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Figure 1: In our framework, the user can edit irregular vertices (with more or fewer than four neighbors) and irregular faces
(non-quads) of a quad-dominant mesh. Each type of irregularity has different advantages and disadvantages in design and con-
struction. Irregular vertices are necessary to maintain sharp features (corners and edges), but they create higher angle deviations
in mesh lines in smooth regions (left). Irregular faces lead to smoother mesh lines, but they cannot maintain sharp features
(right). The ability to model with a mixture of irregular vertices and faces gives more flexibility to the user, e.g. creating a
design with sharp features and smooth mesh lines (middle). We render each model in a style that highlights the sharp features.

Abstract

We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the
mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four
neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits
are possible and impossible, and describe how to implement an editing framework that realizes all possible editing
operations. In the results, we show example edits and illustrate the advantages and disadvantages of different
strategies for quad-dominant mesh design.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling/Geometric algorithms, languages, and systems—

1. Introduction

We propose an editing framework for the connectivity of ar-
bitrary two-manifold quad-dominant (QD) meshes with the

† peng.chi-han@asu.edu
‡ pwonka@gmail.com

ability to explicitly control the location, type, and number of
the irregular vertices (with more or fewer than four neigh-
bors) and faces (non-quads) in the mesh. In the primal do-
main, the large number of combinations of different irreg-
ular elements makes connectivity analysis difficult. There-
fore, we propose to edit QD meshes in an alternative pure
quad mesh domain building on existing work in quad mesh
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connectivity editing [TPC∗10, BLK11, PZKW11]. We are
able to answer the following fundamental questions about
the connectivity of QD meshes: what is the discrete Gauss-
Bonnet theorem for QD meshes? In particular, can irregular
vertices and faces be counted in the same way? What edit-
ing operations are fundamentally possible and impossible for
QD meshes? Can we create, delete, or move a single irreg-
ular element? How can we interchange irregular faces and
vertices? What can we do with T-junctions? In what circum-
stances is being quad-dominant, i.e. having non-quad faces,
preferable to being pure quad for remeshing a surface? We
then identify the simplest possible editing operations for QD
meshes in the sense that they affect the smallest possible re-
gions and involve the fewest irregular elements, which are
moving irregular elements in pairs.

To evidence that the ability to edit irregular elements in
a QD mesh is valuable, we compare different ways to QD
remesh a given surface, e.g. having only irregular vertices,
only irregular faces, or both, in terms of geometric prop-
erties. We demonstrate that the users can use our editing
framework to alter the connectivity of existing QD meshes
with ease.

1.1. Related Work

Quad-Dominant Remeshing: One source of QD meshes
is quad-dominant remeshing. There is a large variety of
algorithms that are often driven by curvature [ACSD∗03,
MK04, RLL∗06]. Other approaches work by vertex align-
ment [TC06, LKH08], space partitioning (octree [Mar09]
or quadtree [FM98]), or use segmentation as an impor-
tant ingredient [MK06]. The generated meshes can also
satisfy additional requirements, e.g. remeshing with planar
quads [ZSW10]. Typically irregular faces are considered ab-
normal and are avoided whenever possible. One exception
is [PP11] in which the authors argue that irregular faces can
help preserve the flow of mesh elements. Several field-based
quad meshing methods [KNP07, BZK09] include tools to
edit the field singularities that can indirectly control the ir-
regular elements in the resulting meshes. However, control-
ling singularities and irregular elements have different de-
grees of freedom, see [PZ07, PZKW11].

Subdivision and Spline Surfaces: Our insights stem from
analyzing quad meshes in a subdivision domain. Catmull-
Clark (CC) subdivision [CC78] can convert any mesh to
a finer quad mesh at the cost of increasing the number
of faces by a factor of about four. Inverse CC subdivi-
sion schemes have been studied [Tau02, SS11], but only
a subset of quad meshes is directly inversely subdivisible.
Alternatively, a Catmull-Clark square root (

√
CC) subdivi-

sion [Kob96], which is called a quad-graph by Bobenko et
al. [BHS06], also produces quad meshes and is found to be
inversely subdivisible if the mesh has no boundaries and a 2-
coloring is given [Tau02]. We build on this concept and fur-
ther state that inverse subdivisibility applies to quad meshes

with a sphere-like or disk-like topology (Proposition 3.1).
Related work about subdivision surfaces and the underly-
ing mesh connectivity include an adaptive CC scheme pro-
posed by Panozzo et al. [PP11], surface fitting from arbitrary
topologies [SL03, MNP08], and T-splines [SCF∗04].

Quad Mesh Connectivity Transformations: One funda-
mental operation to alter the connectivity of quad meshes is
region-based requadrangulation, e.g. [NSY09]. These types
of requandragulations are not suitable for editing because
they provide only one out of many solutions. In [TPC∗10]
a set of local operations for editing pure quad meshes is
presented in a systematic way. An interesting idea for mesh
editing is to use operations on quad strips [DSSC08]. They
have been extended to form GP operators [BLK11] which
can operate on non-aligned quad strips. An alternative edit-
ing framework with the ability to explicitly control the irreg-
ular vertices is presented by Peng et al. [PZKW11]. We build
on these recent papers in our work.

1.2. Contributions

The main contribution of this paper is to bridge the compli-
cated task of QD mesh connectivity editing to the existing
work in pure quad mesh editing via a suitable alternative
domain. Not only can fundamental questions be answered
in a simple and consistent way, but the implementation of
the editing operations is also greatly simplified. Second, we
are the first (to our knowledge) to establish theories for T-
junction editing. We state that a T-junction can be moved in
exactly four directions and provide the exact conditions for
a pair of T-junctions to be cancellable. We further propose
operations that enable users to switch the types of irregular
elements (vertices or faces) in a theoretically minimal way
(in pairs). To our knowledge, no comparable operation exists
in previous work.

Overall, we believe that our findings will have high prac-
tical value to the 3D mesh modeling communities, e.g. game
and architectural design. In many cases the shape is modeled
first and then a low-resolution QD mesh is laid out manu-
ally. However, the task becomes non-trivial when irregular
elements are involved. This paper endeavors to establish a
theoretical foundation for such modeling tasks.

2. Overview

We organize the paper as follows. In Section 3.1, we review
the
√

CC domain of QD meshes and argue why it is a suit-
able platform for analyzing the connectivity of QD meshes.
In Section 3.2, we formulate the generalized version of the
discrete Gauss-Bonnet theorem for QD meshes, which can
be used to predict the number of irregular elements in an ar-
bitrary QD mesh given the boundaries and the Euler charac-
teristic. In Section 3.3, we analyze what kinds of editing op-
erations are impossible and possible for QD meshes. Backed
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by the aforementioned theoretical analysis, in Section 4, we
propose a connectivity editing framework for QD meshes. In
Section 5, we compare various ways of QD mesh design for
a given surface in terms of geometric properties, and show
examples of QD mesh connectivity edits.

2.1. Basic Definitions

We limit our discussion to two-manifold QD meshes. The
valence of a vertex v, which we denote as l(v), is the number
of edges in the mesh incident to v. A vertex with valence n
is denoted as vn, e.g. a v3 and a v5. A vertex with valence
4 is considered as regular, otherwise it is irregular. The de-
gree of a face f , which we denote as d( f ), is f ’s number of
vertices. A face with degree d is denoted as f d, e.g. a tri-
angle ( f 3), a quad ( f 4), and a pentagon ( f 5). A face with
degree four is considered as regular, otherwise it is irregu-
lar. We introduce an index function to measure irregularity.
We define the index as 4−n for a vn and 4−d for an f d.

To simplify our discussion, we consider irregular vertices
with valences lower than 3 or higher than 5 as multiple v3
or v5 collocated together and therefore count them as multi-
ple irregular vertices. Similarly, irregular faces with degree
lower than 3 or higher than 5 are considered as multiple f 3
or f 5 collocated together and counted as multiple irregular
faces. We also use the following definitions:

Definition 2.1 A path γ on a QD mesh M consists of a se-
quence of edges ei = (vi,vi+1) for 0≤ i < N, where N is the
length of γ. A path is a loop if v0 = vN . We assume that γ is
non-degenerate, i.e. there is no vertex in γ that is incident to
at least three edges in γ.

Definition 2.2 A region R on a QD mesh M is a connected
subset of the faces in M (Figure 2b). We assume that R has a
single boundary unless otherwise specified. The boundary of
R, denoted by ∂R, is a loop. The index of a boundary vertex
v is 1− e(v) where e(v) denotes the internal valence of v,
i.e. the number of v’s adjacent edges connecting to internal
vertices. Intuitively, we denote a boundary vertex as a non-
corner if its index is zero, a convex corner if its index is 1,
and a concave corner if its index is negative. A region is
convex if it has no concave corners, otherwise it is concave.
A side of a region R is a sequence of edges of ∂R between
two corners.

In our context, a region’s boundary configuration is often
specified as a sequence of vertices together with their inter-
nal valences. Note that the indices of irregular vertices, ir-
regular faces, and boundary vertices are related to the Gaus-
sian curvature (for irregular elements) and geodesic curva-
ture (for boundary vertices) of their suitably remeshed neigh-
borhoods.

3. Theoretical Analysis

We describe the major insights for connectivity editing of
QD meshes in the following.

3.1.
√

CC Domain

Analyzing connectivity editing for QD meshes in their pri-
mal domain would be too complicated because all possible
combinations of irregular faces and vertices need to be con-
sidered. For example, the triple combinations of v3, v5, f 3,
and f 5 amount to 20 possibilities, as compared to 4 in a quad
mesh with just v3 and v5. An alternative domain where both
irregular vertices and faces are mapped to elements of the
same type is thus desired.

A key insight of our work is the selection of a suitable do-
main for QD mesh connectivity editing. We prefer domains
where meshes are pure quad so that existing quad mesh edit-
ing work can be directly applied. Therefore, the dual, Doo-
Sabin [DS78], and

√
3-subdivision [Kob00] are infeasible.

One reasonable choice may be the CC domain in which sub-
divided meshes are pure quad and both irregular vertices and
faces in the primal domain are mapped to irregular vertices
of the same degree. However, only a subset of quad meshes
is inversely CC subdivisible, e.g. irregular vertices must have
graph distances of at least two, which means that it is pos-
sible to edit a CC subdivided mesh to make it no longer in-
versely subdivisible. This fact again makes analysis difficult.
It turns out that the

√
CC domain of a QD mesh [Kob96] is a

suitable platform for our analysis. We review key properties
of the

√
CC domain as follows.

A
√

CC subdivision can be understood as a half step of
achieving the connectivity of a full CC subdivision (Fig-
ure 2a). Every primal vertex and face is mapped to a

√
CC

vertex. The former is denoted as a p-vertex and the latter
is denoted as a d-vertex (corresponding to dual vertices of
the primal mesh). We position the p-vertices at the same
locations of their corresponding primal vertices and the d-
vertices at the centers of the corresponding primal faces for
visualization purposes. Every p-vertex is connected to the d-
vertices of its corresponding primal vertex’s adjacent faces
and every d-vertex is connected to the p-vertices of its cor-
responding primal face’s adjacent vertices. For meshes with
boundaries we add an imaginary adjacent boundary face to
each primal boundary edge. In this manner every primal
edge, non-boundary or boundary, would have two adjacent
faces and would be mapped to a

√
CC face. Any

√
CC do-

main mesh is thus pure quad since every
√

CC face has four
adjacent vertices (two p-vertices and two d-vertices). Fur-
thermore, the

√
CC vertices have the same degree as their

corresponding primal vertices or faces. It is straightforward
to see that every QD mesh has exactly one corresponding√

CC mesh. Another advantage of a
√

CC subdivision is that
it increases the number of faces by a factor of about two
(converting every primal edge to a

√
CC face), as compared

with a factor of about four by a CC subdivision.

Inverse
√

CC Subdivision: As noted by Taubin [Tau02],
an inverse

√
CC subdivision to recover the primal mesh

can be done by inserting a diagonal connecting the two p-
vertices for each

√
CC face (and recover the dual by insert-
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(a) (b)

Figure 2: (a) A QD mesh with a single boundary loop in its (1) primal domain, (2)
√

CC domain, (3) dual domain, and (4) CC
domain. v3 and f 3 are drawn in blue. v5 and f 5 are drawn in yellow. Note that the mapping from (1) to (2) and from (2) to (4)
can be done by a

√
CC subdivision, the mapping from (2) to (1) can be done by an inverse

√
CC subdivision, and the mapping

from (2) to (3) can be done by an alternative inverse
√

CC subdivision with the p-vertices and d-vertices switched (dangling
vertices are omitted). Note that the T-junction in the bottom left corner is mapped to an adjacent v3-v5 pair in the

√
CC domain.

(b) A region in a QD mesh. Convex corners are shown in blue and concave corners are shown in red. We denote the indices of
the boundary vertices and irregular elements. Note that the discrete Gauss-Bonnet theorem (Equation 1) is satisfied.

ing diagonals connecting two d-vertices) for quad meshes
that are 2-colored (as p-vertices and d-vertices). Note that
for a mesh with boundaries it is possible that the recovered
dual mesh has valence 1, i.e. dangling, vertices correspond-
ing to the valence-2 boundary

√
CC vertices. The following

proposition describes the feasibility of inverse
√

CC subdi-
vision of quad meshes:

Proposition 3.1 A region in a quad mesh with a sphere-like
or disk-like topology (with at most one boundary and no han-
dles) can be inversely

√
CC subdivided in exactly two ways.

Proof It is known [Har69] that a graph can be 2-colored, i.e.
is bipartite, if and only if it has no odd graph cycles. Any
graph cycle in such a region is the boundary of a quadran-
gulation with a disk-like topology thus has an even length (a
property of pure quad meshes). It is straightforward to see
that the 2-coloring for a 2-colorable graph is unique (up to
switching of all colors). By considering the vertices with the
first color as either p-vertices or d-vertices we have two ways
to do inverse

√
CC subdivision.

Conversely, a region with more than one boundary or with
handles may be inversely

√
CC subdivisible or not. Proposi-

tion 3.1 implies that we can freely edit a
√

CC mesh and
the edited mesh is still inversely

√
CC subdivisible as long

as the changes are contained in a disk-like region. Further-
more, the retrieved primal domain meshes are consistent if
we fix the coloring of a fixed vertex in the

√
CC domain by

the following proposition:

Proposition 3.2 An inverse
√

CC subdivision applied to a
quad mesh region with at most one boundary converts two√

CC vertices to be of the same type (primal vertex or face)
if and only if their graph distance is even.

The proof is straightforward by inspecting the 2-coloring
of a shortest path between the two

√
CC vertices and is omit-

ted here.

3.2. Discrete Gauss-Bonnet Theorem for
Quad-Dominant Meshes

We formulate the discrete Gauss-Bonnet theorem for an ar-
bitrary QD mesh M as follows:

∑
v∈∂M

(1−e(v))+ ∑
v∈intM

(4− l(v))+ ∑
f∈M

(4−d( f ))= 4χ(M),

(1)

where χ(r) denotes the Euler characteristic of M. Recall that
l(v) denotes vertex v’s valence, e(v) denotes the number of
v’s adjacent edges connecting to internal vertices, and d( f )
denotes face f ’s number of vertices.

Equation 1 implies that for an arbitrary QD mesh (includ-
ing a region) the sum of the indices of the boundary vertices
plus the sum of the indices of the irregular vertices and faces
equals a constant solely determined by its Euler character-
istic. It is useful for determining the minimal number of ir-
regular elements in a QD mesh with known boundaries and
Euler characteristic and vice versa. For example, any con-
nectivity edits would not change the sum of the indices of the
irregular elements within a QD region with a fixed boundary.

Equation 1 can be proved in many ways, e.g. by analyz-
ing the CC domain of M or summing the angle defects of the
irregular elements and boundary vertices. Here we provide a
proof that demonstrates that Equation 1 is a pure combina-
torial fact directly derived from the Euler characteristic.

Proof The Euler characteristic of M states that V −E +F =
χ(M), where V , E, and F respectively denote the number
of vertices, edges, and faces in M. V equals Vb +Vi where
Vb denotes the number of boundary vertices and Vi denotes
the number of internal vertices. E equals Ebb + Ebi + Eii
where Ebb denotes the number of boundary edges that are
incident to two boundary vertices, Ebi denotes the number
of boundary-internal edges that are incident to one bound-

c© 2013 The Author(s)
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ary vertex and one internal vertex, and Eii denotes the num-
ber of internal edges that are incident to two internal ver-
tices. The Euler characteristic of M can then be rewritten as
4Vb + 4Vi− 4Ebb− 4Ebi− 4Eii + 4F = 4χM, which can be
reformulated as:

(Vb−Ebi)+

(3Vb−3Ebb)+

(4Vi−2Eii−Ebi)+

(4F−2Eii−2Ebi−Ebb) = 4χM.

The first part (Vb−Ebi) equals ∑v∈∂R(1−e(v)). The second
part (3Vb−3Ebb) equals zero since the number of boundary
vertices and the number of boundary edges are the same.
The third part (4Vi − 2Eii − Ebi) equals ∑v∈intM(4− l(v))
since, by summing the valences of all internal vertices, we
count each internal edge twice and each boundary-internal
edge once. The fourth part (4F − 2Eii− 2Ebi−Ebb) equals
∑ f∈M(4−d( f )) since by summing the degrees of all faces,
we count each internal and boundary-internal edge twice and
each boundary edge once.

3.3. Fundamental Editing Operations

In this section, we describe what editing operations are fun-
damentally impossible and possible for irregular elements in
a QD mesh. In general, our findings stem from analyzing the√

CC domain of QD meshes to which theorems about quad
mesh editing can be applied.

To begin with, we note that by Proposition 3.2, moving a
single irregular element without type-changing implies that
the corresponding

√
CC irregular vertex’s graph distance to

another vertex with fixed labeling is changed by an even
number, while type-changing an irregular element implies
that the graph distance is changed by an odd number.

Proposition 3.3 It is impossible to create, delete, move, or
type-change a single irregular element in an otherwise regu-
lar QD region R.

Proof Being able to do so implies that we can produce an-
other QD region R′ with the same boundary but with a single
created, deleted, moved, or type-changed irregular element.
R and R′’s

√
CC domains are two quad meshes with the same

boundary but with a created, deleted, or moved single irregu-
lar vertex. This contradicts Theorem 7.1 of [PZKW11] (with
an imaginary convex quad mesh region extended from R′’s√

CC domain mesh).

Because editing a single irregular element is impossible,
we are interested in editing irregular elements in pairs.

Proposition 3.4 Two irregular elements can be moved to-
gether in an otherwise regular QD region. Irregular elements
of the opposite indices, e.g. an f 3-v5 pair, translate in the
same direction. Irregular elements of the same index, e.g. an

(a)

(b)

Figure 4: (a) A v3-v5 pair can be moved in the left (green
arrows), right (red arrows), up (blue arrows), and down (pur-
ple arrows) direction. (b) A v3- f 3 pair can be moved closer
(green arrows), farther apart (red arrows), rotating clock-
wise (blue arrows), and rotating counter-clockwise (purple
arrows). Note that a single step would switch their types,
thus a type-preserving movement can be realized by two
consecutive steps. The gray faces are marked for ease of in-
spection.

f 5- f 5 pair, rotate and scale around a fixed point in the mid-
dle between the two irregular elements. Furthermore, the ir-
regular elements change types at each step. See Figure 4a
and 4b for illustrations.

Proof A sketch of the proof is as follows. Two irregular ele-
ments can move in the same way as two irregular vertices in
the corresponding

√
CC mesh as described in Theorem 7.2,

7.3, and 7.4 of [PZKW11]. Regarding the type-changing be-
havior, a single movement in the

√
CC mesh would change

both the irregular vertices’ graph distances to another vertex
with a fixed labeling by one, thus changing the types of their
corresponding primal elements.

Proposition 3.5 An irregular element pair can be merged

c© 2013 The Author(s)
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Figure 3: The five basic editing operations for QD meshes and their corresponding operations in the
√

CC domain. Both a vertex
split and an edge insertion add a primal edge. They are equivalent to an edge split of a

√
CC edge pair with a p-vertex (blue) and

a d-vertex (red) in between, respectively. Both an edge collapse and an edge deletion delete a primal edge. They are equivalent
to a quad collapse of a d-vertices pair and a p-vertices pair, respectively. An edge shift shifts a primal edge toward one of its
adjacent faces. It is equivalent to an edge flip in the

√
CC domain. The edited meshes are not smoothed.

into a single irregular element with a higher absolute index,
e.g. two v3 can be merged into a single v2 and two f 5 can
be merged into a single v6, if and only if they have the same
type and same index.

Proof An irregular element pair of the opposite indices
translates in the same direction thus cannot be merged. For
a pair with the same index and different types, e.g. a v3- f 3
pair, the graph distance between their corresponding

√
CC

irregular vertices is odd by Proposition 3.2, thus cannot be
merged into a single irregular vertex by Theorem 7.2 and 7.3
of [PZKW11]. Otherwise it can be merged.

3.4. T-Junction Editing

T-junctions, i.e. adjacent v3- f 5 pairs, are often of special in-
terest in QD remeshing. We describe how a single T-junction
can be moved and how a pair of T-junctions can be canceled
as follows.

Proposition 3.6 A T-junction can be moved in exactly four
directions denoted as up, down, left, and right.

Proof A T-junction can be moved exactly in the same way
as the corresponding adjacent v3-v5 pair (the v3 is a p-
vertex and the v5 is a d-vertex) in the

√
CC domain. The left

and right directions are both realized by applying an edge
split followed by a quad collapse. The up direction is re-
alized by two consecutive quad collapses. The down direc-
tion is realized by two consecutive edge splits. There are no
other combinations. Note that applying a single step would
switch the T-junction to be an f 3-v5 pair. See Figure 5 for
an illustration.

Proposition 3.7 A pair of T-junctions in an otherwise regular
convex region R can be completely canceled if and only if R
is a parallelogram, i.e. a 4-sided region with both pairs of
opposite sides of the same graph length. Otherwise it can

be reduced to be a single irregular element pair of opposite
indices and of the same type, e.g. a v3-v5 or an f 3- f 5 pair.

Proof We first note that R must have 4 sides since it is con-
vex and has a sum of indices of irregular elements of 0. If
R is a parallelogram, it is straightforward to see that it can
be remeshed as a regular grid, thus canceling the pair of T-
junctions. Otherwise we perform a triple cancellation of ir-
regular vertices in the

√
CC domain to cancel one v3-v5 pair

against the v3 or v5 of the second pair. In either case the re-
sult is a single v3-v5 pair, of which the graph distance is two,
thus having the same type.

Based on Proposition 3.7, we can identify four possi-
ble configurations (in terms of relative orientations) of a T-
junction pair. These configurations including their cancella-
tions are shown in Figure 6.

4. Editing Framework

To make the user interface intuitive, we design our editing
framework such that edits can be done directly in the pri-
mal domain. However (as stated in Section 3.1), implement-
ing editing operations in a QD mesh directly would be very
complicated since the operations need to handle the large
number of combinations of both kinds of irregular elements.
Our proposed solution is as follows. First, user inputs in the
primal domain are mapped to the

√
CC domain. Actual ed-

its are then carried out in the
√

CC domain by building on
existing work in quad mesh connectivity editing. Finally, the
edited QD mesh is obtained by an inverse

√
CC subdivision.

In our prototype we also allow editing in the
√

CC domain to
enable easier analysis of the underlying concepts. The user
can edit using the operations described in the following.

Basic Operations: For analysis purposes and full flexibil-
ity, we identify five basic operations for QD meshes that

c© 2013 The Author(s)
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Figure 5: The four possible movement directions for a T-
junction (red arrows). Each direction is realized by apply-
ing two consecutive atomic basic operations (quad collapses,
blue arrows, and edge splits, green arrows) to the corre-
sponding v3-v5 pair in the

√
CC domain. The gray faces are

marked for ease of inspection.

operate on a per-edge level (Figure 3): a vertex split and
an edge insertion both add a single edge, an edge collapse
and an edge deletion both delete a single edge, and an edge
shift shifts an edge toward one of its adjacent faces. They all
can be realized by applying three basic operations for quad
meshes (edge split, quad collapse, and edge flip) in the

√
CC

domain, thus eliminating the need for implementing each of
them explicitly. Edge splits and quad collapses can each map
to two different operations in the primal domain. The differ-
ence arises because the vertices in the

√
CC domain have two

different labels (p-vertices or d-vertices), resulting in two
different outcomes of inverse

√
CC subdivisions. We point

out that an edge collapse and an edge shift is respectively
equivalent to a collapse and a shift step of the GP operators
proposed by Bommes et al. [BLK11].

Pair-wise Movement: The user can move two irregular el-
ements of arbitrary indices and types, e.g. a v3-v3, a v3- f 5,
and an f 5- f 5, in four possible directions. Each of the four
possible movement directions is visualized by a pair of ar-
rows with the same color in both the primal and

√
CC do-

Figure 6: How a T-junction pair can be canceled in the
four possible relative orientations (up to rotational symme-
try) within an otherwise regular (4-sided) region R. Two T-
junctions can be completely canceled if and only if they are
facing the opposite sides of R (1). Otherwise they are either
facing the same side (2) or two adjacent sides (3,4) and can
be reduced to an irregular element pair of the same type.

mains (Figure 7). The user can select one moving direction
for one irregular element and the movement of the other ir-
regular element is constrained.

With this pair-wise movement operation, it is possible to
do triple cancellations (e.g. an f 3- f 5-v5 to a single v5) by se-
lecting a pair of irregular elements and colliding one element
with a third element of an opposite index (an illustration in
shown in the additional materials). Four irregular elements
can be canceled at once when both elements of an irregu-
lar element pair collide with other elements of the opposite
indices simultaneously. Cancellation can be done automati-
cally, by computing the best movement path using a shortest
path algorithm. The shortest path algorithm should include
topological as well as geometric cost terms (e.g. curvature)
and is therefore only a heuristic. Therefore, the manual se-
lection of the movement path needs to remain as an impor-
tant option.

Type-Change: As mentioned in Section 3.3, an odd number
of pair-wise movements in the

√
CC domain would not only

move but also change the types of both irregular elements,
e.g. a v3- f 5 to an f 3-v5 and a v3-v3 to an f 3- f 3. This is
useful for users to change the types of irregular elements
without introducing additional ones.

Single Conversion: The user can also change the type of
a single irregular element at the cost of introducing an ad-
jacent irregular element pair of opposite indices, e.g. an f 5
to a v5 plus an f 3-v5 pair or an f 3 to a v3 plus an v3- f 5
pair (Figure 8). Alternatively, it can be viewed as changing
the sign of a single irregular element’s index and introduc-
ing an adjacent irregular element pair of the same index. It is
realized by applying a v3/v5 movement and v3-v5 pair gen-
eration operation in the

√
CC domain.

c© 2013 The Author(s)
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Figure 7: Visualization of the four possible movement di-
rections of a pair of irregular elements (left: a v3- f 5 pair,
middle: a v5-v5 pair, right: an f 3- f 3 pair) in both the primal
(top) and

√
CC (bottom) domains.

Figure 8: Left: an f 5 is converted to an f 3-v5-v5 triple. It
can be viewed as type-changing the f 5 to a v5 or changing
the sign of its index (an f 5 to an f 3). An adjacent irregular
element pair is introduced. Right: a similar operation where
an f 3 is converted to a v3-v3- f 5 triple. The corresponding
v3/v5 movement and v3-v5 pair generation operations in the√

CC domain are shown below.

T-junction Movement and Cancellation: As described in
Section 3.4, the user can move a T-junction in the up, down,
left and right directions. With this T-junction movement op-
eration, it is possible to completely cancel or reduce a pair
of T-junctions to be a single irregular element pair by col-
liding their adjacent v3-v5 pairs in the

√
CC domain, de-

pending on the conditions described in Proposition 3.7. Like
the triple cancellation operation, the movement path can be
found automatically with topological and geometric heuris-
tics or manually by the user.

Smoothing: The user can smooth the mesh using Laplacian
smoothing with back projection similar to the methods used
in [TPC∗10]. T-junctions can be treated as a special case to
ensure that the two edge segments are collinear as described
in [LKH08]. The visualizations of the edited meshes shown
in the paper are generated in this fashion unless otherwise
specified.

5. Applications and Results

We implemented our mesh editing framework in C++ using
CGAL [cga] such that all edits could be performed interac-
tively.

Comparing Various QD Mesh Design Strategies: We
evaluated different QD mesh editing strategies in the con-
text of mesh design and mesh optimization. In our first ex-
ample, we modeled three versions of a wing of the Yas-
Island architectural model and optimized the three meshes
for planarity and angle deviation (approximated by the fair-
ness term) [LPW∗06]. In Figure 9, we visualize the opti-
mization results. Our analysis shows that pure quad meshes
are best for ensuring planarity, although meshes with mixed
types of faces can achieve better angle deviation (and better
smoothness of mesh lines).

In Figure 1, we show three versions of a tower model.
The first version is a pure quad mesh and the third version
is the dual of the first mesh and has therefore no irregular
vertices. The second version has both irregular vertices and
faces. This example was chosen to illustrate that the flex-
ibility of quad-dominant meshes generally allows the de-
signer to achieve smoother mesh lines using irregular faces
in smooth or flat regions while preserving sharp features us-
ing irregular vertices.

Mesh Connectivity Improvement: In Figure 10, we illus-
trate the T-junction editing capabilities of our framework.
T-junctions can be merged or moved to alter a mesh design.

Finally, in Figure 11, we show connectivity editing of a
highly irregular mesh model (generated by the remeshing
algorithm of Lai et al. [LKH08]). Even though there are
highly irregular regions (including a 9-sided polygon), our
editing framework can easily facilitate local mesh improve-
ment. While we do not aim to replace automatic remeshing
algorithms, local mesh editing has many unique advantages
and provides a nice complement.

6. Conclusion and Future Work

In this paper, we present a connectivity editing framework
for QD meshes that realizes the fundamental editing oper-
ations to control the location, type, and number of irregular
elements. While the framework is useful for the manual con-
trol of mesh connectivity, for meshes with an excessive num-
ber of irregular elements, it may become impractical. We
thus expect that a global framework that automates the local
edits, possibly driven by topological and geometric heuris-
tics (e.g. curvature), can be useful.

Besides the given examples, we envision other uses for
QD mesh editing. In certain situations, regular vertices are
very important and it is beneficial to convert irregular ver-
tices to irregular faces. For example, it may be preferable
to have regular vertices at the expenses of irregular faces,

c© 2013 The Author(s)
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Figure 9: Geometric optimizations of three QD mesh designs of an architectural panel structure: a pure quad mesh with four
v5, a QD mesh with four pentagons, and a QD mesh with four triangles plus eight adjacent v5. Left three: the three meshes
are optimized toward equiangular faces, which is approximated by the fairness term [LPW∗06]. Right three: the three meshes
are optimized toward planar faces. Their mean and max errors are listed and visualized (explained in Figure 10). In general,
by allowing a mixture of face types the meshes can be optimized with better angles. On the contrary, pure quad meshes work
slightly better with planarity optimizations.

Figure 10: Finding alternative QD meshes for a semi-regular quadrangulation with T-junctions of an architectural structure. (1)
We focus on a part of the whole structure that has an excessive amount of T-junctions in order to align with the underlying
curvature. We first explore alternative T-junction patterns by moving them vertically (1a) and horizontally (1b). (2) to (4a)
We progressively merge nearby T-junctions until we are left with a pair of irregular elements with opposite indices (an f 3- f 5
pair), at the cost of being less aligned with the curvature. The user can choose a version that compromises mesh regularity and
curvature alignment. (4b) Alternatively, we change the f 3- f 5 pair to a v3-v5 pair. Interestingly, the QD mesh with irregular
faces (4a) can be smoothed to a greater degree than can the QD mesh with irregular vertices (4b), resulting in smoother mesh-
lines and less extreme angle deviations (on top we show the histograms and color visualizations of the angle deviations. Each
face is visualized by the averaged deviation from the mean value of corner angles).

like in conical meshes [LPW∗06] where the definition of
a conical vertex is applicable only to regular vertices (the
four adjacent faces need to be tangent to a common sphere).
However, irregular vertices can help to combine multiple
patches of conical meshes. We have spoken with multiple
applied mathematicians about possible advantages of quad-
dominant meshes for solving PDEs. We would like to pursue
related research questions in future work.
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Figure 11: Connectivity improvement of a QD remeshing from [LKH08] (1). (2a) to (2b) We improve a region with faces with
very large degrees (due to multiple incoming T-junctions) by regularizing the corresponding

√
CC domain (shown below). (3a)

to (3b) Another improved region. (4) The final improved mesh. We first remove excessive and nearby irregular elements. Next
we move the remaining irregular elements to regions with corresponding curvatures. For demonstration purposes, we further
change all irregular faces to be irregular vertices to make the mesh pure quad.
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