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Abstract

Lasso is a widely used regression technique to find sparse representations. When
the dimension of the feature space and the number of samples are extremely large,
solving the Lasso problem remains challenging. To improve the efficiency of solv-
ing large-scale Lasso problems, El Ghaoui and his colleagues have proposed the
SAFE rules which are able to quickly identify the inactive predictors, i.e., predic-
tors that have 0 components in the solution vector. Then, the inactive predictors
or features can be removed from the optimization problem to reduce its scale. By
transforming the standard Lasso to its dual form, it can be shown that the inactive
predictors include the set of inactive constraints on the optimal dual solution. In
this paper, we propose an efficient and effective screening rule via Dual Polytope
Projections (DPP), which is mainly based on the uniqueness and nonexpansive-
ness of the optimal dual solution due to the fact that the feasible set in the dual
space is a convex and closed polytope. Moreover, we show that our screening rule
can be extended to identify inactive groups in group Lasso. To the best of our
knowledge, there is currently no “exact” screening rule for group Lasso. We have
evaluated our screening rule using many real data sets. Results show that our rule
is more effective in identifying inactive predictors than existing state-of-the-art
screening rules for Lasso.

1 Introduction
Data with various structures and scales comes from almost every aspect of daily life. To effectively
extract patterns in the data and build interpretable models with high prediction accuracy is always
desirable. One popular technique to identify important explanatory features is by sparse regulariza-
tion. For instance, consider the widely used `1-regularized least squares regression problem known
as Lasso [20]. The most appealing property of Lasso is the sparsity of the solutions, which is equiv-
alent to feature selection. Suppose we have N observations and p predictors. Let y denote the N
dimensional response vector and X = [x1,x2, . . . ,xp] be theN×p feature matrix. Let λ ≥ 0 be the
regularization parameter, the Lasso problem is formulated as the following optimization problem:

inf
β∈<p

1
2‖y −Xβ‖22 + λ‖β‖1. (1)

Lasso has achieved great success in a wide range of applications [5, 4, 28, 3, 23] and in recent years
many algorithms have been developed to efficiently solve the Lasso problem [7, 12, 18, 6, 10, 1, 11].
However, when the dimension of feature space and the number of samples are very large, solving
the Lasso problem remains challenging because we may not even be able to load the data matrix into
main memory. The idea of a screening test proposed by El Ghaoui et al. [8] is to first identify inactive
predictors that have 0 components in the solution and then remove them from the optimization.
Therefore, we can work on a reduced feature matrix to solve Lasso efficiently.

In [8], the “SAFE” rule discards xi when
|xTi y| < λ− ‖xi‖2‖y‖2 λmax−λ

λmax
(2)

where λmax = maxi |xTi y| is the largest parameter such that the solution is nontrivial. Tibshirani et
al. [21] proposed a set of strong rules which were more effective in identifying inactive predictors.
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The basic version discards xi if |xTi y| < 2λ− λmax. However, it should be noted that the proposed
strong rules might mistakenly discard active predictors, i.e., predictors which have nonzero coeffi-
cients in the solution vector. Xiang et al. [26, 25] developed a set of screening tests based on the
estimation of the optimal dual solution and they have shown that the SAFE rules are in fact a special
case of the general sphere test.

In this paper, we develop new efficient and effective screening rules for the Lasso problem; our
screening rules are exact in the sense that no active predictors will be discarded. By transforming
problem (1) to its dual form, our motivation is mainly based on three geometric observations in the
dual space. First, the active predictors belong to a subset of the active constraints on the optimal dual
solution, which is a direct consequence of the KKT conditions. Second, the optimal dual solution is
in fact the projection of the scaled response vector onto the feasible set of the dual variables. Third,
because the feasible set of the dual variables is closed and convex, the projection is nonexpansive
with respect to λ [2], which results in an effective estimation of its variation. Moreover, based on
the basic DPP rules, we propose the “Enhanced DPP” rules which are able to detect more inactive
features than DPP. We evaluate our screening rules on real data sets from many different applications.
The experimental results demonstrate that our rules are more effective in discarding inactive features
than existing state-of-the-art screening rules.

2 Screening Rules for Lasso via Dual Polytope Projections
In this section, we present the basics of the dual formulation of problem (1) including its geometric
properties (Section 2.1). Based on the geometric properties of the dual optimal, we develop the
fundamental principle in Section 2.2 (Theorem 2), which can be used to construct screening rules
for Lasso. In section 2.3, we discuss the relation between dual optimal and LARS [7]. As a straight-
forward extension of DPP rules, we develop the sequential version of DPP (SDPP) in Section 2.4.
Moreover, we present enhanced DPP rules in Section 2.5.
2.1 Basics
Different from [26, 25], we do not assume y and all xi have unit length. We first transform problem
(1) to its dual form (to make the paper self-contained, we provide the detailed derivation of the dual
form in the supplemental materials):

sup
θ

{
1
2‖y‖

2
2 − λ2

2 ‖θ −
y
λ‖

2
2 : |xTi θ| ≤ 1, i = 1, 2, . . . , p

}
(3)

where θ is the dual variable. Since the feasible set, denoted by F , is the intersection of 2p half-
spaces, it is a closed and convex polytope. From the objective function of the dual problem (3), it is
easy to see that the optimal dual solution θ∗ is a feasible θ which is closest to y

λ . In other words, θ∗

is the projection of y
λ onto the polytope F . Mathematically, for an arbitrary vector w and a convex

set C, if we define the projection function as
PC(w) = argmin

u∈C
‖u−w‖2, (4)

then
θ∗ = PF (y/λ) = argmin

θ∈F

∥∥θ − y
λ

∥∥
2
. (5)

We know that the optimal primal and dual solutions satisfy:
y = Xβ∗ + λθ∗ (6)

and the KKT conditions for the Lasso problem (1) are

(θ∗)Txi ∈
{
sign([β∗]i) if [β∗]i 6= 0

[−1, 1] if [β∗]i = 0
(7)

where [·]k denotes the kth component.

By the KKT conditions in Eq. (7), if the inner product (θ∗)Txi belongs to the open interval (−1, 1),
then the corresponding component [β∗]i in the solution vector β∗(λ) has to be 0. As a result, xi is
an inactive predictor and can be removed from the optimization.

On the other hand, let ∂H(xi) = {z: zTxi = 1} and H(xi)− = {z: zTxi ≤ 1} be the hyperplane
and half space determined by xi respectively. Consider the dual problem (3); constraints induced
by each xi are equivalent to requiring each feasible θ to lie inside the intersection of H(xi)− and
H(−xi)−. If |(θ∗)Txi| = 1, i.e., either θ∗ ∈ ∂H(xi)− or θ∗ ∈ ∂H(−xi)−, we say the constraints
induced by xi are active on θ∗.
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We define the “active” set on θ∗ as Iθ∗ = {i : |(θ∗)Txi| = 1, i ∈ I} where I = {1, 2, . . . , p}.
Otherwise, if θ∗ lies between ∂H(xi) and ∂H(−xi), i.e., |(θ∗)Txi| < 1, we can safely remove
xi from the problem because [β∗]i = 0 according to the KKT conditions in Eq. (7). Similarly, the
“inactive” set on θ∗ is defined as Iθ∗ = I \ Iθ∗ . Therefore, from a geometric perspective, if we
know θ∗, i.e., the projection of y

λ onto F , the predictors in the inactive set on θ∗ can be discarded
from the optimization. It is worthwhile to mention that inactive predictors, i.e., predictors that have
0 components in the solution, are not the same as predictors in the inactive set. In fact, by the KKT
conditions, predictors in the inactive set must be inactive predictors since they are guaranteed to
have 0 components in the solution, but the converse may not be true.
2.2 Fundamental Screening Rules via Dual Polytope Projections
Motivated by the above geometric intuitions, we next show how to find the predictors in the inactive
set on θ∗. To emphasize the dependence on λ, let us write θ∗(λ) and β∗(λ). If we know exactly
where θ∗(λ) is, it will be trivial to find the predictors in the inactive set. Unfortunately, in most of
the cases, we only have incomplete information about θ∗(λ) without actually solving problem (1) or
(3). Suppose we know the exact θ∗(λ′) for a specific λ′. How can we estimate θ∗(λ′′) for another λ′′
and its inactive set? To answer this question, we start from Eq. (5); θ∗(λ) is nonexpansive because
it is a projection operator. For convenience, we cite the projection theorem in [2] as follows.

Theorem 1. Let C be a convex set, then the projection function defined in Eq. (4) is continuous and
nonexpansive, i.e.,

‖PC(w2)− PC(w1)‖2 ≤ ‖w2 −w1‖2, ∀w2,w1. (8)

Given θ∗(λ′), the next theorem shows how to estimate θ∗(λ′′) and its inactive set for another pa-
rameter λ′′.

Theorem 2. For the Lasso problem, assume we are given the solution of its dual problem θ∗(λ′) for
a specific λ′. Let λ′′ be a nonnegative value different from λ′. Then [β∗(λ′′)]i = 0 if

|xTi θ∗(λ′)| < 1− ‖xi‖2‖y‖2
∣∣∣∣ 1λ′ − 1

λ′′

∣∣∣∣. (9)

Proof. From the KKT conditions in Eq. (7), we know |xTi θ∗(λ′′)| < 1 ⇒ [β∗(λ′′)]i = 0. By the
dual problem (3), θ∗(λ) is the projection of y

λ onto the feasible set F . According to the projection
theorem [2], that is, Theorem 1, for closed convex sets, θ∗(λ) is continuous and nonexpansive, i.e.,

‖θ∗(λ′′)− θ∗(λ′)‖2 ≤
∥∥ y
λ′′ −

y
λ′

∥∥
2
= ‖y‖2

∣∣ 1
λ′′ −

1
λ′

∣∣ (10)
Then

|xTi θ∗(λ′′)| ≤ |xTi θ∗(λ′′)− xTi θ
∗(λ′)|+ |xTi θ∗(λ′)| (11)

< ‖xi‖2‖(θ∗(λ′′)− θ∗(λ′))‖2 + 1− ‖xi‖2‖y‖2
∣∣ 1
λ′′ −

1
λ′

∣∣
≤ ‖xi‖2‖y‖2

∣∣ 1
λ′′ −

1
λ′
∣∣+ 1− ‖xi‖2‖y‖2

∣∣ 1
λ′′ −

1
λ′

∣∣ = 1
which completes the proof.

From theorem 2, it is easy to see our rule is quite flexible since every θ∗(λ′) would result in a new
screening rule. And the smaller the gap between λ′ and λ′′, the more effective the screening rule is.
By “more effective”, we mean a stronger capability of identifying inactive predictors.

As an example, let us find out θ∗(λmax). Recall that λmax = maxi |xTi y|. It is easy to verify
y

λmax
is itself feasible. Therefore the projection of y

λmax
onto F is itself, i.e., θ∗(λmax) = y

λmax
.

Moreover, by noting that for ∀λ > λmax, we have |xTi y/λ| < 1, i ∈ I, i.e., all predictors are in the
inactive set at θ∗(λ), we conclude that the solution to problem (1) is 0. Combining all these together
and plugging θ∗(λmax) = y

λmax
into Eq. (9), we obtain the following screening rule.

Corollary 3. DPP: For the Lasso problem (1), let λmax = maxi |xTi y|. If λ ≥ λmax, then [β∗]i =
0,∀i ∈ I. Otherwise, [β∗(λ)]i = 0 if∣∣∣xTi y

λmax

∣∣∣ < 1− ‖xi‖2‖y‖2
(

1
λ −

1
λmax

)
.

Clearly, DPP is most effective when λ is close to λmax. So how can we find a new θ∗(λ′) with
λ′ < λmax? Note that Eq. (6) is in fact a natural bridge which relates the primal and dual optimal
solutions. As long as we know β∗(λ′), it is easy to get θ∗(λ′) when λ is relatively small, e.g., LARS
[7] and Homotopy [17] algorithms.
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Table 1: Illustration of the running time for DPP screening and for solving the Lasso problem after
screening. Ts: time for screening. Tl: time for solving the Lasso problem after screening. To:
the total time. Entries of the response vector y are i.i.d. by a standard Gaussian. Columns of the
data matrix X ∈ <1000×100000 are generated by xi = y + αz where α is a random number drawn
uniformly from [0, 1]. Entries of z are i.i.d. by a standard Gaussian. λmax = 0.95 and λ/λmax=0.5.

LASSO DPP DPP2 DPP5 DPP10 DPP20
Ts (S) — 0.035 0.073 0.152 0.321 0.648
Tl (S) — 10.250 9.634 8.399 1.369 0.121
To (S) 103.314 10.285 9.707 8.552 1.690 0.769

Remark: Xiang et al. [26] developed a general sphere test which says that if θ∗ is estimated to be
inside a ball ‖θ∗ − q‖2 ≤ r, then |xTi q| < (1 − r) ⇒ [β∗]i = 0. Considering the DPP rules in
Theorem 2, it is equivalent to setting q = θ∗(λ′) and r = | 1λ′ −

1
λ′′ |. Therefore, different from the

sphere test and Dome developed in [26, 25] with the radius r fixed at the beginning, the construction
of our DPP rules is equivalent to an “r” decreasing process. Clearly, the smaller r is, the more
effective the DPP rules will be.

Remark: Notice that, DPP is not the same as ST1 [26] and SAFE [8], which discards the ith feature
if |xTi y| < λ−‖xi‖2‖y‖2 λmax−λ

λmax
. From the perspective of the sphere test, the radius of ST1/SAFE

and DPP are the same. But the centers of ST1 and DPP are y/λ and y/λmax respectively, which
leads to different formulas, i.e., Eq. (2) and Corollary 3.
2.3 DPP Rules with LARS/Homotopy Algorithms
It is well known that under mild conditions, the set {β∗(λ) : λ > 0} (also know as regularization
path [15]) is continuous piecewise linear [17, 7, 15]. The output of LARS or Homotopy algorithms is
in fact a sequence of values like (β∗(λ(0)), λ(0)), (β∗(λ(1)), λ(1)), . . ., where β∗(λ(i)) corresponds
to the ith breakpoint of the regularization path {β∗(λ) : λ > 0} and λ(i)s are monotonically de-
creasing. By Eq. (6), once we get β∗(λ(i)), we can immediately compute θ∗(λ(i)). Then according
to Theorem 2, we can construct a DPP rule based on θ∗(λ(i)) and λ(i). For convenience, if the DPP
rule is built based on θ∗(λ(i)), we add the index i as suffix to DPP, e.g., DPP5 means it is developed
based on θ∗(λ(5)). It should be noted that LARS or Homotopy algorithms are very efficient to find
the first few breakpoints of the regularization path and the corresponding parameters. For the first
few breakpoints, the computational cost is roughly O(Np), i.e., linear with the size of the data ma-
trix X. In Table 1, we report both the time used for screening and the time needed to solve the Lasso
problem after screening. The Lasso solver is from the SLEP [14] package.

From Table 1, we can see that compared with the time saved by the screening rules, the time used
for screening is negligible. The efficiency of the Lasso solver is improved by DPP20 more than
130 times. In practice, DPP rules built on the first few θ∗(λ(i))’s lead to more significant perfor-
mance improvement than existing state-of-art screening tests. We will demonstrate the effectiveness
of our DPP rules in the experiment section. As another useful property of LARS/Homotopy al-
gorithms, it is worthwhile to mention that changes of the active set only happen at the breakpoints
[17, 7, 15]. Consequently, given the parameters corresponding to a pair of adjacent breakpoints, e.g.,
λ(i) and λ(i+1), the active set for λ ∈ (λ(i+1), λ(i)) is the same as λ = λ(i). Therefore, besides the
sequence of breakpoints and the associated parameters (β∗(λ(0)), λ(0)), . . . (β∗(λ(k)), λ(k)) com-
puted by LARS/Homotopy algorithms, we know the active set for ∀λ ≥ λ(k). Hence we can remove
the predictors in the inactive set from the optimization problem (1). This scheme has been embedded
in DPP rules.

Remark: Some works, e.g., [21], [8], solve several Lasso problems for different parameters to
improve the screening performance. However, the DPP algorithms do not aim to solve a sequence
of Lasso problems, but just to accelerate one. The LARS/Homotopy algorithms are used to find the
first few breakpoints of the regularization path and the corresponding parameters, instead of solving
general Lasso problems. Thus, different from [21], [8] who need to iteratively compute a screening
step and a Lasso step, DPP algorithms only compute one screening step and one Lasso step.
2.4 Sequential Version of DPP Rules
Motivated by the ideas of [21] and [8], we can develop a sequential version of DPP rules. In other
words, if we are given a sequence of parameter values λ1 > λ2 > . . . > λm, we can first apply
DPP to discard inactive predictors for the Lasso problem (1) with parameter being λ1. After solving
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the reduced optimization problem for λ1, we obtain the exact solution β∗(λ1). Hence by Eq. (6),
we can find θ∗(λ1). According to Theorem 2, once we know the optimal dual solution θ∗(λ1), we
can construct a new screening rule to identify inactive predictors for problem (1) with λ = λ2. By
repeating the above process, we obtain the sequential version of the DPP rule (SDPP).

Corollary 4. SDPP: For the Lasso problem (1), suppose we are given a sequence of parameter
values λmax = λ0 > λ1 > . . . > λm. Then for any integer 0 ≤ k < m, we have [β∗(λk+1)]i = 0
if β∗(λk) is known and the following holds:∣∣∣xTi y−Xβ∗(λk)

λk

∣∣∣ < 1− ‖xi‖2‖y‖2
(

1
λk+1

− 1
λk

)
.

Remark: There are some other related works on screening rules, e.g., Wu et al. [24] built screening
rules for `1 penalized logistic regression based on the inner products between the response vector
and each predictor; Tibshirani et al. [21] developed strong rules for a set of Lasso-type problems via
the inner products between the residual and predictors; in [9], Fan and Lv studied screening rules
for Lasso and related problems. But all of the above works may mistakenly discard predictors that
have non-zero coefficients in the solution. Similar to [8, 26, 25], our DPP rules are exact in the
sense that the predictors discarded by our rules are inactive predictors, i.e., predictors that have zero
coefficients in the solution.
2.5 Enhanced DPP Rules
In this section, we show how to further improve the DPP rules. From the inequality in (9), we can
see that the larger the right hand side is, the more inactive features can be detected. From the proof
of Theorem 2, we need to make the right hand side of the inequality in (10) as small as possible. By
noting that θ∗(λ′) = PF (

y
λ′ ) and θ∗(λ′′) = PF (

y
λ′′ ) [please refer to Eq. (5)], the inequality in (10)

is in fact a direct consequence of Theorem 1 by letting C := F , w1 := y
λ′ and w2 := y

λ′′ .

On the other hand, suppose y
λ′ /∈ F , i.e., λ′ ∈ (0, λmax). It is clear that y

λ′ 6= PF (
y
λ′ ) = θ∗(λ′). Let

θ(t) = θ∗(λ′) + t( y
λ′ − θ

∗(λ′)) for t ≥ 0, i.e., θ(t) is a point lying on the ray starting from θ∗(λ′)
and pointing to the same direction as y

λ′ − θ
∗(λ′). We can observe that PF (θ(t)) = θ∗(λ′), i.e., the

projection of θ(t) onto the set F is θ∗(λ′) as well (please refer to Lemma A in the supplement for
details). By applying Theorem 1 again, we have
‖θ∗(λ′′)−θ∗(λ′)‖2 = ‖PF ( y

λ′′ )−PF (θ(t))‖2 ≤ ‖
y
λ′′−θ(t)‖2 = ‖t( y

λ′−θ
∗(λ′))−( y

λ′′−θ
∗(λ′))‖2.

(12)
Clearly, when t = 1, the inequality in (12) reduces to the one in (10). Because the inequality in (12)
holds for all t ≥ 0, we may get a tighter bound by

‖θ∗(λ′′)− θ∗(λ′)‖2 ≤ min
t≥0
‖tv1 − v2‖2, (13)

where v1 = y
λ′ − θ

∗(λ′) and v2 = y
λ′′ − θ

∗(λ′). When λ′ = λmax, we can set v1 = sign(xT∗ y)x∗
where x∗ := argmaxxi

|xTi y| (please refer to Lemma B in the supplement for details). The mini-
mization problem on the right hand side of the inequality (13) can be easily solved as follows:

min
t≥0
‖tv1 − v2‖2 = ϕ(λ′, λ′′) =

{
‖v2‖2, if 〈v1,v2〉 < 0,∥∥∥v2 − 〈v1,v2〉

‖v1‖22
v1

∥∥∥
2
, otherwise.

(14)

Similar to Theorem 2, we have the following result:

Theorem 5. For the Lasso problem, assume we are given the solution of its dual problem θ∗(λ′) for
a specific λ′. Let λ′′ be a nonnegative value different from λ′. Then [β∗(λ′′)]i = 0 if

|xTi θ∗(λ′)| < 1− ‖xi‖2ϕ(λ′, λ′′). (15)

As we explained above, the right hand side of the inequality (15) is no less than that of the inequality
(9). Thus, the enhanced DPP is able to detect more inactive features than DPP. The analogues of
Corollaries 3 and 4 can be easily derived as well.

Corollary 6. DPP∗: For the Lasso problem (1), let λmax = maxi |xTi y|. If λ ≥ λmax, then
[β∗]i = 0,∀i ∈ I. Otherwise, [β∗(λ)]i = 0 if the following holds:∣∣∣xTi y

λmax

∣∣∣ < 1− ‖xi‖2ϕ(λmax, λ).

Corollary 7. SDPP∗: For the Lasso problem (1), suppose we are given a sequence of parameter
values λmax = λ0 > λ1 > . . . > λm. Then for any integer 0 ≤ k < m, we have [β∗(λk+1)]i = 0
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if β∗(λk) is known and the following holds:∣∣∣xTi y−Xβ∗(λk)
λk

∣∣∣ < 1− ‖xi‖2ϕ(λk, λk+1).

To simplify notations, we denote the enhanced DPP and SDPP by DPP∗ and SDPP∗ respectively.

3 Extensions to Group Lasso
To demonstrate the flexibility of DPP rules, we extend our idea to the group Lasso problem [27]:

inf
β∈<p

1
2
‖y −

∑G

g=1
Xgβg‖22 + λ

∑G

g=1

√
ng‖βg‖2, (16)

where Xg ∈ <N×ng is the data matrix for the gth group and p =
∑G
g=1 ng . The corresponding dual

problem of (16) is (see detailed derivation in the supplemental materials):

sup
θ

{
1
2‖y‖

2
2 − λ2

2 ‖θ −
y
λ‖

2
2 : ‖XT

g θ‖2 ≤
√
ng, g = 1, 2, . . . , G

}
(17)

Similar to the Lasso problem, the primal and dual optimal solutions of the group Lasso satisfy:

y =
∑G

g=1
Xgβ

∗
g + λθ∗ (18)

and the KKT conditions are:

(θ∗)TXg ∈

{√
ng

β∗g
‖β∗g‖2

if β∗g 6= 0
√
ngu, ‖u‖2 ≤ 1 if β∗g = 0

(19)

for g = 1, 2, . . . , G. Clearly, if ‖(θ∗)TXg‖2 <
√
ng , we can conclude that β∗g = 0.

Consider problem (17). It is easy to see that the dual optimal θ∗ is the projection of y
λ onto the

feasible set. For each g, the constraint ‖XT
g θ‖2 ≤

√
ng confines θ to an ellipsoid which is closed

and convex. Therefore, the feasible set of the dual problem (17) is the intersection of ellipsoids and
thus closed and convex. Hence θ∗(λ) is also nonexpansive for the group lasso problem. Similar to
Theorem 2, we can readily develop the following theorem for group Lasso.
Theorem 8. For the group Lasso problem, assume we are given the solution of its dual problem
θ∗(λ′) for a specific λ′. Let λ′′ be a nonnegative value different from λ′. Then β∗g (λ

′′) = 0 if
‖XT

g θ
∗(λ′)‖2 <

√
ng − ‖Xg‖F ‖y‖2

∣∣ 1
λ′ −

1
λ′′

∣∣ (20)

Similar to the Lasso problem, let λmax = maxg ‖XT
g y‖2/

√
ng , we can see that y

λmax
is itself

feasible, and λmax is the largest parameter such that problem (16) has a nonzero solution. Clearly,
θ∗(λmax) =

y
λmax

. Similar to DPP and SDPP, we can construct GDPP and SGDPP for group Lasso.

Corollary 9. GDPP: For the group Lasso problem (16), let λmax = maxg ‖XT
g y‖2/

√
ng . If

λ ≥ λmax, β∗g (λ) = 0,∀g = 1, 2, . . . , G. Otherwise, we have β∗g (λ) = 0 if the following holds:∥∥∥XT
g

y
λmax

∥∥∥
2
<
√
ng − ‖Xg‖F ‖y‖2

(
1
λ −

1
λmax

)
. (21)

Corollary 10. SGDPP: For the group Lasso problem (16), suppose we are given a sequence of
parameter values λmax = λ0 > λ1 > . . . > λm. For any integer 0 ≤ k < m, we have β∗g (λk+1) =
0 if β∗(λk) is known and the following holds:∥∥∥∥XT

g

y−
∑G

g=1 Xgβ
∗
g (λk)

λk

∥∥∥∥
2

<
√
ng − ‖Xg‖F ‖y‖2

(
1

λk+1
− 1

λk

)
. (22)

Remark: Similar to DPP∗, we can develop the enhanced GDPP by simply replacing the term
‖y‖2(1/λ − 1/λmax) on the right hand side of the inequality (21) with ϕ(λmax, λ). Notice that,
to compute ϕ(λmax, λ), we set v1 = X∗(X∗)

Ty where X∗ = argmaxXg
‖XT

g y‖2/
√
ng (please

refer to Lemma C in the supplement for details). The analogs of SDPP∗, that is, SGDPP∗, can be
obtained by replacing the term ‖y‖2(1/λk+1 − 1/λk) on the right hand side of the inequality (22)
with ϕ(λk, λk+1).

4 Experiments
In section 4.1, we first evaluate the DPP and DPP∗ rules on both real and synthetic data. We then
compare the performance of DPP with Dome (see [25, 26]) which achieves state-of-art performance
for the Lasso problem among exact screening rules [25]. We evaluate GDPP and SGDPP for the
group Lasso problem on three synthetic data sets in section 4.2. We are not aware of any “exact”
screening rules for the group Lasso problem at this point.
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(a) MNIST-DPP2/DPP∗2 (b) MNIST-DPP5/DPP∗5 (c) COIL-DPP2/DPP∗2 (d) COIL-DPP5/DPP∗5

Figure 1: Comparison of DPP and DPP∗ rules on the MNIST and COIL data sets.

To measure the performance of our screening rules, we compute the rejection rate, i.e., the ratio be-
tween the number of predictors discarded by screening rules and the actual number of zero predictors
in the ground truth. Because the DPP rules are exact, i.e., no active predictors will be mistakenly
discarded, the rejection rate will be less than one. For SAFE and Dome, it is not straightforward
to extend them to the group Lasso problem. Similarly to previous works [26], we do not report the
computational time saved by screening because it can be easily computed from the rejection ratio.
Specifically, if the Lasso solver is linear in terms of the size of the data matrix X, a K% rejection
of the data can save K% computational time. The general experiment settings are as follows. For
each data set, after we construct the data matrix X and the response y, we run the screening rules
along a sequence of 100 values equally spaced on the λ/λmax scale from 0 to 1. We repeat the
procedure 100 times and report the average performance at each of the 100 values of λ/λmax. All
of the screening rules are implemented in Matlab. The experiments are carried out on a Intel(R)
(i7-2600) 3.4Ghz processor.
4.1 DPPs and DPP∗s for the Lasso Problem
In this experiment, we first compare the performance of the proposed DPP rules with the enhanced
DPP rules (DPP∗) on (a) the MNIST handwritten digit data set [13]; (b) the COIL rotational image
data set [16] in Section 4.1.1. We show that the DPP∗ rules are more effective in identifying inactive
features than the DPP rules. This demonstrate our theoretical results in Section 2.5. Then we
evaluate the DPP∗/SDPP∗ rules and Dome on (c) the ADNI data set; (d) the Olivetti Faces data set
[19]; (e) Yahoo web pages data sets [22] and (f) a synthetic data set whose entries are i.i.d. by a
standard Gaussian.
4.1.1 Comparison of DPP and DPP∗

As we explain in Section 2.5, all inactive feature detected by the DPP rules can also be detected
by the DPP∗ rules. But conversely, it is not necessarily true. To demonstrate the advantage of the
DPP∗ rules, we run DPP2, DPP∗2, DPP5 and DPP∗5 on the MNIST and COIL data sets. a) The
MNIST data set contains grey images of scanned handwritten digits, including 60, 000 for training
and 10, 000 for testing. The dimension of each image is 28×28. Each time, we first randomly select
100 images for each digit (and in total we have 1000 images) and get a data matrix X ∈ <784×1000.
Then we randomly pick an image as the response y ∈ <784. b) The COIL data set includes 100
objects, each of which has 72 color images with 128×128 pixels. The images that belong to the same
object are taken every 5 degree by rotating the object. We use the images of object 10. Each time,
we randomly pick one of the images as the response vector y ∈ <49152 and use all the remaining
ones to construct the data matrix X ∈ <49152×71. The average λmax for the so cultured MNIST and
the COIL data sets are 0.837 and 0.986. Clearly, the predictors in the data sets are high correlated.

From Figure 1, we observe that DPP∗2 significantly outperforms DPP2 for both data sets, especially
when λ/λmax is small. We also observe the same pattern for DPP5 and DPP∗5, verifying the claims
about DPP∗ made in the paper. Thus, in the following experiments, we only report the performance
of DPP∗ and the competing algorithm Dome.
4.1.2 Comparison of DPP∗/SDPP∗ and Dome
In this experiment, we compare DPP∗/SDPP∗ rules with Dome. We only report the performance of
DPP∗5 and DPP∗10 among the family of DPP∗ rules on the following four data sets.

c) The Alzheimer’s disease neuroimaging initiative (ADNI; available at www.loni.ucla.edu/ADNI)
studies the disease progression of Alzheimer’s. The ADNI data set includes 434 patients with 306
features extracted from their baseline MRI scans. Each time we randomly select 90% samples to
construct the data matrix X ∈ <391×306. The response y is the patients’ MMSE cognitive scores
[29]. d) The Olivetti faces data set includes 400 grey scale face images of size 64×64 for 40 people
(10 for each). Each time, we randomly take one of the images as the response vector y ∈ <4096
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(a) ADNI (b) Olivetti (c) Yahoo-Computers (d) Synthetic
Figure 2: Comparison of DPP∗/SDPP∗ rules and Dome on three real data sets, Yahoo computers
data set, ADNI data set, Olivetti face data set and one synthetic data set.

(a) 20 groups (b) 50 groups (c) 100 groups

Figure 3: Performance of GDPP and SGDPP applied to three synthetic data sets.
and the data matrix X ∈ <4096×399 is constructed by the left ones. e) The Yahoo data sets include
11 top-level categories such as Computers, Education, Health, Recreation, and Science etc. Each
category is further divided into a set of subcategories. Each time, we construct a balanced binary
classification data set from the topic of Computers. We choose samples from one subcategory as the
positive class and randomly sample an equal number of samples from the rest of subcategories as
the negative class. The size of the data matrix is 876× 25259 and the response vector is the binary
label of the samples. f) For the synthetic data set X ∈ <100×5000 and the response vector y ∈ <100,
all of the entries are i.i.d. by a standard Gaussian.

The average λmax of the above three data sets are 0.7273, 0.989, 0.914, and 0.371 respectively.
The predictors in ADNI, Yahoo-Computers and Olivetti data sets are highly correlated as indicated
by the average λmax. In contrast with the real data sets, the average λmax of the synthetic data is
small. As noted in [26, 25], Dome is very effective in discarding inactive features when λmax is
large. From Fig. 2, we observe that Dome performs much better on the real data sets compared to
the synthetic data. However, the proposed rules are able to identify far more inactive features than
Dome on both real and synthetic data, even for the cases in which λmax is small.
4.2 GDPPs for the Group Lasso Problem
We apply GDPPs to three synthetic data sets. The entries of data matrix X ∈ <100×1000 and the
response vector y are generated i.i.d. from the standard Gaussian distribution. For each of the
cases, we randomly divided X into 20, 50, and 100 groups. We compare the performance of GDPP
and SGDPP along a sequence of 100 parameter values equally spaced on the λ/λmax scale. We
repeat the above procedure 100 times for each of the cases and report the average performance. The
average λmax values are 0.136, 0.167, and 0.219 respectively. As shown in Fig. 3, it is expected
that SGDPP significantly outperforms GDPP which only makes use of the information of the dual
optimal solution at a single point. For more discussions, please refer to the supplement.

5 Conclusion
In this paper, we develop new screening rules for the Lasso problem by making use of the nonex-
pansiveness of the projection operator with respect to a closed convex set. Our new methods, i.e.,
DPP rules, are able to effectively identify inactive predictors of the Lasso problem, thus greatly re-
ducing the size of the optimization problem. Moreover, we further improve DPP rules and propose
the enhanced DPP rules, that is, the DPP∗ rules, which are even more effective in discarding inactive
predictors than DPP rules. The idea of DPP and DPP∗ rules can be easily generalized to screen the
inactive groups of the group Lasso problem. Extensive experiments on both synthetic and real data
demonstrate the effectiveness of the proposed rules. Moreover, DPP and DPP∗ rules can be com-
bined with any Lasso solver as a speedup tool. In the future, we plan to generalize our idea to other
sparse formulations consisting of more general structured sparse penalties, e.g., tree/graph Lasso.

Acknowledgments
This work was supported in part by NIH (LM010730) and NSF (IIS-0953662, CCF-1025177).

8



References
[1] S. R. Becker, E. Candès, and M. Grant. Templates for convex cone problems with applications to sparse

signal recovery. Technical report, Standford University, 2010.
[2] D. P. Bertsekas. Convex Analysis and Optimization. Athena Scientific, 2003.
[3] A. Bruckstein, D. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling

of signals and images. SIAM Review, 51:34–81, 2009.
[4] E. Candès. Compressive sampling. In Proceedings of the International Congress of Mathematics, 2006.
[5] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Review,

43:129–159, 2001.
[6] D. L. Donoho and Y. Tsaig. Fast solution of l-1 norm minimization problems when the solution may be

sparse. IEEE Transactions on Information Theory, 54:4789–4812, 2008.
[7] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407–

499, 2004.
[8] L. El Ghaoui, V. Viallon, and T. Rabbani. Safe feature elimination in sparse supervised learning. Pacific

Journal of Optimization, 8:667–698, 2012.
[9] J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature spaces. Journal of the

Royal Statistical Society Series B, 70:849–911, 2008.
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