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Supplemental Material 1:
Urban Pattern: Layout Design by Hierarchical Domain Splitting

1 Introduction1

High-quality layouts of streets and land parcels in a subdivision2

share several features. Neighboring parcels should have roughly3

the same size and shape, and to accomodate development of build-4

ings and yards on these parcels, they should be roughly rectangular.5

Streets should curve smoothly and gently, and meet at roughly right6

angles. Our paper on street and parcel layout [Anonymous 2013]7

describes a hierarchical, multiscale approach to subdivision plan-8

ning that produces designs that satisfy these criteria: at a coarse9

scale, the subdivision’s area is recursively split into smaller region-10

s by placing major streets and thoroughfares along the streamlines11

of a cross field. At a fine scale, minor streets and individiual land12

parcels are laid out using a hierarchical template-matching algorith-13

m. This report complements our paper, which focused particularly14

on the template-based portion of our design framework, by describ-15

ing in more detail the algorithms we used for generating and select-16

ing the cross fields underpinning the coarse-scale, streamline-based17

portion of our framework.18

As will be discussed below in Section 2, one simple yet powerful19

approach to laying out streets on a region of land, while maintaining20

the desired properties of a good layout listed above, is to align the21

roads along the streamlines of a cross field that has low divergence.22

In this report, we present algorithms for generating three different23

families of such cross fields, each with pros and cons for urban24

planning:25

• D-fields based on aligning crosses to the gradient and level26

sets of the function measuring distance from the subdivision’s27

boundary; and28

• H-fields generated from the graphs of harmonic functions29

over the domain; and30

• B-fields whose iteriors are interpolated smoothly from pre-31

scribed boundary orientations.32

Sections 4.1, 4.2, and 4.3 discuss these three types of cross fields33

and their relative advantages.34

Although this pipeline can generate high-quality street layouts fully35

automatically, urban planners often wish to exercise some amount36

of direction and artistic control over the design. We augment the au-37

tomatic algorithm to allow a range of such user interactions. Firstly,38

at each point in layout design, the planners may choose whether the39

algorithm should generate D-fields, H-fields, or B-fields, and in the40

case of H-fields, we present the planners with a design gallery of41

different H-fields from which the most desirable one can be select-42

ed. Secondly, as described in our complementary paperm, for all43

cross field types the user can choose to manually select splitting44

streamlines or review and possibly veto the automatic suggested s-45

elections. Thirdly, the user can select a region of the subdivision46

and ask that the algorithm recompute and present new options for47

that region’s layout. Lastly, the user has a large amount of control48

over the template selection and matching process used to lay out49

fine-level streets and parcels.50

2 Modeling Street Layouts as Cross Fields51

As mentioned in the introduction, streets in a well-planned network52

meet at approximately right angles. It is therefore natural to glob-53

ally guide street layout using a cross field over the subdivision’s54

domain R. A cross at point p ∈ R is a pair of orthogonal straight55

lines through p. Each cross can be represented by two unit vectors,56

leading to four unit vectors d1(p), . . . ,d4(p), with consecutive57

ones forming a right angle. We can uniquely represent the cross58

as a single unit vector D (cf. [Palacios and Zhang 2007]): with59

di = (cosui, sinui), we define D := (cos 4ui, sin 4ui), which is60

obviously independent of the choice of di, i = 1, . . . , 4. We call61

D(p) the representation vector field V of the cross field F .62

A cross field can have singularities s, where the cross is undefined.63

Parallel transport along a closed path around s yields a non-zero64

net rotation, and so the cross field cannot be oriented consistently65

in neighborhoods of such points. By contrast, near a regular point66

of the cross field, we can find a locally consistent orientation of67

vector fields D and dj . A singularity of a cross field corresponds68

to a singularity of the vector field D, i.e. D(s) = 0.69

Cross Field Quality and Divergence: Since road placement will70

be guided by streamlines (integral curves) of the cross field, an ideal71

cross field has streamlines that are nearly parallel, so that the block-72

s of land between two roads have approximately the same width.73

If streamlines are precisely parallel, they form a family of offset74

curves, and the orthogonal trajectories are straight lines, namely75

the common normals. This situation is characterized by vanish-76

ing divergence of the unit vector field dk along the street direction,77

which follows immediately from the fact that the curvature of the78

level sets (here, the normals) of a function equals the divergence79

of the normalized gradient field (here, dk). The problem of laying80

out streets that meet at close to right angles and enclose well-sized81

parcels of land therefore reduces to the geometry problem of find-82

ing cross fields for which one direction dk has small divergence.83

3 Related Work84

The problem of finding such low-divergence cross fields is closely85

related to that of conformal parameterization and surface quadran-86

gulation, well-studied subjects in geometry processing. Many tech-87

niques exist for constructing discrete conformal maps, based on,88

for instance, least-squares approximation of the Cauchy-Riemann89

equations [Lévy et al. 2002], minimizing distortion as measured90

by intrinsic mesh measures [Desbrun et al. 2002], and circle-91

packings [Kharevych et al. 2006]. Finding a cross field aligned to92

the boundary is equivalent to finding a conformal map fromR to a93

planar region with axis-aligned boundaries, but it is unclear how to94

select such boundaries to minimize cross field divergence.95

Early quadrangulation work [Alliez et al. 2003; Marinov and96

Kobbelt 2004] exploit the observation that principal curvature lines97

form orthogonal curve networks away from umbilic points, which98

also forms the basis of the H-fields described below. Other ap-99

proaches to mesh quadrangulation including using the Morse-100

Smale complex of the Laplace-Beltrami spectrum to divide the101

mesh into coarse patches [Dong et al. 2006; Huang et al. 2008];102

Palacios and Zhang [2007], Ray et al [2008; 2009] and Bommes et103

al [2009] work with cross fields directly, interpolating as smooth-104

ly as possible user-specified singularities and cross field orientation105

constraints. These methods seek smooth fields that minimize sin-106

gularities, but do not address field divergence directly. Such ap-107

proaches have been used for constructing digital micrograms [Ma-108

harik et al. 2011] and for texture synthesis [Xu et al. 2009], and one109
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of our algorithms for frame field design takes advantage of these110

techniques (see Section 4.3) as well.111

4 Cross Field Design112

We provide three simple options for generating frame fields for road113

networks: fields from distance functions (D-fields), from harmonic114

functions (H-fields) optimized for low divergence, and from bound-115

ary conditions (B-fields).116

0 0.0295
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Figure 1: D-field generation. Top: A weighted distance field de-
fines a cross field which is smooth and exhibits low minimum di-
vergence almost everywhere, except at line features which are at
equal weighted distance to two boundary segments; discontinuities
are small at those parts of the (weighted) medial axis whose cor-
responding boundary segments are nearly orthogonal or parallel.
Bottom: Smoothing yields aesthetically pleasing flowlines, removes
discontinuities and reduces most of the high divergence features.

4.1 D-Fields: Cross Fields from Distance Functions117

Since the cross field should be aligned to tangents and normals of118

the boundary ∂R of the given region R, a simple way to obtain119

a cross field is as follows: For each point p (not on the medial120

axis of R), compute the closest boundary point pf and define the121

cross at p to be parallel and normal to the vector pf − p. We122

call this the distance cross field of ∂R. Distance cross fields have123

discontinuities along the medial axis ofR, but many of these can be124

removed via smoothing. While this works well, it leaves no room125

for design options and also introduces unnecessary rotation around126

concave corners.127

Figure 2: To avoid unnecessary rotation of crosses around a con-
cave corner in the standard distance function (left), we treat such
corners as in a straight skeleton computation (right).

We now describe a more flexible way of designing good cross fields128

from distance cross fields (see Fig. 1). The general idea is very sim-129

ple: We partition R into regions Rk, define a distance cross field130

Fk on each Rk and apply smoothing to get rid of discontinuities131

across region boundaries. Since the cross field has to be boundary132

aligned, we have to involve the distance cross fields of the boundary.133

Our partitioning into regionsRk is implicitly provided by a weight134

function along the boundary of R. For singularity extraction, we135

use the method of Palacios and Zhang [2007].136

We assume that the boundary ∂R of R is piecewise smooth. Let137

w(r) be a weight function which assigns to each boundary point138

r ∈ ∂R a positive real number. In all our examples, we assign a139

constant value to each smooth piece of a piecewise smooth bound-140

ary; this value determines the influence of the distance field of that141

piece in the overall design (see Fig. 3). Then, the cross for a point142

p ∈ R is found as follows:143

1. Compute all normal footpoints p1
f ,p

2
f , ... ∈ ∂R of p (bound-144

ary points which are local minima of the distance function to145

p) and let pf be the footpoint with the smallest weighted dis-146

tance dj = ‖p− pj
f‖/w(pj

f ) to p.147

2. The cross at p is parallel and normal to the vector pf − p; if148

there is more than one footpoint at closest weighted distance,149

it is sufficient to take the cross from one of them.150

3. The cross field is smoothed as described below.151
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Figure 3: By default, we use weight 1 for all boundary segments
(left). Increasing the weight of a segment enlarges the influence of
its distance field on the final D-field (right).

Concave Corners: If a footpoint pk
f is a corner (hence, concave),152

we do not take the distance to the corner (to avoid rotation, see153

Fig. 2), but use distances to the two tangents T1, T2 at pk
f like in154

the case of a (weighted) straight skeleton. We compute the weight-155

ed signed distances to T1, T2 and define dk to be the larger of these156

values. The cross is parallel and normal to the corresponding tan-157

gent.158

Smoothing: In practice, we triangulate the input region [Shewchuk159

1996] with Steiner points and compute the cross field over the ver-160

tices of the underlying triangulated mesh M . This field contains161

singularities along the domain’s medial axes; to improve the quali-162

ty of the field’s streamlines, we apply one round of smoothing after163

generating the cross field. The representation vector Di at each in-164

terior vertex i is averaged with the vectors at its incident neighbors,165

followed by renormalization of the vectors.166

4.2 H-Fields: Cross Fields from Harmonic Functions167

We have implemented another way for generating a cross field,168

which may have larger divergence, but has the great advantage of169

providing more design inspiration in very simple cases. While the170

D-fields will always recover the trivial Cartesian grid if the bound-171

ary is taken from it, the method described below comes up with172

more creative design variants (see Fig. 4).173

This second approach to generating a frame field on R is based174

on graphs of harmonic functions z(p), ∆z = 0 over R. Such sur-175

faces are the analogue to minimal surfaces in isotropic geometry. In176
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Euclidean geometry, minimal surfaces are isothermic – their princi-177

pal curvature lines follow a conformal parameterization of that sur-178

face. Similarly, graphs of harmonic functions are isotropic isother-179

mic surfaces; the isotropic principal curvature directions, given by180

eigenvectors of the Hessian Hz conformally parameterizeR. Lay-181

ing out roads along such a cross field therefore yields parcels that182

are particularly well-proportioned.183

Figure 4: H-fields (left) tend to provide more creative design op-
tions, while D-fields (right) usually have lower divergence and less
singularities close to the boundary.

We need the cross field to be adapted to the boundary ofR: it must184

satisfy (d1 ·n)(d2 ·n) = 0 on ∂R, where n is the outward-pointing185

boundary normal. If Hz has distinct eigenvalues, this condition is186

equivalent to187

nTHzJn = 0 (1)

on ∂R, where J =

[
0 −1
1 0

]
is rotation by 90 degrees.188

Condition (1) is particularly simple if the boundary of R is piece-
wise linear. Let γi(s) be an arc-length parameterization of a piece
ri of the boundary, so that n = Jγ̂′

i is constant and n′ = 0. Then

d

ds
(∇z · n) = γ′T

i Hz n +∇z · n′

= nTHz γ′
i =

1

‖γ′
i‖

nTHz Jn = 0.

Thus the harmonic functions z whose Hessians have eigenvectors189

parallel and tangent to the boundary are precisely those satisfying190 {
∆z(p) = 0, p ∈ R
∇z · n = ci, p ∈ ri

(2)

for constants ci. This boundary value problem has a unique solu-
tion whenever the ci obey the compatibility conditions imposed by
Gauss’s theorem:

0 = −
∫
R

∆z dA =

∫
∂R
∇z · n dS =

∑
i

∫
ri

ci =
∑
i

`ici,

where `i is the length of the boundary segment ri.191

Discretization: For any choice of ci, the corresponding adapted192

frame field D can be approximated by solving the discretization193

Lz = b of the Poisson problem with Neumann boundary condition-194

s (2) (where L is the well-known “cotan weight” discrete Laplace-195

Beltrami operator [Pinkall and Polthier 1993]), approximating the196

Hessian of z using quadric fitting, calculating the eigenvectors dk,197

and extending this tensor field to the interior of triangles by linear198

interpolation. This tensor field can be converted to a cross field lo-199

cally (for blending or following flow lines) by consistently orienting200

the principle eigenvector.201

Finding Boundary Conditions through Optimization: We seek202

cross fields with low divergence along at least one direction dk.203

The above procedure for generating frame fields from harmonic204

functions has k−1 degrees of freedom ci, where k is the number of205

boundary segments; there is thus room to search for low-divergence206

cross fields through optimization.207

Consider the following cross field energy:

E(D) =

∫
R

(
∇ · d1)2 dA.

From an initial choice of ci, this energy is used to relax the cross
field to one with less divergence. We use gradient descent to find
a local minimum, estimating the gradient search direction δci by
numerically differentiating E with finite differences. The size of
the step is calculated using a line search; the directional derivative
of E along δci is given by[

d

dt

∫
R

(
∇ · d1 + tδd1

‖d1 + tδd1‖

)2

dA

]∣∣∣∣∣
t=0

=

∫
R

(
∇ · d1

‖d1‖

)
∇ ·
(
δd1

‖d1‖ −
d1(d1 · δd1)

‖d1‖3

)
dA.

Figure 5: The degrees of freedom in H-fields can be used to present
the user with a design gallery (local minima of an optimization for
low divergence).

Since E is nonconvex, and since an optimal street layout involves208

aesthetic criteria beyond low divergence, we allow the user to209

choose from several local minima presented in a gallery (Fig. 5). A210

less symmetric alternative to defining the cross field by the eigen-211

vectors of Hz would be to let the crosses be parallel and orthogo-212

nal to the gradient ∇z of a harmonic function z (see [Dong et al.213

2005]). However, the space of such cross fields is less easy to pa-214

rameterize and explore, since one has two options at each smooth215

piece of the boundary: whether∇z is normal or tangent to it.216

4.3 B-Fields: Interpolation from the Boundary217

The last option presented to the user for cross field design construct-218

s the field by fitting a smooth cross field to the boundary, along the219

lines of the algorithm used by Maharik et al [2011]. Unlike D- or220
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H-fields, B-fields are not explicitly constructed to minimize diver-221

gence (a disadvantage most obvious on irregularly-shaped domain-222

s such as the one in Fig. 6, right), but on the other hand B-field223

streamlines typically adhere well to the global shape of the domain224

and have few singularities, and thus are a valuable design option for225

planning street layout.226

At each vertex i on the boundary, an initial cross field vector d̃1
i227

is computed by averaging the incident oriented boundary edge vec-228

tors. From these vectors, we calculate the initial representation vec-229

tor D̃i on that vertex, as described in Section 2. Notice that this230

representation vector encodes that the cross field should be aligned231

to the boundary, but does not specify a precise cross orientation.232

From this initial boundary data, we construct the full representation
vector field D by solving the quadratic variational problem

min
D

∑
i,j

‖Di −Dj‖2 + ω
∑
i∈bdry

‖Di − D̃i‖2,

where the first sum is over all pairs of incident vertices i, j and233

the second sum is over the boundary vertices. The user-specified234

weight ω trades off between keeping the cross field adapted to the235

boundary, and increasing field smoothness (see Fig. 6). The new236

representation vectors Di are not necessarily unit length, and are237

thus renormalized.238

Figure 6: B-fields with ω = 0.1 (left) and ω = 0.9 (right). De-
creasing the weight increases the cross field smoothness, at the cost
of decreasing alignment of the cross field with the boundary.

5 Conclusion239

Since streets in high-quality subdivision layouts are nearly paral-240

lel, and meet at roughly right angles, our urban planning algorith-241

m lays out major roads along streamlines of low-divergence cross242

fields. This model transforms the problem of finding road layouts243

satisfying these design goals into a computational geometry prob-244

lem. We described three algorithms for generating such cross fields,245

based on the distance function to the boundary (D-fields), graph-246

s of harmonic functions (H-fields), and solving for smooth fields247

interpolating the boundary (B-fields). The next steps in the urban248

planning pipeline, from placing roads by hierarchically selecting249

high-quality cross field streamlines, to the design of minor streets250

and land parcels using template warping, is discussed in detail in251

the accompanying paper [Anonymous 2013].252

We allow user intervention at all stages of the planning process; at253

the cross field design stage, the user may set boundary influence254

weights (for D-fields), choose from among several candidate cross255

fields in a design gallery (for H-fields), and control smoothness ver-256

sus boundary alignment (for B-fields). Several interesting avenues257

of future work could extend the user’s influence over this step of258

design: some ideas include allowing manual placement of singular-259

ities (intersections, roundabouts) and incorporating sketched sug-260

gestions of where roads should be placed. It would also be inter-261

esting to augment our algorithms to make use of three-dimensional262

topographic information about the land, which would allow plan-263

ning of roads that follow geographic features, minimize elevation264

changes, etc.265
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LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.289

Least squares conformal maps for automatic texture atlas gener-290

ation. ACM Trans. on Graph. 21, 3, 362–371.291

MAHARIK, R., BESSMELTSEV, M., SHEFFER, A., SHAMIR, A.,292

AND CARR, N. 2011. Digital micrography. Transactions on293

Graphics (Proc. SIGGRAPH 2011), 100:1–100:12.294

MARINOV, M., AND KOBBELT, L. 2004. Direct anisotropic quad-295

dominant remeshing. In Proceedings of the Computer Graphics296

and Applications, 12th Pacific Conference.297

PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field298

design on surfaces. ACM Trans. on Graph. 26, 3.299

PINKALL, U., AND POLTHIER, K. 1993. Computing discrete min-300

imal surfaces and their conjugates. Experimental Mathematics 2,301

15–36.302

RAY, N., VALLET, B., LI, W. C., AND LÉVY, B. 2008. N-303
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