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ABSTRACT
Total variation (TV) regularization has important applica-
tions in signal processing including image denoising, image
deblurring, and image reconstruction. A significant chal-
lenge in the practical use of TV regularization lies in the non-
differentiable convex optimization, which is difficult to solve
especially for large-scale problems. In this paper, we pro-
pose an efficient alternating augmented Lagrangian method
(ADMM) to solve total variation regularization problem-
s. The proposed algorithm is applicable for tensors, thus
it can solve multidimensional total variation regularization
problems. One appealing feature of the proposed algorithm
is that it does not need to solve a linear system of equa-
tions, which is often the most expensive part in previous
ADMM-based methods. In addition, each step of the pro-
posed algorithm involves a set of independent and smaller
problems, which can be solved in parallel. Thus, the pro-
posed algorithm scales to large size problems. Furthermore,
the global convergence of the proposed algorithm is guaran-
teed, and the time complexity of the proposed algorithm is
O(dN/ϵ) on a d-mode tensor with N entries for achieving an
ϵ-optimal solution. Extensive experimental results demon-
strate the superior performance of the proposed algorithm
in comparison with current state-of-the-art methods.
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1. INTRODUCTION
The presence of noise in signals is unavoidable. To re-

cover original signals, many noise reduction techniques have
been developed to reduce or remove the noise. Noisy sig-
nals usually have high total variation (TV). Several total
variation regularization approaches have been developed to
exploit the special properties of noisy signals and they have
been widely used in noise reduction in signal processing. The
total variation model was first introduced by Rudin, Osher
and Fatemi in [19] as a regularization approach to remove
noise and handle proper edges in images. More recently,
the total variation models have been applied successfully for
image reconstruction, e.g. Magnetic Resonance (MR) image
reconstruction [14, 17]. The wide range of applications in-
cluding image restoration, image denoising and deblurring
[1, 2, 14, 15, 22, 24], underscore its success in signal/image
processing. The discrete penalized version of the TV-based
image denoising model solves an unconstrained convex min-
imization problem of the following form:

min
X

1

2
∥X − Y ∥2F + λ∥X∥TV , (1)

where ∥ · ∥F is the Frobenius norm defined as ∥X∥F =√∑
i,j x

2
i,j , Y is the observed image, X is the desired un-

known image to be recovered, and ∥ · ∥TV is the discrete
TV norm defined below. The nonnegative regularization pa-
rameter λ provides a tradeoff between the noise sensitivity
and closeness to the observed image. There are two popu-
lar choices for the discrete TV norm: ℓ2-based isotropic TV
defined by

∥X∥TV =
m∑
i=1

n∑
j=1

∥∇xi,j∥2, X ∈ ℜm×n,

and the ℓ1-based anisotropic TV defined by

∥X∥TV =
m∑
i=1

n∑
j=1

∥∇xi,j∥1, X ∈ ℜm×n,

where ∇ denotes the forward finite difference operators on
the vertical and horizonal directions, i.e., ∇xi,j = (∇1xi,j ,
∇2xi,j)

T :

∇1xi,j =

{
xi,j − xi+1,j if 1 ≤ i < m
0 if j = n



∇2xi,j =

{
xi,j − xi,j+1 if 1 ≤ j < n
0 if i = m.

Despite the simple form of the TV norm, it is a chal-
lenge to solve TV-based regularization problems efficiently.
One of the key difficulties in the TV-based image denoising
problem is the nonsmoothness of the TV norm. Continued
research efforts have been made to build fast and scalable
numerical methods in the last few years. Existing methods
aim to balance the tradeoff between the convergence rate
and the simplicity of each iterative step. For example, com-
puting the exact optimal solution at each iteration leads to a
better convergence rate [20]. However, this usually requires
heavy computations, for instance, a large linear system of
equations. Simple methods with less computation efforts at
each iteration are more suitable for large-scale problems, but
usually they have a slow convergence rate. To this end, we
propose a fast but simple ADMM algorithm to solve TV-
based problems. The key idea of the proposed method is to
decompose the large problem into a set of smaller and inde-
pendent problems, which can be solved efficiently and exact-
ly. Moreover, these small problems are decoupled, thus they
can be solved in parallel. Therefore, the proposed method
scales to large-size problems.
Although the TV problems have been extensively stud-

ied for matrices (e.g. two-dimensional images), there is not
much work on tensors, a higher-dimensional extension of
matrices. Tensor data is common in real world applications,
for instance, functional magnetic resonance imaging (fMRI)
is a 3-mode tensor and a color video is a 4-mode tensor. An-
other contribution of this paper is that the proposed ADMM
algorithm is designed to solve TV problems for tensors, e.g.,
multidimensional TV problems. The 2D TV problem can be
solved efficiently by a special case of the proposed algorith-
m (for matrices). Our experiments show that the proposed
method is more efficient than state-of-the-art approaches for
solving 2D TV problems. We further demonstrate the ef-
ficiency of the proposed method for multidimensional TV
problems in image reconstruction, video denoising and im-
age deblurring.

1.1 Related Work
Due to the nonsmoothness of the TV norm, solving large-

scale TV problems efficiently continues to be a challenging
issue despite its simple form. In the past, considerable ef-
forts have been devoted to develop an efficient and scalable
algorithm for TV problems. The 1D total variation, also
known as the fused signal approximator, has been widely
used in signal noise reduction. Liu et al. [16] propose an ef-
ficient method to solve the fused signal approximator using a
warm start technique. It has been shown to be very efficient
in practice, though the convergence rate has not been estab-
lished. Barabero and Sra [1] introduce a fast Newton-type
method for 1D total variation regularization, and solve the
2D total variation problem using the Dyktra’s method [7].
Wahlberg et al. [23] propose an ADMM method to solve the
1D total variation problem. A linear system of equation-
s has to be solved at each iteration. Recently, a very fast
direct, noniterative, algorithm for 1D total variation prob-
lem has been proposed in [8]. A dual-based approach to
solve the 2D total variation problems is introduced in [6].
Beck and Teboulle [2] propose a fast gradient-based method
by combining the dual-based approach with the acceleration
technique in Fast Iterative Shrinkage Thresholding Algorith-

Figure 1: Fibers of a 3-mode tensor: mode-1 fiber-
s x:,j2,j3 , mode-2 fibers xj1,:,j3 , and mode-3 fibers
xj1,j2,:(left to right).

m (FISTA) [3]. One potential drawback of the dual-based
approaches is that it may not scale well. Goldstein and Osh-
er introduce the split Bregman method to solve the 2D total
variation problem, which is an application of split Bregman
method solving ℓ1 based problems. The total variation has
also been widely used in Magnetic Resonance (MR) image
reconstruction [14, 17]. Ma et al.[17] introduce an operator-
splitting algorithm (TVCMRI) to solve the MR image recon-
struction problem. By combining the composite splitting al-
gorithm [7] and the acceleration technique in FISTA, Huang
et al. [14] propose an efficient MR image reconstruction al-
gorithm called FCSA. We show that our proposed method is
much more efficient than these methods for solving 2D TV
problems.

1.2 Notation
We use upper case letters for matrices, e.g. X, lower case

letters for the entries, e.g. xi,j , and bold lower case letters
for vectors, e.g. x. The inner product in the matrix space
is defined as ⟨X,Y ⟩ =

∑
i,j xi,jyi,j . A d-mode tensor (or

d-order tensor) is defined as X ∈ ℜI1×I2×···×Id . Its entries
are denoted as xj1,...,jd , where 1 ≤ jk ≤ Ik, 1 ≤ k ≤ d.
For example, 1-mode tensor is a vector, and 2-mode tensor
is a matrix. xj1,...,ji−1,:,ji+1,...,jd denotes the mode-i fiber
at {j1, . . . , ji−1, ji+1, . . . , jd}, which is the higher order ana-
logue of matrix rows and columns (see Figure 1 for an il-
lustration). The Frobenius norm of a tensor is defined as

∥X∥F = (
∑

j1,j2,...,jd
x2
j1,j2,...,jd

)
1
2 .The inner product in the

tensor space is defined as ⟨X ,Y⟩ =
∑

j1,j2,...,jd
xj1,j2,...,jd

yj1,j2,...,jd . For simplicity of notation, we use /{ji} to repre-
sent the index set excluding ji, i.e., {j1, . . . , ji−1, ji+1, . . . , jd}.
For instance,

∑
j1,...,ji−1,ji+1,...,jd

can be simply written as∑
/{ji}. In addition, we use a nonnegative superscript num-

ber to denote the iteration index, e.g., X k denotes the value
of X at the k-th iteration.

1.3 Organization
We present the multidimensional total variation regular-

ization problems and the proposed ADMM method in Sec-
tion 2. One of the key steps in the proposed algorithm in-
volves the solution of a 1D TV problem; we show how to
estimate the active regularization parameter range for 1D
TV problem in Section 3. We report empirical results in
Section 4, and conclude this paper in Section 5.

2. THE PROPOSED ALGORITHM FOR
MULTIDIMENSIONAL TV PROBLEMS

We first introduce the multidimensional total variation
regularization problems in Section 2.1. In Section 2.2, we



present the details of the proposed algorithm. The glob-
al convergence is established in Section 2.3. Section 2.4
presents the time complexity of the proposed algorithm.

2.1 The Multidimensional TV Problem
Denote Fi(X ) as the fused operator along the i-th mode

of X taking the form of

Fi(X ) =
∑
/{ji}

Ii−1∑
ji=1

|xj1,...,ji,...,jd − xj1,...,(ji+1),...,jd |.

In the case of matrix, Fi(X) only involves the rows or column-
s ofX. For example, F1(X) =

∑n
j=1

∑m−1
i=1 |xi,j−xi+1,j |, X ∈

ℜm×n. It is clear that the ℓ1-based anisotropic TV norm for
matrices can be rewritten as

∑2
i=1 Fi(X). The tensor is the

generalization of the matrix concept. We generalize the TV
norm for the matrix case to higher-order tensors by the fol-
lowing tensor TV norm:

∥X∥TV =

d∑
i=1

Fi(X ).

Based on the definition above, the TV-based denoising prob-
lem for the matrix case can be generalized to tensors by
solving the following optimization problem:

min
X

1

2
∥Y − X∥2F + λ

d∑
i=1

Fi(X ), (2)

where Y ∈ ℜI1×I2×...,×Id is the observed data represented
as a tensor, X ∈ ℜI1×I2×...,×Id is the unknown tensor to be
estimated,

∑d
i=1 Fi(X ) is the tensor TV norm, and λ is a

nonnegative regularization parameter. The tensor TV regu-
larization encourages X to be smooth along all dimensions.

2.2 The Proposed Algorithm
We propose to solve the multidimensional TV problem

(MTV) using ADMM [4]. ADMM decomposes a large glob-
al problem into a series of smaller local subproblems, and
coordinates the local solutions to compute the globally op-
timal solution. ADMM attempts to combine the benefits of
augmented Lagrangian methods and dual decomposition for
constrained optimization problems [4]. The problem solved
by ADMM takes the following form:

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c,
(3)

where x, z are unknown variables to be estimated.
ADMM reformulates the problem using a variant of the

augmented Lagrangian method as follows:

Lρ(x, z, µ) = f(x)+g(z)+µT (Ax+Bz− c)+
ρ

2
∥Ax+Bz− c∥2

with µ being the augmented Lagrangian multiplier, and ρ
being the nonnegative penalty parameter (or dual update
length). ADMM solves the original constrained problem by
iteratively minimizing Lρ(x, z, µ) over x, z, and updating µ
according to the following update rule:

xk+1 =argmin
x

Lρ(x, z
k, µk)

zk+1 =argmin
z

Lρ(x
k+1, z, µk)

µk+1 =µk + ρ(Axk+1 +Bzk+1 − c).

Consider the unconstrained optimization problem in (2),
which can be reformulated as the following constrained op-
timization problem:

min
X ,Zi

1

2
∥Y − X∥2F + λ

d∑
i=1

Fi(Zi)

s.t. X = Zi, for 1 ≤ i ≤ d,

(4)

where Zi, 1 ≤ i ≤ d are slack variables. The optimization
problem in (4) can be solved by ADMM. The augmented
Lagrangian of (4) is given by

L(X ,Zi,Ui) =
1

2
∥Y − X∥2F + λ

d∑
i=1

Fi(Zi)+

d∑
i=1

⟨Ui,Zi −X⟩+
ρ

2

d∑
i=1

∥Zi −X∥2F .

(5)

Applying ADMM, we carry out the following steps at each
iteration:
Step 1 Update X k+1 with Zk

i and Uk
i fixed:

X k+1 =argmin
X

1

2
∥Y − X∥2F −

d∑
i=1

⟨Uk
i ,X⟩

+
ρ

2

d∑
i=1

∥Zk
i −X∥2F .

(6)

The optimal solution is given by

X k+1 =
Y +

∑d
i=1(U

k
i + ρZk

i )

1 + dρ
. (7)

Step 2 Compute Zk+1
i , i = 1, · · · , d with X k+1, and Uk

i , i =
1, · · · , d fixed:

{Zk+1
i } = argmin

{Zi}

ρ

2

d∑
i=1

∥Zi −X k+1∥2F +
d∑

i=1

⟨Uk
i ,Zi⟩

+ λ

d∑
i=1

Fi(Zi),

(8)

where {Zi} denotes the set {Z1, . . . ,Zd}. This problem is
decomposable, i.e., we can solve Zk+1

i , 1 ≤ i ≤ d separately,

Zk+1
i = argmin

Zi

ρ

2
∥Zi −X k+1∥2F + ⟨Uk

i ,Zi⟩+ λFi(Zi),

which can be equivalently written as

Zk+1
i = argmin

Zi

1

2
∥Zi − Ti∥2F +

λ

ρ
Fi(Zi) (9)

with Ti = − 1
ρ
Uk
i + X k+1. The problem in (9) is decompos-

able for different mode-i fibers. Denote zj1,...,ji−1,:,ji+1,...,jd

as a mode-i fiber to be estimated, which is a vector of Ii
length. For simplicity, we use v to represent the vector
zj1,...,ji−1,:,ji+1,...,jd . Then, (9) can be decomposed into a
set of independent and much smaller problems:

vk+1 = argmin
v

1

2
∥v − t∥2 + λ

ρ

Ii−1∑
i=1

|vi − vi+1|,

∀j1, . . . , ji−1, ji+1, . . . , jd,

(10)

where t is the corresponding mode-i fiber of Ti. (10) is
the formulation of 1D total variation regularization problem,
which can be solved exactly and very efficiently [8, 16].



The problem of computing Zk+1
i , 1 ≤ i ≤ d in (8) is there-

fore decomposed into a set of much smaller problems of com-
puting fibers. Each fiber problem is independent, enabling
that the whole set of problems can be computed in parallel.
Step 3 Update Uk+1

i , i = 1, . . . , d:

Uk+1
i = Uk

i + ρ(Zk+1
i −X k+1). (11)

A summary of the proposed method is shown in Algorith-
m 1 below.

Algorithm 1: The proposed ADMM algorithm for
multi-dimensional total variation
Input: Y, λ, ρ
Output: X
Initialization: Z0

i = X 0 ← Y,U0
i ← 0;

do
Compute X k+1 according to Eq. (7).
Compute Zk+1

i , i = 1, . . . , d according to Eq. (9).
Compute Uk+1

i , i = 1, . . . , d according to Eq. (11).
Until Convergence;
return X ;

The algorithm stops when the primal and dual residuals
[4] satisfy a certain stopping criterion. The stopping crite-
rion can be specified by two thresholds: absolute tolerance
ϵabs and relative tolerance ϵrel (see Boyd et al. [4] for more
details). The penalty parameter ρ affects the primal and d-
ual residuals, hence affects the termination of the algorithm.
A large ρ tends to produce small primal residuals, but in-
creases the dual residuals [4]. A fixed ρ (say 10) is commonly
used. But there are some schemes of varying the penalty pa-
rameter to achieve better convergence. We refer interested
readers to Boyd et al. [4] for more details.

Remark 1. We can add the ℓ1 regularization in the for-
mulation of multidimensional TV problems for a sparse so-
lution. The subproblem with ℓ1 regularization is called the
fused signal approximator. The optimal solution can be ob-
tained by first solving 1D total variation problem, then ap-
plying soft-thresholding [11, 16].

2.3 Convergence Analysis
The convergence of ADMM to solve the standard form (3)

has been extensively studied [4, 10, 13]. We establish the
convergence of Algorithm 1 by transforming the MTV prob-
lem in (4) into a standard form (3), and show that the trans-
formed optimization problem satisfies the condition needed
to establish the convergence.
Denote x as the vectorization of X , i.e., x = vec(X ) ∈
ℜ

∏
i Ii×1, y = vec(Y) ∈ ℜ

∏
i Ii×1, z = [vec(Z1)

T , . . . , vec(Zd)
T

]T ∈ ℜd
∏

i Ii×1, f(x) = 1
2
∥y − x∥22, and g(z) = λ

∑d
i=1 Fi(Zi).

Then the MTV problem in (4) can be rewritten as

min
x,z

f(x) + g(z),

s.t. Ax− z = 0,
(12)

where A = [I, . . . , I]T ∈ ℜd
∏

i Ii×
∏

i Ii , and I is the identity
matrix of size

∏
i Ii ×

∏
i Ii. The first and second steps

of Algorithm 1 are exactly the steps of updating x and z in
the standard form. Since f, g are proper, closed, and convex,
and A is of column full rank, the convergence of Algorithm 1
directly follows from the results in [4, 10, 13]. Moreover, an

O(1/k) convergence rate of Algorithm 1 can be established
following the conclusion in [13].

2.4 Time Complexity Analysis
The first step of Algorithm 1 involves computations of
X k+1

i , i = 1, . . . , d. Computing X k+1
i needs to compute∏

j ̸=i Ij mode-i fibers of Ii length by the 1D total variation
algorithm. The complexity of solving the 1D total varia-
tion is O(Ii), but O(I2i ) in the worst case [8]. However, we
observe that the empirical complexity is O(Ii) in our exper-
iments (see Figure 2). Thus, the complexity of the first step
is O(d

∏
j Ij). The time complexity of the second and third

steps are O(
∏

j Ij). Hence, the complexity of each iteration

is O(d
∏

j Ij). The number of iterations in Algorithm 1 to

obtain an ϵ-optimal solution is O(1/ϵ) [13]. Thus, the total
complexity of Algorithm 1 is O(d

∏
j Ij/ϵ) for achieving an

ϵ-optimal solution.
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Figure 2: Computational time (seconds) of three ef-
ficient 1D total variation algorithms: Liu et al. [16],
Condat [8], and Wahlberg et al. [23]. Left: dimen-
sion varies from 103 to 106 with λ = 1. Right: λ varies
from 0.15 to 1.45 with dimension 104. The data is
sampled from standard normal distribution.

3. ACTIVE REGULARIZATION RANGE
FOR 1D TOTAL VARIATION

The most time-consuming part of the proposed ADMM
algorithm is the first step, which involves the computation
of X k+1

i , 1 ≤ i ≤ d. We decompose the problem of comput-
ing X k+1

i , 1 ≤ i ≤ d into a set of small 1D total variation
problems. Thus, the computation of the proposed method
highly depends on that of 1D total variation. In this section,
we show how to estimate the active regularization range for
1D total variation, which only relies on the regularization
parameter and the observed vector, to directly compute the
optimal solution. More specifically, we compute λmin and
λmax based on the observed vector; if λ /∈ (λmin, λmax), the
optimal solution can be computed in a closed form, thus
significantly improving the efficiency.

Consider the formulation of 1D total variation, i.e.,

inf
x

1

2
∥y − x∥22 + λ

n−1∑
i=1

|xi − xi+1|,

which can be rewritten as

inf
x

1

2
∥y − x∥22 + λ∥Gx∥1 (13)



in which y,x ∈ ℜn. G ∈ ℜ(n−1)×n encodes the structure of
the 1D TV norm. We have

gi,j =


1 if j = i+ 1

−1 if j = i

0 otherwise.

(14)

3.1 The Dual Problem
Before we derive the dual formualtion of problem in (13)

[5, 9], we first introduce some useful definitions and lemmas.

Definition 1. (Coercivity).[9] A function ϕ : ℜn → ℜ̄
is said to be coercive over a set S ⊂ ℜn if for every sequence
{xk} ⊂ S

lim
k→∞

ϕ(xk) = +∞ whenever ∥xk∥ → +∞.

For S = ℜn, ϕ is simply called coercive.

Denote the objective function in problem (13) as:

f(x) =
1

2
∥y − x∥22 + λ∥Gx∥1. (15)

It is easy to see that f(x) is coercive. For each α ∈ ℜ, we
define the α sublevel set of f(x) as Sα = {x : f(x) ≤ α}.
Then we have the following lemma.

Lemma 1. For any α ∈ ℜ, the sublevel set Sα = {x :
f(x) ≤ α} is bounded.

Proof. We prove the lemma by contradiction. Suppose
there exists an α such that Sα is unbounded. Then we can
find a sequence {xk} ⊂ Sα such that limk→∞ ∥xk∥ =∞. Be-
cause f(x) is coercive, we can conclude that limk→∞ f(xk) =
+∞. However, since {xk} ⊂ Sα, we know f(xk) ≤ α for all
k, which leads to a contradiction. Therefore, the proof is
complete.

We derive the dual formulation of problem (13) via the
Sion’s Minimax Theorem [9, 21]. Let B = {x : y−λGT s, ∥s∥∞
≤ 1} and x′ = argmaxx∈B f(x). Because B is compact, x′

must exist. Denote α′ = f(x′) and S ′ = Sα′ .

inf
x

1

2
∥y − x∥22+λ∥Gx∥1 = inf

x∈S′

1

2
∥y − x∥22 + λ∥Gx∥1

= inf
x∈S′

1

2
∥y − x∥22 + λ sup

∥s∥∞≤1

⟨s, Gx⟩

= inf
x∈S′

sup
∥s∥∞≤1

1

2
∥y − x∥22 + λ⟨s, Gx⟩.

(16)

By Lemma 1, we know that S ′ is compact. Moreover, the
function

1

2
∥y − x∥22 + λ⟨s, Gx⟩

is convex and concave with respect to x and s respectively.
Thus, by the Sion’s Minimax Theorem [21], we have

inf
x

1

2
∥y − x∥22 + λ∥Gx∥1 (17)

= inf
x∈S′

sup
∥s∥∞≤1

1

2
∥y − x∥22 + λ⟨s, Gx⟩

= sup
∥s∥∞≤1

inf
x∈S′

1

2
∥y − x∥22 + λ⟨s, Gx⟩.

We can see that

x∗(s) = y − λGT s = argmin
x∈S′

1

2
∥y − x∥22 + λ⟨s, Gx⟩ (18)

and thus

inf
x∈S′

1

2
∥y − x∥22 + λ⟨s, Gx⟩ = −λ2

2
∥GT s∥2 + λ⟨s, Gy⟩

=
1

2
∥y∥2 − λ2

2
∥y
λ
−GT s∥2.

Therefore the primal problem (16) is transformed to its dual
problem:

sup
∥s∥∞≤1

1

2
∥y∥2 − λ2

2
∥y
λ
−GT s∥2, (19)

which is equivalent to

min
s
∥y
λ
−GT s∥2 (20)

s.t. ∥s∥∞ ≤ 1.

3.2 Computing the Maximal Value for λ

Recall the definition of G in (14), it follows that GT has
full column rank. Denote e = (1, · · · , 1)T ∈ ℜn, and the
subspace spanned by the rows of G and e as VGT and Ve.
Clearly ℜn = VGT ⊕ Ve and VGT ⊥ Ve.

Let P = I − eeT

⟨e,e⟩ and P⊥ denote the projection operator

into VGT and Ve respectively. Therefore the equation

Py = GT s (21)

must have a unique solution for each y.
Let Py = ỹ, then it follows that

si = −
i∑

j=1

ỹj , ∀i = 1, · · · , n− 1

and clearly sn−1 = −
∑n−1

j=1 ỹj = ỹn since ⟨e, ỹ⟩ = 0. Denote

λmax = ∥s∥∞ = max{|
i∑

j=1

ỹj | : i = 1, · · · , n− 1}. (22)

From the above analysis, it is easy to see that when λ ≥
λmax, there is an s∗ such that

Py

λ
= GT s

∗
and ∥s∗∥∞ ≤ 1.

According to (18), we have

x∗ = (P+P⊥)y−λGT s∗ = P⊥y =
⟨e,y⟩
⟨e, e⟩ e =

⟨e,y⟩
n

e. (23)

The maximal value for λ has been studied in [16]. Howev-
er, a linear system has to be solved. From (22), it is easy to
see that the maximal value can be obtained by a close form
solution. Thus, our approach is more efficient.

3.3 Computing the Minimum Value for λ

We rewrite the dual problem (19) as:

min
s

1

2
∥y − λGT s∥2 (24)

s.t. ∥s∥∞ ≤ 1.

Denote g(s) = 1
2
∥y − λGT s∥2. The gradient of g(s) can

be found as: g′(s) = −λG(y − λGT s).



Let B∞ denote the unit∞ norm ball. We know that s∗ is
the unique optimal solution to the problem (24) if and only
if

−g′(s∗) ∈ NB∞(s∗),

where NB∞(s∗) is the normal cone at s∗ with respect to B∞.
Let I+(s) = {i : si = 1}, I−(s) = {i : si = −1}, and
I◦(s) = {i : si ∈ (−1, 1)}. Assume d ∈ NB∞(s), then d can
be found as:

di ∈


[0,+∞), if i ∈ I+(s)
(−∞, 0], if i ∈ I−(s)
0, if i ∈ I◦(s)

Therefore the optimality condition can be expressed as:

s∗ = argmin
s

1

2
∥y − λGT s∥2

if and only if

λG(y − λGT s∗) ∈ NB∞(s∗).

Because λ > 0, λG(y − λGT s) ∈ NB∞(s∗) is equivalent to

G(y − λGT s∗) ∈ NB∞(s∗). (25)

According to (18), we have

x∗
1 =y1 + λs∗1

x∗
i =yi − λ(s∗i−1 − s∗i ), for 1 < i < n (26)

x∗
n =yn − λs∗n,

and

G(y − λGT s∗) =

 x∗
2 − x∗

1

...
x∗
n − x∗

n−1

 . (27)

By (25) and (27), we have the following observations:

B1. If x∗
i+1 > x∗

i , s
∗
i = 1;

B2. If x∗
i+1 = x∗

i , s
∗
i ∈ [−1, 1];

B3. If x∗
i+1 < x∗

i , s
∗
i = −1.

Notice that, from (26), we can estimate a range for every
x∗
i , which is not necessarily the tightest one. In fact, we

have

x∗
i ∈

{
[yi − λ, yi + λ], if i ∈ {1, n}
[yi − 2λ, yi + 2λ], otherwise.

(28)

Define

λmin = min

{
|yi+1 − yi|

3
, i ∈ {1, n− 1}; (29)

|yi+1 − yi|
4

, i ∈ {2, . . . , n− 2}
}
.

It follows that when λ < λmin, the solution to (26) is fixed
and can be found as:

s∗i = sign(yi+1 − yi), i = 1, . . . , n− 1. (30)

Then x∗
i can be computed accordingly by (26).

4. RESULTS
In this section, we evaluate the efficiency of the proposed

algorithm on synthetic and real-word data, and show several
applications of the proposed algorithm.

4.1 Efficiency Comparison
We examine the efficiency of the proposed algorithm using

synthetic datasets on 2D and 3D cases. For the 2D case, the
competitors include

• SplitBregman written in C1 [12];

• ADAL written in C faithfully based on the paper [18];

• The dual method in Matlab2 [2];

• Dykstra written in C [7];

For the 3D case, only the Dykstra’s method and the pro-
posed method (MTV) are compared, since the other algo-
rithms are designed specifically for the 2D case.

The experiments are performed on a PC with quad-core
Intel 2.67GHz CPU and 9GB memory. The code of MTV is
written in C. Since the proposed method and the Dykstra’s
method can be implemented in parallel, we also compare
their parallel versions implemented with OpenMP.

Figure 3: Left: clean image; right: noisy image;

4.1.1 2D case
We generate synthetic images Y ∈ ℜN×N of different N .

The value of each pixel is 1 or 0. A Gaussian noise ϵ =
N (0, 0.22) is added to each image as Ỹ = Y +ϵ. A synthetic
example image is shown in Figure 3. The comparisons are
based on the computation time. For a given λ, we first run
MTV until a certain precision level specified by ϵabs and
ϵrel is reached, and then run the others until they achieve
an objective function value smaller than or equal to that of
MTV. Different precision levels of the solutions are evaluated
such that a fair comparison can be made. In addition, we
set the maximal iteration number of all methods to be 2000
in order to avoid slow convergence. The penalty parameters
ρ for MTV and ADAL are fixed to 10. We vary the size of
image (N ×N) from 50× 50 to 2000× 2000 with λ = 0.35,
and vary the regularization parameter λ from 0.15 to 1 with
a step size of 0.05 with a fixed N = 500. For each setting,
we perform 20 trials and report the average computational
time (seconds). The results are shown in Figure 4.

From Figure 4, we observe that the proposed method is
much more efficient than its competitors. The non-parallel
version of MTV is about 70 times faster than the dual method,
and 8 times fasters than ADAL when N is 2000 and ϵabs =
ϵrel = 1e− 3. Although the subproblems of MTV and Dyk-
stra are the same, Dykstra is about 12 times slower than
MTV, demonstrating that MTV has faster convergence than
Dykstra. Utilizing parallel computing, the parallel version of

1tag7.web.rice.edu/Split_Bregman.html
2iew3.technion.ac.il/~becka/papers/tv_fista.zip
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Figure 4: Comparison of SplitBregman [12],
ADAL [18], Dual Method [2], Dykstra [7], and our
proposed MTV algorithm in terms of computation-
al time (in seconds and in the logarithmic scale).
Dykstra-P and MTV-P are the parallel version of
Dykstra and MTV. Different precision levels are
used for comparison. The size of image is N × N .
Left column: λ = 0.35 with N varying from 50 to
2000; right column: N = 500 with λ varying from
0.15 to 0.95.

MTV and Dykstra are about 3.5 times more efficient than
their non-parallel version in a quad-core PC. We also ob-
serve that the Split Bregman method, dual method, and
ADAL need more iterations to achieve a similar precision to
that of MTV when the regularization parameter λ increases,
i.e., the portion of the nonsmooth part increases. However,
MTV and Dykstra are more stable when λ varies. The rea-
son is that we directly compute the exact optimal solution
of the proximal operator of the fused regularization in the
subproblems of MTV and Drystra, unlike ADAL and the
Split Bregman method which perform soft-thresholding.

4.1.2 3D case
The synthetic 3D images are generated in a similar man-

ner to the 2D case. Gaussian noise ϵ = N (0, 0.22) is added
to each pixel. We set the size of 3D images to N ×N × 50,
and vary N from 50 to 500 with a step size of 25. The regu-
larization parameter λ is set to 0.35. We apply the Dykstra’s
method and MTV on the noisy 3D images. In this exper-
iment, we compare the computational time of Dykstra and
MTV in a similar setting to the 2D case. Figure 5 shows
the comparison between the Dykstra’s method and MTV.
From Figure 5, we can see that MTV is much more efficient
than Dykstra, demonstrating the efficiency of MTV. MTV
is about 20 times faster than Dykstra when N = 500 and
ϵabs = ϵrel = 1e− 4.

4.1.3 Scalability
We conduct experiments to evaluate the scalability of the

proposed method. The experiments are performed on a Lin-
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Figure 5: Comparison of Dykstra and the proposed
MTV in terms of computational time (in seconds
and in the logarithmic scale) in the 3D case. Dif-
ferent precision levels are used for comparison. The
size of 3D images is N × N × 50, and N varies from
50 to 500 with λ = 0.35.
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Figure 6: Scalability of the proposed method. The
size of image is N ×N , and λ = 0.35. Left: the com-
putational time of MTV and MTV-P with 12 pro-
cessors and N varying from 2500 to 11000; right: the
speedup of MTV-P with respect to the number of
processors varying from 1 to 16.

ux server with 4 quad-core Intel Xeon 2.93GHz CPUs and
65GB memory. We vary the size of images (N × N) from
2500 × 2500 to 11000 × 11000 with 12 processors, and the
number of processors from 1 to 16 with a fixed image size.
The regularization parameter λ is set to be 0.35. For each
setting, the average computational time of 10 trials is report-
ed to demonstrate the efficiency/speedup of MTV-P (Fig-
ure 6). As shown in Figure 6, the computational time of
MTV-P is less than 100 seconds when N = 11000, demon-
strating the superiority of the proposed method. We also
observe that the speedup increases almost linearly with the
number of processors used. The speedup is less than the
number of processors used because of the parallel overhead.

4.2 Applications

4.2.1 Image reconstruction
Due to the excellent depiction of soft tissue changes, Mag-

netic Resonance Imaging (MRI) has been widely used in
medical diagnosis. Based on the compressive sensing theo-
ry, it is possible to reconstruct perfect signals from a limited
number of samples by taking advantage of the sparse nature
of the signals in a transform domain. In the case of MRI, an
accurate reconstruction of MR images from undersampled
K-space data is possible, reducing the cost of scanning. The
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Figure 7: MRI reconstruction. Columns: orignal
(left), FCSA-Dual and FCSA-MTV(middle), and
the difference image between original image and re-
constructed image (right); (a) Cardiac: SNR of two
methods are 17.615; (b) Brain: SNR are 20.376; (c)
Chest: SNR are 16.082; (d) Artery: the SNR are
23.769;

formulation of image reconstruction is given by

X̂ = argmin
X

1

2
∥R(X)−b∥2+λ1∥W(X)∥1+λ2∥X∥TV (31)

where b is the undersampled measurements ofK-space data,
R is partial Fourier transformation and W is wavelet trans-
form. We try to reconstruct the image X ∈ ℜm×n from the
undersampled measurements b. A fast algorithm, FCSA, is
introduced by Huang et al. [14]. One of the key steps in
FCSA is the proximal operator of the 2D TV norm, which
is a special case of MTV. In [14], the dual method proposed
in [2] is used to solve the proximal operator. We follow the
same framework as FCSA, but apply the proposed MTV to
solve the proximal operator to achieve a speedup gain.
We compare two approaches: FCSA with the dual method

(FSCA-Dual)[14] and FCSA with MTV (FSCA-MTV). We
apply these two methods on four 2D MR images3: cardiac,
brain, chest, and artery. We follow the same sampling strat-
egy as in [14]. The sample ratio is set to about 25%. A Gaus-

3ranger.uta.edu/~huang/R_CSMRI.htm

Table 1: Comparison of the dual method and MTV
in FCSA in terms of average computational time of
50 iterations (seconds).

Methods Cardiac Brain Chest Artery
Dual 0.6762 0.5855 0.5813 0.7588
MTV 0.0066 0.0061 0.0056 0.0078
Speedup 102.45 95.98 103.80 97.28

sian noise ϵ = N (0, 0.012) is added to the observed measure-
ments b. For a fair comparison, we first run FCSA-MTV and
keep track of the objective function values of MTV in each
iteration, then run FCSA-Dual. In each outer iteration, the
dual method stops when its objective function value is equal
to or smaller than the corresponding tracked objective func-
tion value of MTV. Both FCSA-Dual and FCSA-MTV run
50 iterations. Only the computational time of the proximal
operator by dual method and MTV, is recorded. The pre-
cision parameters of MTV are set to ϵabs = ϵrel = 1e − 3,
and the dual update step length ρ is set to 10. Since the
objective function of both methods are identical, and the
precision of each iteration are about the same, the solutions
of both methods are expected to be the same.

The reconstruction results of the MR images are shown in
Figure 7. Table 1 shows the average time of dual method and
MTV for 50 iterations. Since each iteration of FCSA-MTV
and FCSA-Dual are the same, FCSA-MTV and FCSA-Dual
have the same SNR. But we can observe from Table 1 that
MTV is more efficient than dual method(about 100 times
speedup), thus FCSA-MTV is more efficient than FCSA-
Dual.

4.2.2 Image deblurring
The proposed method can be used to deblur images. The

formulation of TV-based image deblurring model is given by

X̂ = argmin
X

1

2
∥B(X)− Y ∥2 + λ∥X∥TV , (32)

where Y ∈ ℜm×n is the observed blurred and noisy image,
B : ℜm×n → ℜm×n is a linear transformation encoding
the blurring operator, and X ∈ ℜm×n is the image to be
restored. A popular approach to solve the convex optimiza-
tion problem in (32) is FISTA [2, 3]. One of the key steps
is the proximal operator of TV regularization. Similar to
the previous experiment, we use MTV instead of the dual
method [2] to solve the proximal operator of TV regular-
ization to achieve a speedup gain. The “lena” image of size
512× 512 is used in this experiment. The image is rescaled
to [0,1], and then blurred by an average filter of size 9 × 9.
Furthermore, a Gaussian noise, N (0, 0.0012), is added to the
blurred image. The parameter setting of MTV is the same
as the previous experiment. The regularization parameter λ
is set to 0.001. The results are shown in Figure 8. The aver-
age computation time of the dual method for 100 iterations
is 1.066 seconds, while that of MTV is 0.037 seconds. The
proposed MTV method achieves about 29 times speedup.

4.2.3 Video denoising
A video is a 3-mode tensor. The proposed method in the

3D case can be used to denoise video. We expect that pixel
values should be smooth along all 3 modes. In this experi-
ment, we use a time series of 2D MR images of heart beats



Figure 8: Image deblurring: original image(left),
blurred and noisy image (middle), and deblurred im-
age (right). The SNR of the blurred image is 11.01,
and the SNR of the deblurred image is 17.23.

Figure 9: Sample frames of video denoising: original
frames (top), and denoised frames (bottom) (best
viewed on a screen).

downloaded from the website of the Cardiac Atlas4. The
2D MR images are in the format of avi, which includes 32
frames. We applied the proposed method and the Dystra’s
method to denoise all the MR images as a 3-mode tensor
of size 257 × 209 × 32. The computational time of MTV is
4.482 seconds, and the computational time of the Dykstra’s
method is 43.751 seconds. The speedup is about 10 times.
Some sample result frames are shown in Figure 9. This ex-
periment demonstrates the effectiveness of total variation
regularization in video denoising.

5. CONCLUSION
In this paper, we propose an efficient optimization of the

multidimensional total variation regularization problems. We
employ an efficient ADMM algorithm to solve the formula-
tion. The key idea of our algorithm is to decompose the orig-
inal problem into a set of independent and small problems,
which can be solved exactly and efficiently. Furthermore,
the set of independent problems can be solved in parallel.
Thus, the proposed method can handle large-scale problems
efficiently. We also establish the global convergence of the
proposed algorithm. The experimental results demonstrate
the efficiency of the proposed algorithm. The proposed al-
gorithm opens the possibility of utilizing the power of GPU
computing to further improve the efficiency of the proposed
algorithm. We will explore the GPU computing in the future
work. Moreover, we plan to apply the proposed algorithm to
other real-world applications, such as MBB (mobile broad
band) data and 3G network data, both are big data prob-
lems.

4atlas.scmr.org/download.html
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