
ation of state of the art shape grammars on the GPU:

O1 Context sensitivity: State of the art shape grammars
require the rule evaluation to consider the geometric con-
text. Features such as occlusion queries and snap-lines
need to be supported. Nontrivial inter-rule dependencies
introduced by geometric context sensitivity make paral-
lelization a difficult problem.

O2 Divergence: The SIMD architecture typical of a mod-
ern GPU only works well given homogeneous workloads.

Grammar derivations involving many different rules in-
troduce control flow divergence on SIMD units, easily
leading to performance decreases of more than an order of
magnitude.

O3 Memory access: Individual rules typically involve only
a few arithmetic computations. Even if one can assign
homogeneous sets of rules to fully occupy all SIMD units,
the overhead of reading the state associated with each rule
from and writing results back to global memory on the
GPU can easily make up 90% of the total time.

To overcome these obstacles, we design a rule evaluation
scheme for parallel generation of architecture (PGA) with
GPU execution in mind. The PGA grammar provides fully
featured modeling capabilities and is able to create visually
appealing, realistic cities. Despite its expressive power, PGA
lends itself to parallelization and efficient execution on an
SIMD architecture. Slow global memory access is avoided by
intelligent rule scheduling and local rule grouping strategies.

2. Related work

The current state of the art in procedural architecture model-
ing is still CGA shape [MWH∗06]. The evolution that lead to
CGA shape includes Stiny’s original shape grammars [Sti75],
set grammars [Sti82], and split operations for façade mod-
eling [WWSR03] combined with transformation operations
from L-systems [PL90]. Occlusion queries and snap-lines in
CGA shape provide the ability to control grammar derivation
based on local geometric context. Environmental influence is
also exploited using synthetic topiary [PJM94], user designed
curves [PMKL01], guided derivations [BŠMM11], intercon-
nected structures [KK11], vector field guidance [LBZ∗11],
and self-sensitive L-systems [PM01]. Other noteworthy exten-
sions to grammar-based modeling are more general terminal
symbols [KPK11] and mesh refinement [Hav05]. There are
a number of alternatives to grammar-based modeling that
are also able to generate procedural models of high qual-
ity [LHL10, MM11, LCOZ∗11].

Degree of parallelism in grammars. L-systems allow to
compute the transformation for each symbol in a string in par-
allel, implying an average degree of parallelism proportional
to the length of the string S. Context sensitivity in L-systems
is usually defined in terms of neighboring symbols in the
string and does not affect parallelism. For architecture, split
grammars are preferred over L-systems [WWSR03]. Split
grammars use tree-shaped derivations. Because of parent-
child relationships, the degree of parallelism is again pro-
portional to the average number of shapes on one level S.
Context-sensitivity in CGA shape is formulated in a geomet-
ric, rather than a symbolic manner. While enhancing expres-
siveness of the approach, the geometric formulation imposes
a partial ordering upon rule evaluation. Therefore, current
implementations of CGA shape are based on sequential rather
than parallel evaluation.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

method context sensitivity max rewrites parallelism launches SIMD control memory writes

CGA shape [MWH∗06] geometry ∞ 1 - - -
L-system [Mag09] n.a. ∞ S/R D ·R sort to bins S ·D

L-system [LWW10] symbols ∞ S 4 ·D n.a. 4 ·S ·D
split-grammar [MBG∗12] n.a. < 8 B 1 n.a. S ·D

PGA geometry ∞ ≈ 4 ·S P (local) grouping ≈ S ·P
S average symbols on level; B buildings; D depth of tree/rewrites; R rules; P PGA phases

Table 1: While CGA shape is of high expressiveness and supports arbitrary context queries between rules, no parallel im-
plementations of CGA shape exists. Previous parallel grammar implementations hardly support context sensitivity, limit the
maximum depth of the execution tree/number of rewrites, and do not allow to express complex buildings (O1). Although PGA
supports CGA shape-style context-sensitivity, our approach shows the highest degree of parallelism (O1), optimizes for the
SIMD model (O2), only requires one kernel launch per phase (O3), and reduces the writes to slow global memory (O3). For a
large city, one can observe: S > B > D > R > P, with P being three in a typical PGA setup.

GPU-based grammar evaluation. Due to their implicit par-
allelism, L-systems and split grammars are candidates for par-
allel evaluation. While one could use CPU clusters [YHL∗07],
a GPU is more attractive for this purpose, as it provides
inexpensive parallelism and the ability to render results di-
rectly. However, even the task of mapping simple L-systems
to SIMD architectures leads to difficulties. A recent L-system
generator [LWW10] for the GPU requires multiple expensive
kernel launches and round trips to slow global memory in
each iteration (O3) to count symbols, compute symbol output
positions and execute actual rewrites. Moreover, neighboring
elements in the string usually map to different rules, so as-
signing each symbol to one thread leads to divergence (O2).
As a result, GPU evaluation of context-sensitive grammars
on the GPU was reported to be even slower than on the CPU.

Lacz and Hart [LH04] evaluate split grammars using ver-
tex and pixel shaders combined with a render-to-texture
loop (O3). The main load in their system comes from global
sorting of intermediate symbols. A similar grammar eval-
uation scheme using multi-pass rendering and GPU stream
output was presented by Magdics et al. [Mag09]. They reduce
divergence by employing a different shader for each output
symbol, but still require many rendering passes (O3). Multi-
pass rendering can be circumvented by using a fixed-size
stack [MBG∗12]. Due to the limits of GPU shaders, however,
stacks are placed in slow global memory (O3). Additionally,
the usage of stacks by itself leads to divergence (O2) and lim-
its parallelism to the number of axioms. More severely, stack
size limits derivation complexity and thus makes it necessary
to rely on instancing of detailed polygonal stock models for
terminal shapes. Neither geometric context nor stochasticity
is supported. Table 1 compares the above approaches to PGA.

Finally, sequential grammars can still be evaluated in paral-
lel per pixel. Façade textures [HWA∗10,MPHG11] are one ex-
ample of such an approach. For increased detail,instances of
prop models can be used as terminals [KBK13]. Approaches
deriving grammars on a per pixel level are, of course, compu-
tationally extremely redundant for neighboring pixels.

3. Parallel generation of architecture

In the following discussion, we assume a stream processing
model. Note that a shader-based implementation would face
exactly the same issues. The central concept in the stream
processing model is that of a kernel function, which is the
program executed by each GPU thread. Kernel execution is
initiated by a kernel launch. At the point of the kernel launch,
the number of threads to be launched and their organization
into blocks has to be specified. All threads within the same
block are guaranteed to execute concurrently and are given
access to the same region of local shared memory. The small-
est unit of execution on the GPU is a warp. A warp is a group
of threads that fits the SIMD width of the device. All threads
within a warp execute in lockstep.

Parallelism is the key to fast rule derivation on the GPU.
To introduce parallelism into the rule set of CGA shape while
preserving context sensitivity, our parallel shape grammar
for architecture (PGA) relies on a multi-phase evaluation
model. To derive PGA grammars on the GPU, we propose an
autonomous GPU rule scheduler based on local and global
grouping mechanisms. Furthermore, PGA introduces intra-
rule parallelism to further increase the efficiency of SIMD
execution and the effectiveness of local rule grouping.

3.1. Context sensitive parallel evaluation

In CGA shape, geometric context sensitivity is supported
through queries between shapes. These queries introduce
dependencies among rules. For instance, all walls must be
generated before any window, so that the window rule can
query the walls to avoid partially occluded windows. CGA
shape handles such dependencies in terms of priorities. Rule
priorities make it very simple to determine a correct execution
order by sorting. However, for parallel rule evaluation, we
are interested in efficient identification of independent rather
than dependent rules (O1).

Evaluation phases. To support queries between arbitrary
rules while retaining parallelism, PGA replaces the notion of

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

(2)

(2)

(3)

(3)

(1) (1)
(1)

Pha s e 2

Pha s e 1

Figure 2: To maximize parallelism while still supporting
geometric context sensitivity, PGA distinguishes three types
of queries: (1) cross phase queries to any shape generated in a
previous phase, (2) sibling queries between direct neighbors
in the derivation tree, and (3) bilateral evaluation queries, in
which the source and destination of a query have a common
ancestor.

CGA shape priorities with evaluation phases. Every rule is as-
signed to a phase and can only generate shapes for the same or
a later phase. Rules belonging to the same phase are evaluated
concurrently. This approach differs from CGA shape by ex-
plicitly expressing independence of rules. The end of a phase
marks a global synchronization barrier. Thus, any shape gen-
erated in a previous phase can always be subject of geometric
queries. Separation into phases also has the advantage that
acceleration structures can efficiently be built on the shapes
generated in a completed phase. Each evaluation phase has
to be implemented as separate kernel launch, because global
synchronization on the GPU is currently only achieved be-
tween successive kernel launches. Intermediate shapes have
to be stored in global memory as the contents of local shared
memory are lost when a kernel finishes. Therefore, it is essen-
tial to keep the number of phases to a minimum. We find three
to five evaluation phases to be usually sufficient. A separation
into city layout, mass modeling and façade details—common
in CGA shape—seems to work well in practice.

To help keeping the number of phases low, PGA also sup-
ports queries to shapes within the same phase given that
certain criteria are met. The derivation of shape grammars
can be viewed as forest of trees with axioms at the root and
terminals forming the leaves [Sip06]. In city generation, the
axioms are commonly building lots or cells forming the ter-
rain. Queries introduce additional edges in this derivation
graph. As outlined in Figure 2, PGA distinguishes between
three types of queries, sibling queries, bilateral evaluation
queries, and cross-phase queries, based on the relation of the
rules involved.

Cross phase queries. As has already been mentioned, the
separation into evaluation phases enables queries to any shape
generated during a previous phase. We call these kinds of
queries cross phase queries.

Sibling queries. If all shapes involved in a query have the
same parent, we can evaluate the query in the parent shape,
and forward the result to the querying child shape. For in-
stance, a wall tile can check if it is located at a corner by
querying the location of its neighbors, which are known to
the floor shape generating the wall tiles.

Bilateral evaluation queries. Geometric context queries
usually target shapes in close proximity, but these shapes are
not necessarily limited to siblings in the symbolic derivation.
However, we can still create an efficient query mechanism by
exploiting the fact that spatially close shapes will likely cor-
respond to symbols close in the derivation tree. To this aim,
we analyze all possible generation paths for the shape being
queried. If the querying and the queried shape have a com-
mon ancestor in the graph, we can pass this common ancestor
along the path to the querying shape and compute the needed
information independently of whether the queried shape has
already been generated or not. Although this method involves
redundant computation, it will be more efficient than intro-
ducing additional evaluation phases, as long as the common
ancestor is not too far away. According to our experiments,
for a distance of up to six rules, bilateral evaluation queries
are preferable to introducing additional phases. An example
for the use of such a query would be balcony doors: for a
balcony, a door should be generated instead of a window.

Snap lines. Like CGA shape, we also allow the specification
of snap lines. Rules splitting a shape into multiple new shapes
automatically snap their splits to these lines, allowing ele-
ments of different mass model parts to be aligned (Figure 3).
Our concept of evaluation phases facilitates the efficient im-
plementation of snap lines. Snap lines specified in one phase
can be referenced in all following phases, acceleration struc-
tures can efficiently be constructed between phases for fast
access to all snap lines.

Figure 3: Model of the Cross-Towers being built in Seoul.
(left) Using snap-lines, the floors and windows of the indi-
vidual tower parts are aligned. (right) Non-terminal mass
model shapes can be used to control the derivation. Geomet-
ric context sensitive rules keep a corridor (red) free of outdoor
furniture and trigger the generation of a door.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

3.2. Rule scheduling

The design of the PGA grammar allows for a high degree of
parallelism, but additional measures are needed to address
thread divergence (O2) and to minimize the number of kernel
launches and accesses to slow global memory (O3).

A common strategy for executing tree-like algorithms
is to operate on one level after the other interleaved with
prefix sums [SHZO07] to determine the number of ac-
tive nodes [ZGHG11]. This strategy has also been used by
Lipp et al. [LWW10] for the derivation of L-systems. This ap-
proach requires a high number of kernel launches interrupted
by read-backs from the GPU. Every kernel launch requires
the current state to be flushed to slow global memory and
read back from the GPU, which stalls the entire device. As
only little computation is performed in each kernel, mem-
ory access cannot be hidden, having an additional, negative
impact on overall performance.

Reduced number of launches. To overcome the issue
of kernel launches, we propose a persistent threads ap-
proach [AL09]. For each phase, PGA keeps a queue of un-
processed shapes in global memory. Derivation is kicked off
by launching a single kernel filling up the entire GPU. Each
thread draws one shape from the queue and executes the rule
associated with this shape. If new shapes are generated, they
are immediately inserted into the queue. Instead of stopping
after a shape has been processed, we keep drawing elements
from the queue, until the queue is empty and the phase is
completed. Following this strategy, the number of required
kernel launches equals the number of phases, and the number
of stalls can greatly be reduced. Since elements are concur-
rently removed from and inserted into the active queue, a
simple, atomically operated buffer is not sufficient. Thus, we
rely on an element-wise locked queue [SKK∗12].

Rule grouping. A key factor for fast rule derivation is avoid-
ing divergence (O2). When using the a single queue per
phase, shapes of different kinds end up together in the same
queue. As every thread draws new shapes from the queue,
threads within the same warp end up processing shapes of
different kinds, which leads to divergence. One possible way
to avoid mixing shapes, would be sorting the queue according
to shape types, as, e. g., proposed by Lacz et al. [LH04] for
their L-system derivation. However, as they noted, sorting
consumes most of the time in a such a setup. Instead of stor-
ing the whole queue, we propose a dynamic rule grouping
mechanism. Instead of individual shapes, we store groups of
shapes of the same type in the global queues. The size of each
group is chosen to fill an entire block of threads with work.
In this way, all threads are supplied with the same type of
shapes, execute the same rule, and no divergence will occur.

Shape grammars can contain hundreds of different rules.
To dynamically collect shapes into groups, we therefore rely
on a hash map using multiplicative hashing. For each rule
type, this hash map stores a singly-linked list of shapes not

yet formed into a group. Whenever a new shape is generated,
we allocate memory for a list node containing the shape using
fast dynamic memory allocation [SKKS12]. We then copy the
shape to this list node and append the node to hash map entry
associated with the rule needed for the shape. To move groups
from the hash map into the global queues, we use a separate
warp which continuously iterates over the hash map. If there
are enough shapes to form a complete group in one of the lists,
it takes these elements out of the map and inserts them into
the queue. If the global queue is about to run low on elements,
we also move incomplete groups from the hash map to the
queue to keep the GPU occupied and ensure all generated
shapes will be processed. As we reference shape groups only
by pointer, they can be passed around very efficiently. After
a shape group has been processed, the memory used to store
the shapes comprising the group is freed.

Figure 4: To efficiently manage rule derivation, we use a two
level approach. Global grouping (blue) employs a hash map
to merge rules of the same type, before they are inserted into
the execution queues. To avoid the costly transfer to global
memory, we introduce a local grouping mechanism (green).
Each block keeps a list of a few rules in local shared memory.
These rules are executed before new ones are drawn from the
global queue. If local grouping runs out of memory or if there
are not enough rules available, we resort to global grouping.

Local grouping. Although global rule grouping already
boosts performance by orders of magnitude, the overhead
of dynamic memory allocation and writing shapes to global
memory can still be significant (O3). Multiple threads exe-
cuting the same rule are likely to generate new shapes for
the same rule. Therefore, a further optimization is to group
shapes in local shared memory, instead of directly sending
each shape to the global grouping mechanism. As dynamic
shared memory allocation is infeasible due to fragmentation
issues, we refrain from using hash map-based grouping in
shared memory. Additionally, the limited size of shared mem-
ory hinders grouping based on fixed size lists for all rules.
Thus, we propose a dynamically managed list of rule groups.
When the first shape is generated, we assign a region of shared
memory large enough to hold a shape group for the respective

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

rule type. Each such region is preceded by a header identi-
fying the rule type, the number of shapes in the group, and
a pointer to the beginning of the next group in shared mem-
ory. When the next shape is generated, we search through
all groups using the information found in each header. If a
matching group is found, we atomically increase the group’s
shape counter and store the shape at the respective position.
If no matching group is found or all groups are full, we try
to add a new group to the list. If no memory is left for a new
group, we fall back to the global grouping solution.

Simple locks cannot be used in shared memory, as there is
no safe way to avoid deadlock situations given the character-
istics of the hardware scheduler. Instead, by requiring that all
free memory be initialized to zero, we can rely on an atomic
compare-and-swap (CAS) operation to concurrently allocate
new groups. We allocate a new group by trying to write its
header using CAS. If the CAS returns zero, we can be sure
that no other thread added a group concurrently, otherwise,
we have to retry. To reduce the number of retries, we use a
warp voting scheme to determine a single thread per warp to
interact with the grouping data structure.

In every iteration of the persistent threads main loop, we
first check shared memory. If we find a complete group, we
immediately consume it and execute the associated rule. Af-
ter taking a group out of the list, we run a compaction step,
closing the gap left behind by moving the remaining contents
of the list to the front and zeroing the memory then avail-
able at the back. If no complete group is found, we draw a
group from the global queue. If the memory assigned to local
grouping is about to run full, we flush complete groups to the
global queue, so that we retain the ability of capturing newly
generated shapes in fast local memory.

The whole local and global rule grouping scheme is out-
lined in Figure 4. There are several advantages to this strategy:
First, the number of reads and writes to global memory is
minimized. In an optimal case, shapes are only written to
global memory, if their rules belong to later phases. As local
shared memory is nearly as fast as registers, the overhead of
local rule grouping is very low compared to global rule group-
ing. Second, the available memory is used in a very effective
way. During derivation, many different rules will eventually
be encountered, but only a small number of different shapes
need to be kept ready at any point in time. With our dynamic
scheme, the entire memory could be used for a single shape
type if needed. Third, if the grammar is strongly expanding,
and many full groups are generated quickly and flushed to
the global queue, we at least avoid the overhead of global
grouping.

3.3. Operator-level parallelism

As mentioned before, a high degree of parallelism is the key
to high performance on the GPU. We can go further than just
executing multiple rules in parallel, as parallelism is inherent

to many operators in CGA shape. For instance, the Repeat
operator repeats a given shape as many times as it fits into
the parent shape along a certain dimension. Instead of using a
single thread to generate all n instances of the new shape, we
could use n threads to generate each instance in parallel. In the
following, we identify which operators can be parallelized,
show the techniques used by PGA, and discuss how such
operator-level parallelism influences overall performance.

Static parallelism. A large number of operators proposed in
CGA shape can be distributed to a constant number of threads
only depending on the type of the input shape. Among those
operators are Component Split, Generate Geometry, and Sub-
divide. Component Split takes an input shape and generates a
new shape for each face, edge, or vertex of the input shape.
One thread can be assigned to each output shape. Generate
Geometry generates the vertices and indices required for ren-
dering a shape and inserts them into the vertex buffer and
index buffer. Again, one thread can be use to compute a single
vertex and a single index. We use the greatest common divisor
of vertex count and index count to determine the number of
threads. For instance, the geometry of a box is generated by
twelve threads (24 vertices, 36 indices), each thread being
responsible for two vertices and three indices. As a beneficial
side effect, in this case, parallelization will enable coalesced
memory access. Subdivide fits a fixed number of shapes into
the parent shape. One thread can be used per shape.

While operator-level parallelism is completely transparent
to the designer writing rules in PGA using these operators,
great care has to be taken when implementing the operators
themselves. Thread divergence must be avoided at all costs,
as it will obliterate any potential gains on SIMD architectures.
Consider the example C++ code for splitting a box into its
six faces using six threads with thread id (tid) 0 to 5:

1 void SplitFaces(Box& box, Out s)
2 {
3 int select = (tid & 0x1) * 2 - 1;
4 int xCode = (tid < 2) * select;
5 int yCode = (tid & 0x2)/2 * select;
6 int zCode = (tid & 0x4)/4 * select;
7
8 float3 n(xCode, yCode, zCode);
9 float3 pos = box.pos + box.size * n / 2;
10
11 float3 s0(yCode, 0, xCode + zCode);
12 float3 s1(0, xCode + zCode, yCode);
13 float2 size;
14 size.x = dot(box.size, abs(s0));
15 size.y = dot(box.size, abs(s1));
16
17 Rotation r(0.5f*yCode * pi,
18 (xCode == -1) * pi + 0.5f*zCode * pi,
19 0);
20 Rotation rot = rot * box.rotation;
21
22 generate<Quad>(s, size, pos, rot);
23 }

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

Using nothing but arithmetics, we generate a vector pointing
into the direction of each thread’s face (line 3-6) without the
need for branching. Based on this vector, we can determine
the position (9) as well as the size (11-15) of the face to be
generated. To provide a common local coordinate system, we
compute a rotation using Euler angles for each face (17-20).
Finally, all six quads are generated concurrently (22).

Input-dependent parallelism. For some operators, the
number of generated shapes depends on the dimensions of
the input shape. In theses cases, an optimal assignment of
threads cannot be determined statically. An example for such
an operator is Repeat. Repeat can, e. g., be used to split a
building into floors. Obviously, a skyscraper will have more
floors than a suburban house, and, thus, a higher number of
threads could be used. While it would be possible to dynam-
ically assign threads to the execution of rules and provide
an optimal thread count, our experiments have shown that
a completely dynamic setup is not preferable. Dynamically
assigning threads to rules complicates rule grouping and intro-
duces a significant overhead during rule evaluation. Thus, we
rely on a semi-dynamic setup: We provide implementations
for a subset of all possible thread counts. When a new shape
is generated, we check how many threads would be optimal
and assign the shape to the variant with the next higher thread
count. In this way, some threads might run idle, but their
number is usually low. The rule scheduler simply treats these
variants like different rules, and grouping works as described
before.

If the number of shapes to be generated is larger than the
thread count (tc) of the largest operator variant available,
each thread has to generate more than a single shape. For
Repeat, an implementation could look as follows:

1 void RepeatX(Box box, float width, Out s)
2 {
3 int N = box.size.x / width;
4 for (int i = tid; i < N; i += tc)
5 {
6 float3 size = box.size;
7 size.x = size.x / N;
8 float3 pos = box.pos;
9 pos.x -= 0.5f * box.size.x;
10 pos.x += (i + 0.5f) * size.x;
11 Rotation rot = box.rotation;
12 generate<Box>(s, size, pos, rot);
13 }
14 }

In every iteration, tc new shapes are generated in parallel.
Threads can diverge only in the last iteration if N/tc is not
integer.

Non-parallel operators. There are operators that cannot be
parallelized themselves. Examples for such operators are
Scale, Translate, and Rotate. However, these operators are
often used in sequence with operators that can be parallelized,

e. g., scaling the shapes generated by Repeat. In these cases,
parallel and non-parallel operators can be combined into a sin-
gle rule. Note that the same amount of parallelism is available
in a combined rule as in separate rules: If a Repeat generates
four shapes, it can be evaluated by four threads. If another
rule was used to scale the resulting shapes, these rules would
be executed for each shape, providing work for four threads.
If both rules are combined into one rule, the combined rule
would still be executed by four threads. However, using a
combined rule, no intermediate symbols are generated, sav-
ing the overhead of memory access and rule grouping that
would otherwise be involved. In PGA, we automatically ana-
lyze the provided rule set and substitute combined operators
for maximum efficiency.

Benefits. Operator-level parallelism brings about significant
arithmetic overhead. However, the dominating bottleneck in
grammar derivation usually is memory access. Therefore, any
additional arithmetic overhead is usually hidden by memory
latency, and the numerous benefits of operator-level paral-
lelism prevail: First, thanks to the additional parallelism, even
single buildings can achieve reasonable GPU utilization. Sec-
ond, operator-level parallelism leads to very efficient memory
access patterns. Third, fewer shapes are needed to fill an en-
tire block of threads. Therefore, local rule grouping requires
less shared memory. Additionally, as fewer shapes are needed
to complete a group, groups are more likely to spill directly
to the global queue instead of having to go to global grouping.
Fourth, as local groups are completed more easily, shapes
need to be taken from the global queue less often, reduc-
ing the number of global memory accesses. Finally, threads
involved in the derivation of the same shape hardly diverge.

3.4. Example

Figure 5 demonstrates the advantages of PGA rule scheduling
by the example of two façades of a simple building. Seven
rules are used in this example. We split each façade into
two floors. Each floor is split into tiles, each tile consists of
a window and surrounding walls. Using context sensitivity,
an alternate floor rule that generates a door in place of a
window is selected at street level. In contrast to a traditional
evaluation scheme using a single thread per rule, PGA can
distribute rule evaluation amongst multiple cores (Figure 5
left). Considering the complete derivation (Figure 5 center
and right), the advantages of PGA are obvious.

4. Results

To explore the characteristics of the various components of
PGA, we compare the performance of different implemen-
tations. As baseline, we use the CPU implementation of the
original CGA shape by Müller et al. [MWH∗06] found in the
software CityEngine. Because CityEngine is not open source,
a direct measurement of the generation time is not possible.
As our measurements also include rendering time, we reduce

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

e
mit

threads

8 core PGA 8 core Traditional

tim
e

façade
floor0
f loor
door
tile

window
wall

cga PGA

Figure 5: Comparison between a traditional GPU implemen-
tation of CGA shape and PGA, which uses multiple threads
per rule.. A very simple building is specified by seven rules
(left). The traditional implementation frequently leaves most
SIMD units unoccupied (center) and is ridden by divergence
(black chevrons). The need to flush and read back shapes from
global memory introduces additional idle time for the whole
GPU. With parallel rule evaluation and rule grouping, PGA
can execute much more efficiently on SIMD units (right). Di-
vergence and slow global memory access are avoided. Note
that the same amount of work (colored area) is done in both
cases, but PGA achieves more efficient scheduling.

the measured time by 1% as a conservative estimate. To avoid
undesired side effects from memory management, we split
the CGA shape evaluation into smaller generations of 400
buildings each. We compare a sequential CPU implementa-
tion Seq of the PGA rule set, which only performs combining
of parallel and non-parallel operators. We further provide
CPU PGA, a highly competitive, full implementation of PGA
on the CPU. On the GPU, we implemented a traditional multi-
pass derivation scheme launching a kernel which uses one
thread per shape to be derived (Kernels). Axioms as well as
intermediate shapes are buffered in global memory between
kernel launches. Parallel execution is enabled by the PGA
phase model and parallel/nonparallel operator combining is
also performed. In a second GPU implementation (Persist),
the multi-pass approach is replaced with a persistent threads
implementation using global rule grouping to reduce diver-
gence. Finally, we compare the full PGA implementation
including local rule grouping and operator-level parallelism
(PGA). All measurements were run on the same machine
with an Intel Core i7-940 Quad Core CPU (2.9GHz) and an
NVIDIA Quadro 6000 GPU.

We selected a variety of test scenes, including small and
large setups, geometry-heavy and rule-heavy derivations, us-
ing only context-free or also context-sensitive rules, and
scenes with and without snap-lines. The characteristics of

5[htb]
axiom nodes term vert tris

Tree4,3 1 121 283 3896 5232
Tree8,4 1 9k 23k 6M 10M

Residential∗ 1 297 2423 99k 62k
Cross-Towers∗† 1 3327 17k 363k 182k

Skyscrapers∗ 523 311k 1.5M 8.10M 4.05M
City Overview∗ 38k 239k 851k 10.07M 5.84M

Suburban∗ 4244 796k 6.0M 278.8M 167.8M
∗ context sensitive; † snap lines

Table 3: Our test scenes feature up to 38k axioms, 800k
non-terminals (nodes), 6M terminals (term), 280M vertices
(vert), and 170M triangles (tris). We cover different aspects,
like context-sensitivity, snap-lines, and varying shapes of
derivation trees. For the tree dataset, the numbers correspond
to the number of recursions and tree branches. City Overview
and Skyscrapers are shown in Figure 1; Cross-Towers in
Figure 3; the trees, Residential, and Suburban in Figure 6.

each scene are outlined in Table 3 and images from each
scene can be seen in Figures 1 and 6.

Generation times are summarized in Table 2. Our opti-
mized CPU PGA implementation (four threads) achieves
speed-ups of 130–3500 over CGA shape. Making use of
hyper-threading by increasing the thread count reduced the
performance, which indicates that the four cores are well
utilized. With the fully-featured GPU implementation, we
achieved speedups between 400 and 12 000 in comparison to
CGA shape, between 14 and 2700 over Seq, and between 4
and 7 over CPU PGA.

The simplest test scenes are the tree datasets, which consist
of a few context-free rules only. We chose these datasets to
draw a direct comparison to the state of the art in GPU shape
grammar derivation: GPU Shape Grammars [MBG∗12].
They report a generation time of 40ms for their tree with
280 terminals (Tree4,3) on a GPU with processing power
equivalent to ours. With CPU PGA, we derive the same tree
in 4.5ms. The full GPU implementation of PGA needs only
0.84ms, which is nearly 50 times faster. Within a time frame
of 20ms, PGA can generate a tree with 23000 terminals and
10M triangles (Tree8,4). The speedup of GPU over CPU im-
plementations is higher in this testcase, as the tree provides a
large amount of parallelism. As the number of different rules
is low, and a maximum of ten kernel launches is required
by Kernel, Persist wins in performance by only 50%. How-
ever, by avoiding global memory access with local grouping
and exploiting operator-level parallelism, PGA shows perfor-
mance gains of another 150%. Starting from a single axiom,
operator-level parallelism has the biggest effect during eval-
uation of lower levels of the derivation tree. The reduced
number of global memory accesses makes up for the larger
part of the performance increase.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

CPU GPU
CGA shape Seq CPU PGA GPU SG Kernels Persist PGA speedup

Tree4,3 11.7 4.49 40 2.77 1.55 0.84
Tree8,4 53546.1 135.40 76.31 48.87 19.29

Residential 1090 77.8 8.36 n. a. 12.91 4.90 2.31 472
Cross-Towers 6070 2092.8 24.12 n. a. 32.89 11.86 6.97 871

Skyscrapers 807300 9825.6 515.77 n. a. 689.27 201.62 116.78 6913
City Overview 3495800 16573.0 996.33 n. a. 608.69 323.15 289.43 12078

Suburban 4651400 53605.3 13115.90 n. a. 16041.19 6689.11 4551.21 1022

Table 2: Generation times in ms for different methods and test scenes. CGA shape corresponds to the CGA shape implementation
found in CityEngine; the measurement setup is described in the text. Seq is a single-threaded CPU implementation of the PGA
rule set, which only performs automatic combining of parallel and non-parallel operators. CPU PGA is a highly optimized, parallel
implementation of PGA for the CPU. On the GPU side, we compare our full PGA implementation to GPU Shape Grammars
(GPU SG), a kernel-based implementation based on the PGA rule set (Kernels), and a persistent threads implementation with
our global rule grouping (Persist). PGA additionally uses local grouping and multiple threads per rule. The speedup measures
compare PGA to CGA shape.

Rule derivations that require geometric context-sensitivity
are more challenging to the GPU. The context-sensitive Res-
idential and Cross-Towers are generated in 2ms and 7ms
on the GPU, respectively. The CGA shape baseline imple-
mentation takes nearly 500 and 900 times as long. Even our
CPU PGA implementation is 130 and 250 times faster than
CGA shape, indicating that our strategies also help to vastly
improve performance on the CPU. Operator-level parallelism
and local rule grouping can increase performance by a factor
of 2.1 for Residential and 1.7 for Cross-Towers. We explain
this difference by the structure of their derivation trees. While
Residential has many different rules expanding more slowly,
the high number of floors and façade tiles of the Cross-Towers
provide a large number of shapes right at the beginning, leav-
ing less to gain from additional parallelism.

The Skyscrapers are a first test scene starting out with more
than one axiom, providing more parallelism already at the
beginning of grammar evaluation. Our optimized CPU im-
plementation CPU PGA is more than 1500 times faster than
CGA shape; PGA on the GPU is nearly 7 000 times faster. As
all skyscrapers are based on the same rules, there is sufficient
parallelism available throughout the entire derivation. Still,
operator-level parallelism can increase performance by nearly
100%. We account that to more efficient memory access pat-
terns and reduced divergence. The City Overview testcase
consists of simple shapes only, which are created by a small
number of rules. Thus, the performance increase of Persist
and PGA in comparison to a kernel-based implementation
is not as high as in Skyscrapers. However, in comparison to
CGA shape, we achieve a speedup of up to four orders of
magnitude. The most terminal and geometry heavy testcase
is Suburban. Performance in this setup is mainly limited by
memory access and thus, the speedups achieved with PGA
are lower. Still, PGA is three times faster than CPU PGA and
1000 times faster than CGA shape.

(a) Tree4,3 (b) Tree8,4

(c) Residential (d) Suburban

Figure 6: The tree examples use the same rule set. The small
tree consists of 283 terminals, while the full tree has 23000.
The Residential building requires many different rules, lead-
ing to 2400 terminals. The Suburban scene contains 4000
full-detail residential buildings of varying size, generating
170 million triangles.

5. Conclusion

We have presented the first parallel shape grammar for the
GPU which does not sacrifice expressive power of the gram-
mar for the sake of accommodating rigid GPU execution mod-
els. By distributing the evaluation of a single rule to more than
a single thread, we take advantage of the SIMD architecture
of the GPU and keep up GPU utilization in situations low on
parallelism. By explicitly modeling independence rather than
dependence through the concept of evaluation phases, we
provide geometric context-sensitivity while still being able to

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

M. Steinberger, M. Kenzel, B. Kainz, J. Müller, P. Wonka, and D. Schmalstieg / Parallel Generation of Architecture on the GPU

extract parallelism from the derivation tree. PGA is the first
context-sensitive parallel shape grammar for architecture that
can be executed on the GPU. Our GPU implementation is
significantly faster than its CPU counterpart, deriving shape
grammars up to 10 000 times faster than current standard
approaches on the CPU and 50 times faster than the state
of the art in GPU shape grammars. Using our parallel shape
grammar, the authoring and editing process of procedurally
generated architecture can be enriched with instant feedback.

Given these benefits, we see PGA as a significant step
forward in making procedural content generation more attrac-
tive for the video game industry and related domains. Our
grammar is compatible with CGA shape, thus, existing rule
sets can be ported to PGA with little effort. While we now
can completely generate a detailed city in less than a second,
there is still more we can do to bring procedurally generated
content to life on screen. In our follow up work, we show how
we can boost PGA by taking into account visibility, levels
of detail, and frame-to-frame coherence, empowering us to
derive detailed cities with more than 50 000 buildings on the
fly during real-time rendering [SKK∗14].

Acknowledgments This research was funded by the Aus-
trian Science Fund (FWF): P23329.

References

[AL09] AILA T., LAINE S.: Understanding the Efficiency of Ray
Traversal on GPUs. In Proc. High Performance Graphics (2009),
ACM, pp. 145–149. 5

[BŠMM11] BENEŠ B., ŠTAVA O., MĚCH R., MILLER G.: Guided
Procedural Modeling. Comp. Graph. Forum 30, 2 (2011), 325–
334. 2

[Hav05] HAVEMANN S.: Generative Mesh Modeling. PhD thesis,
TU Braunschweig, 2005. 2

[HWA∗10] HAEGLER S., WONKA P., ARISONA S. M., GOOL L.
J. V., MÜLLER P.: Grammar-based Encoding of Facades. Comp.
Graph. Forum 29, 4 (2010), 1479–1487. 3

[KBK13] KRECKLAU L., BORN J., KOBBELT L.: View-
Dependent Realtime Rendering of Procedural Facades with High
Geometric Detail . Comp. Graph. Forum 32, 2pt1 (2013). 3

[KK11] KRECKLAU L., KOBBELT L.: Procedural Modeling of
Interconnected Structures. Comp. Graph. Forum 30 (2011). 2

[KPK11] KRECKLAU L., PAVIC D., KOBBELT L.: Generalized
Use of Non-Terminal Symbols for Procedural Modeling. Comp.
Graph. Forum 29 (2011), 2291–2303. 2

[LBZ∗11] LI Y., BAO F., ZHANG E., KOBAYASHI Y., WONKA
P.: Geometry Synthesis on Surfaces Using Field-Guided Shape
Grammars. IEEE Trans. Visualization and Computer Graphics
17, 2 (2011), 231–243. 2

[LCOZ∗11] LIN J., COHEN-OR D., ZHANG H., LIANG C.,
SHARF A., DEUSSEN O., CHEN B.: Structure-preserving re-
targeting of irregular 3D architecture. ACM Trans. Graph. 30, 6
(2011), A183. 2

[LH04] LACZ P., HART J.: Procedural Geometry Synthesis on the
GPU. In Workshop on General Purpose Computing on Graphics
Processors (2004), pp. 23–23. 3, 5

[LHL10] LEFEBVRE S., HORNUS S., LASRAM A.: By-example
synthesis of architectural textures. ACM Trans. Graph. 29 (2010),
A84. 2

[LWW10] LIPP M., WONKA P., WIMMER M.: Parallel Genera-
tion of Multiple L-systems. Computers & Graphics 34, 5 (2010),
585–593. 3, 5

[Mag09] MAGDICS M.: Real-time Generation of L-system Scene
Models for Rendering and Interaction. In Spring Conf. on Com-
puter Graphics (2009), Comenius Univ., pp. 77–84. 3

[MBG∗12] MARVIE J.-E., BURON C., GAUTRON P., HIRTZLIN
P., SOURIMANT G.: GPU Shape Grammars. Comp. Graph.
Forum 31, 7-1 (2012), 2087–2095. 3, 8

[MM11] MERRELL P., MANOCHA D.: Model Synthesis: A Gen-
eral Procedural Modeling Algorithm. IEEE Trans. Visualization
and Computer Graphics 17 (2011), 715–728. 2

[MPHG11] MARVIE J.-E., PASCAL G., HIRTZLIN P., GAEL S.:
Render-Time Procedural Per-Pixel Geometry Generation. In
Graphics Interface (2011), pp. 167–174. 3

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural Modeling of Buildings. ACM Trans.
Graph. 25, 3 (2006), 614–623. 2, 3, 7

[PJM94] PRUSINKIEWICZ P., JAMES M., MĚCH R.: Synthetic
Topiary. In Proc. SIGGRAPH 94 (1994), pp. 351–358. 2

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorithmic
Beauty of Plants. Springer-Verlag, 1990. 2

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. In Proc. SIGGRAPH 2001 (2001), pp. 301–308. 2

[PMKL01] PRUSINKIEWICZ P., MÜNDERMANN L., KAR-
WOWSKI R., LANE B.: The Use of Positional Information in the
Modeling of Plants. In Proc. SIGGRAPH 2001 (2001), pp. 289–
300. 2

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS J. D.:
Scan primitives for GPU computing. In Proc. Symposium on
Graphics Hardware (2007), pp. 97–106. 5

[Sip06] SIPSER M.: Introduction to the Theory of Computation,
vol. 2. Thomson Course Technology Boston, 2006. 4

[SKK∗12] STEINBERGER M., KAINZ B., KERBL B., HAUSWIES-
NER S., KENZEL M., SCHMALSTIEG D.: Softshell: Dynamic
Scheduling on GPUs. ACM Trans. Graph. 31 (2012). 5

[SKK∗14] STEINBERGER M., KENZEL M., KAINZ B., WONKA
P., SCHMALSTIEG D.: On-the-fly generation and rendering of
infinite cities on the GPU. Comp. Graph. Forum 33 (2014). 10

[SKKS12] STEINBERGER M., KENZEL M., KAINZ B., SCHMAL-
STIEG D.: ScatterAlloc: Massively parallel dynamic memory
allocation for the GPU. In Innovative Parallel Computing (2012).
5

[Sti75] STINY G.: Pictorial and Formal Aspects of Shape and
Shape Grammars. Birkhauser Verlag, 1975. 2

[Sti82] STINY G.: Spatial Relations and Grammars. Environment
and Planning B 9 (1982), 313–314. 2

[WWSR03] WONKA P., WIMMER M., SILLION F. X., RIB-
ARSKY W.: Instant Architecture. ACM Trans. Graph. 22 (2003),
669–677. 2

[YHL∗07] YANG T., HUANG Z., LIN X., CHEN J., NI J.: A
Parallel Algorithm for Binary-Tree-Based String Rewriting in L-
system. In Proc. International Multi-symposiums of Computer
and Computational Sciences (2007), pp. 245–252. 3

[ZGHG11] ZHOU K., GONG M., HUANG X., GUO B.: Data-
parallel octrees for surface reconstruction. IEEE Trans. Visualiza-
tion and Computer Graphics 17 (2011), 669–681. 5

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

