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Abstract
This paper provides a comprehensive overview of urban reconstruction. While there exists a considerable body of literature,
this topic is still under active research. The work reviewed in this survey stems from the following three research communities:
computer graphics, computer vision, and photogrammetry and remote sensing. Our goal is to provide a survey that will help
researchers to better position their own work in the context of existing solutions, and to help newcomers and practitioners
in computer graphics to quickly gain an overview of this vast field. Further, we would like to bring the mentioned research
communities to even more interdisciplinary work, since the reconstruction problem itself is by far not solved.

Keywords: urban reconstruction, urban modeling, image-based modeling, city reconstruction, city modeling, facade model-
ing, photogrammetric modeling, structure from motion, inverse-procedural modeling

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry and Object
Modeling; Image Processing And Computer Vision [I.4.6]: Scene Analysis; Image Processing And Computer Vision [I.4.9]:
Applications;

1. Introduction

The reconstruction of cities is a topic of significant intellectual
and commercial interest. It is therefore no surprise that this re-
search area has received significant attention over time. Despite
the high volume of existing work, there are many unsolved prob-
lems, especially when it comes to the development of fully auto-
matic algorithms.

1.1. Applications

Urban reconstruction is an exciting area of research with several
applications that benefit from reconstructed three-dimensional ur-
ban models:

• In the entertainment industry, the storyline of several movies
and computer games takes place in real cities. In order to make
these cities believable at least some part of the models are ob-
tained by urban reconstruction.
• Digital mapping for mobile devices, cars, and desktop com-

puters requires two-dimensional and three-dimensional urban
models. Examples of such applications are Google Earth and
Microsoft Bing Maps.
• Urban planning in a broad sense relies on urban reconstruction

to obtain the current state of the urban environment. This forms
the basis for developing future plans or to judge new plans in
the context of the existing environment.
• Training and simulation applications for emergency manage-

ment, civil protection, disaster control, driving, flying, and se-
curity benefit from virtual urban worlds.

1.2. Scope

Urban habitats consist of many objects, such cars, streets, parks,
traffic signs, vegetation, and buildings. In this paper we focus on
the reconstruction of 3d geometric models of urban areas, individ-
ual buildings, and façades.

Most papers mentioned in this survey were published in com-
puter graphics, computer vision, and photogrammetry and remote
sensing. There are multiple other fields that contain interesting
publications relevant to urban reconstruction, e.g. machine learn-
ing, computer aided design, geo-sciences, mobile-technology, ar-
chitecture, civil engineering, and electrical engineering. Our em-
phasis is the geometric reconstruction and we do not discuss as-
pects, like the construction of hardware and sensors, details of data
acquisition processes, and particular applications of urban models.

We also exclude procedural modeling, which has been covered
in a recent survey by Vanegas et al. [VAW∗10]. Procedural mod-
eling is an elegant and fast way to generate huge, complex and
realistically looking urban sites, but due to its generative nature it
is not well suited for exact reconstruction of existing architecture.
It can also be referred to as forward procedural modeling. Never-
theless, in this survey we do address its counterpart, called inverse
procedural modeling (Section 3.3), in addition to other urban re-
construction topics.

We also omit manual modeling, even if it is probably still the
most widely applied form of reconstruction in many architectural
and engineering bureaus. From a scientific point of view, the man-
ual modeling pipeline is well researched. An interesting overview

submitted to COMPUTER GRAPHICS Forum (6/2013).

przem
Typewritten Text
This is a draft. The final version is available at: http://onlinelibrary.wiley.com/doi/10.1111/cgf.12077/abstract

przem
Typewritten Text

przem
Typewritten Text

przem
Typewritten Text

przem
Typewritten Text

przem
Sticky Note
Accepted set by przem

przem
Typewritten Text



2 P. Musialski et al. / A Survey of Urban Reconstruction

of methods for the generation of polygonal 3d models from CAD-
plans has been presented by Yin et al. [YWR09].

In order to allow unexperienced computer graphics researchers
to step into the field of 3d reconstruction, we provide a slightly
more detailed description of the fundamentals of stereo vision in
Section 2. We omit concepts like the trifocal tensor or details
of multi-view vision. Instead, we refer to the referenced papers
and textbooks, e.g., by Hartley and Zisserman [HZ04], Moons et
al. [MvGV09], and recently by Szeliski [Sze11]. Due to the enor-
mous range of the literature, our report is designed to provide a
broad overview rather than a tutorial.

1.3. Input Data

There are various types of possible input data that is suitable as
a source for urban reconstruction algorithms. In this survey, we
focus on methods which utilize imagery and LiDAR scans (Light
Detection And Ranging).

Imagery is perhaps the most obvious input source. Common
images acquired from the ground have the advantage of being
very easy to obtain, store, and exchange. Nowadays, an estimated
tens of billions of photos are taken worldwide each year, which
results in hundreds of petabytes of data. Many are uploaded and
exchanged over the Internet, and furthermore, many of them de-
pict urban sites. In various projects this information has been rec-
ognized as a valuable source for large scale urban reconstruc-
tion [SSS06, IZB07, ASSS10, FFGG∗10]. Aerial and satellite im-
agery, on the other hand, for many years was restricted to the pro-
fessional sector of the photogrammetry and remote sensing com-
munity. Only in the recent decade, this kind of input data has
become more easily available, especially due to the advances of
Web-mapping projects, like Google Maps and Bing Maps, and
was successfully utilized for reconstruction [VAW∗10].

Airborne Imagery

Ground Imagery Ground LiDAR

Airborne LiDAR

Figure 1: Input data types. We review interactive and automatic
reconstruction methods which use imagery or LiDAR-scans ac-
quired either from the ground or from the air.

Another type of input that is excellently suitable for urban re-
construction is LiDAR data. It typically utilizes laser light which
is projected on surfaces and its reflected backscattering is cap-
tured, where structure is determined trough the time-of-flight prin-
ciple [CW11]. It delivers semi-dense 3d point-clouds which are
fairly precise, especially for long distance acquisition. Although
scanning devices are expensive and still not available for mass
markets, scanning technology is frequently used by land survey-
ing offices or civil engineering bureaus. Many recent algorithms
rely on input from LiDAR, both terrestrial and aerial.

Furthermore, some approaches incorporate both data types in

order to combine their complementary strengths: imagery is in-
herently a 2d source of extremely high resolution and density,
but view depended and lacking depth information. A laser-scan
is inherently a 3d source of semi-regular and semi-dense struc-
ture, but often incomplete and noisy. Combining both inputs
promises to introduce more insights into the reconstruction pro-
cess [LCOZ∗11].

Finally, both types can be acquired from the ground or from the
air (cf. Figure 1), providing a source for varying levels of detail
(LOD). The photogrammetry community proposes a predefined
standard (OpenGIS) for urban reconstruction LODs [GKCN08]
for GIS (Geographic Information System). According to this
scheme, airborne data is more suitable for coarse building mod-
els reconstruction (LOD1, Section 5), ground based data is more
useful for individual buildings (LOD2, Section 3), and façade de-
tails (LOD3, Section 4).

1.4. Challenges

Full automation. The goal of most reconstruction approaches
is to provide solutions that are as automatic as possible. In prac-
tice, full automation turns out to be hard to achieve. The related
vision problems quickly result in huge optimization tasks, where
global processes are based on local circumstances, and local pro-
cesses often depend on global estimates. In other words, the de-
tection of regions of interest is both context dependent (top down),
since we expect a well-defined, underlying object, and context
free (bottom-up), since we do not know the underlying object and
want to estimate a model from the data. In fact, this is a paradox
and these dependencies can be generally compared to the “chicken
or egg” dilemma.

There is no unique solution to this fundamental problem of au-
tomatic systems. Most approaches try to find a balance between
these constraints, for instance, they try to combine two or more
passes over the data, or eventually to incorporate the human user
in order to provide some necessary cues.

Quality and scalability. An additional price to pay for automa-
tion is often the loss of quality. From the point of view of interac-
tive computer graphics, the quality of solutions of pure computer
vision algorithms is quite low, while especially for high-quality
productions like the movie industry, the expected standard of the
models is very high. In such situations, the remedy is either pure
manual modeling or at least manual quality control over the data.
The downside of this approach is its poor scalability: human in-
teraction does not scale well with huge amounts of input data.

For these reasons, many recent approaches employ compromise
solutions that cast the problem in such a way that both the user and
the machine can focus on tasks which are easy to solve for each of
them. Simplified user interaction that can be performed even by
unskilled users often provides the quantum of knowledge that is
needed to break out from the mentioned dilemma.

Acquisition constraints. Other problems that occur in practice
are due to the limitations given during the data acquisition process.

For example, it is often difficult to acquire coherent and com-
plete data of urban environments. Buildings are often located in
narrow streets surrounded by other buildings and other obstruc-
tions, thus photographs, videos or scans from certain positions
may be impossible to obtain, neither from the ground nor from
the air. The second common handicap is the problem of unwanted
objects in front of the buildings, such as vegetation, street signs,
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Figure 2: Overview of urban reconstruction approaches. We attempt to roughly group the methods according to their outcome. We report
about interactive methods using both user input and automatic algorithms as well as about fully automatic methods. Note that this is a
schematic illustration, and in practice many solutions cannot be strictly classified into a particular bin.

vehicles and pedestrians. Finally, there are obstacles like glass
surfaces which are problematic to acquire with laser-scans. Pho-
tographs of glass are also difficult to process due to many reflec-
tions. Lighting conditions, e.g., direct sunshine or shadows, influ-
ence the acquisition as well, thus, recovery of visual information
that has been lost through such obstructions is also one of the
challenges.

A common remedy is to make multiple overlapping acquisition
passes and to combine or to compare them. However, in any case
post-processing is required.

1.5. Overview

It is a difficult task to classify all the existing reconstruction ap-
proaches, since they can be differentiated by several properties,
such as input data type, level of detail, amount of automation, or
output data. Some methods are bottom-up, some are top-down,
and some combine both approaches.

In this paper we propose an output-based ordering of the pre-
sented approaches. This ordering helps us to sequentially explain
important concepts of the field, building one on top of another;
but note that this is not always strictly possible, since many ap-
proaches combine multiple methodologies and data types.

Another advantage of this ordering is that we can specify the
expected representation of the actual outcome for each section.
Figure 2 depicts the main categories that we handle. In this paper,
the term modeling is generally used for interactive methods, and
the term reconstruction for automatic ones.

A. Point Clouds & Cameras. Image-based stereo systems have
reached a rather mature state and often serve as preprocessing
stages for many other methods since they provide quite accurate
camera parameters. Many other methods, even the interactive
ones which we present in later sections, rely on this module as
a starting point for further computations. For this reason we first
introduce the Fundamentals of Stereo Vision in Section 2.1.
Then, in Section 2.2, we provide the key concepts of image-

based automatic Structure from Motion methodology, and in
Section 2.3, we discuss Multi-View Stereo approaches.

B. Buildings & Semantics. In this section we introduce a num-
ber of concepts that aim at the reconstruction of individual
buildings. We start in Section 3.1 with Image-Based Model-
ing approaches. Here we present a variety of concepts based on
photogrammetry and adapted for automatic as well as for inter-
active use. In Section 3.2, we introduce concepts of interactive
LiDAR-Based Modeling aiming at reconstruction of buildings
from laser-scan point clouds. In Section 3.3, we describe the
concept of Inverse Procedural Modeling.

C. Façades & Images. We handle the façade topic explicitly be-
cause it is of particular importance in our domain of modeling
urban areas. In Section 4.1, we handle generation of panora-
mas and textures from Façade Imagery. In Section 4.2, we
introduce various concepts for Façade Decomposition that
aim at segmenting façades into elements such as doors, win-
dows, and other domain-specific features, detection of symme-
try and repetitive elements, and higher-order model fitting. In
Section 4.3, we introduce concepts which aim at interactive
Façade Modeling, such as subdivision into highly detailed sub-
elements.

D. Blocks & Cities. In this section we discuss automatic recon-
struction of models of large areas or whole cities. Such systems
often use multiple input data types, like aerial images and Li-
DAR. We first mention methods performing Ground Recon-
struction in Section 5.1. In Section 5.2, we focus on Aerial
Reconstruction from aerial imagery, LiDAR or hybrids, and
finally, in Section 5.3, we discuss methods which aim at auto-
matic Massive City Reconstruction of large urban areas.

In the remainder of this article we review those categories.

2. Point Clouds & Cameras

Generally speaking, stereo vision allows recovering the third di-
mension from multiple (at least two) distinct two-dimensional im-
ages. The underlying paradigm is called stereopsis, which is also
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the way humans are able to perceive depth from two images stem-
ming from two close-by locations.

2.1. Fundamentals of stereo vision

In computer vision, the goal is to reconstruct 3d structure which
lies in the 3d Euclidian space in front of multiple camera devices,
where each of them projects the scene on a 2d plane. For the
purpose of simplification and standardization, the most common
model of a camera is the pinhole camera. This model allows ex-
pressing the projection by means of a linear matrix equation using
homogeneous coordinates.

Camera model. The operation we want to carry out is a linear
central projection, thus the camera itself is defined by an optical
center C which is also the origin of the local 3d coordinate frame.
Typically, in computer vision, a right-handed coordinate system
is used, where the “up-direction” is the Y-axis and the camera
“looks” along the positive Z-axis, which is also called the prin-
cipal axis as shown in Fig. 3. The scene in front of the camera
is projected onto the image plane, which is perpendicular to the
principal axis, and its distance to the optical center is the actual
focal length f of the camera. The principal axis pierces the image
plane at the principal point p = (px, py)

T as depicted in Figure 3.
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Figure 3: Camera geometry: (left) C denotes the camera center
and p the principal point. In a basic setup the center of the first
camera is centered at the origin; (right) 2d cross section of the
projection.

In practice, lenses of common cameras are quite sophisticated
optical devices whose projective properties are not strictly linear.
In order to obtain the standardized camera from any arbitrary de-
vice, a process called camera calibration is carried out. In this
process the internal camera parameters are determined and stored
in the camera intrinsic calibration matrix K. The notation of the
matrix varies throughout the literature, but a basic version can be
described as:

K =

 f 0 px
0 f py
0 0 1

 , (1)

where f denotes the focal length, and the point p= (px, py)
T is the

principal point of the camera plane. This setup allows projecting
a point X = (x, y, z)T from 3d space onto a point x on the image
plane by a simple equation:

x = KX → ( f x/z+ px, f y/z+ py)
T . (2)

Another aspect of camera calibration is its location in space,
which is often called the extrinsic camera parameters. In single-
view vision, it is sufficient to define the origin of the global space
at the actual camera center without changing any of the men-
tioned equations. In multi-view vision, this is not adequate any-
more, since each camera requires its own local projective coordi-
nate system. These cameras, as well as the objects in the scene,

can be considered as lying in a common 3d space that can be de-
noted as the world space. The pose of each particular camera can
be described by a rotation, expressed by a 3-by-3 matrix R, and
the position of its optical center C, which is a vector in 3d world
space. This leads to an extension of Equation 1 to a 3×4 matrix:

P = KR [I |−C] , (3)

where P is referred to as homogeneous camera projection matrix.
Note that now the 3d space points have to be expressed in homoge-
neous coordinates X = (x,y,z,1)T. In this way, an arbitrary point
X in world space can be easily projected onto the image plane by:

x = KR [I |−C]X = PX . (4)

Determining the extrinsic parameters is often referred to as pose
estimation or as extrinsic calibration.

For a typical hand-held camera, the mentioned parameter sets
are not known a priori. There are several ways to obtain the intrin-
sic camera calibration [LZ98,WSB05,JTC09], where one of them
is to take photos of predefined patterns and to determine the pa-
rameters by minimizing the error between the known pattern and
the obtained projection [MvGV09]. Extrinsic parameters are of
more importance in a multi-camera setup, which can be obtained
automatically from a set of overlapping images with common cor-
responding points [MvGV09]. Please note that the described cam-
era model is a simplified version which does not take all aspects
into account, like the radial distortion or the aspect ratio of typi-
cal image-sensor pixels. We refer the reader to Hartley and Zisser-
man [HZ04] and to Moons et al. [MvGV09] for exhaustive discus-
sions about calibration and self-calibration in multi-view setups.

Epipolar geometry. For a single camera, we are able to deter-
mine only two parameters of an arbitrary 3d point projected to the
image plane. In fact, the point X lies on a projecting ray as de-
picted in Figure 4. Obviously, it is not possible to define the actual
position of the point along the ray without further information.
An additional image from a different position provides the needed
information. Figure 4 depicts this relationship: The projective ray
from the first camera trough a 2d image point x1 and a 3d point X
appears as a line l2 in the second camera, which is referred to as an
epipolar line. Consecutively, a corresponding point in the second
image must lie on the line and is denoted as x2. Note that also the
optical centers of each camera project onto the image planes of
each other, as shown in Figure 4. These points are denoted as the
epipoles e1 and e2, and the line connecting both camera centers
is referred to as the baseline. The plane defined by both camera
centers and the 3d point X is referred to as epipolar plane.

Stereo correspondence and triangulation. In a stereo setup, the
relation of two views to each other is expressed in a 3-by-3 rank 2
matrix, referred to as the fundamental matrix F, which satisfies:

xT
1 Fx2 = 0 , (5)

where x1 and x2 are two corresponding points in both images.
There exist well-known algorithms to determine the fundamental
matrix from 8 (linear problem) or 7 (non-linear problem) point
correspondences [MvGV09]. When working with known intrin-
sic camera settings, the relation is also often referred to as the
essential matrix E, which can be determined even from the corre-
spondences of five points [Nis04].

Assuming full camera calibration, the problem of 3d structure
reconstruction from stereo can be reduced to two sub-problems:
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Figure 4: Epipolar geometry in a nutshell: points x1 and x2 are
corresponding projections of the 3d point X. In image 1 the point
x1 lies on the epipolar line l1. The epipoles e1 and e2 indicate the
positions where C1 and C2 project respectively. The point v1 in
image 1 is the vanishing point of the projecting ray of x2.

(1) the one-to- one correspondence problem across the images and
(2) the intersection of the projective rays problem. The second
operation is usually referred to as structure triangulation due to
the triangle which is formed by the camera centers C1 and C2,
and each consecutive point X in 3d space. Note that this term has
a different meaning than the triangulation of geometric domains,
which is often used interchangeably to a tessellation into triangles
in the computer graphics literature.

One of the key inventions which advanced this research field
are robust feature-point detection algorithms, like SIFT [Low04]
and SURF [BTvG06, BETvG08]. These image processing meth-
ods allow for efficient detection of characteristic feature points
which can be matched across multiple images. Both algorithms
compute very robust descriptors which are mostly invariant to ro-
tation and scale, at least to a certain degree as shown by Schweiger
et al. [SZG∗09]. Once the corresponding features have been es-
tablished, the extrinsic (i.e., pose in 3d space) and, under certain
circumstances, also the intrinsic (e.g., focal length) parameters of
their cameras, as well as positions of the 3d space points can be
determined in an iterative process often called structure from mo-
tion.

2.2. Structure from motion

In practice, the stereo vision procedure described in the previous
section can be used to register multiple images, to orient and place
their cameras, and to recover 3d structure. It is carried out incre-
mentally in several passes, usually starting from an initial image
pair and adding consecutive images to the system one by one. Mu-
tual relations between the images are detected sequentially, new
3d points are extracted and triangulated, and the whole 3d point
cloud is updated and optimized.

In a first stage, for each image a sparse set of feature-points is
detected, which are than matched in a high-dimensional feature
space in order to determine unique pairs of corresponding points
across multiple images. This stage is usually approached with
high-dimensional nearest-neighbor search algorithms and data
structures, like the kd-tree, vp-tree [KZN08], and the vocabulary-
tree [NS06].

In order to improve the stability of the feature matching pro-
cess, robust estimation algorithms (i.e,. RANSAC [FB81,RFP08])
are employed in order to minimize the number of wrong matches
across images. By utilizing the already known parameters it is
possible to “filter out” outliers which deviate too far from an esti-
mated mapping.

Finally, advanced bundle adjustment solvers [TMHF00, LA09,
ASSS10, WACS11] are used to compute highly accurate camera
parameters and a sparse 3d point cloud. Bundle adjustment is a
non-linear least-squares optimization process which is carried out
after the addition of several new images to the system in order
to suppress the propagation of an error. In addition, is is always
performed at the end, after all images have been added, in order
to optimize the whole network of images. In this process both the
camera parameters (K, R, and C) as well as the positions of the 3d
points X are optimized simultaneously, aiming at minimization of
the re-projection error:

∑
j

∑
i∈ j

∥∥xi j−
(
K jR j

(
Xi−C j

))∥∥2 −→ min
K j ,R j ,C j ,Xi

, (6)

where i∈ j indicates that the point Xi is visible in image j, and xi j
denotes the projection of 3d points Xi onto image j. Usually opti-
mization is carried out using the non-linear Levenberg-Marquardt
minimization algorithm [HZ04].

The entire process is typically called structure from motion
(SfM) due to the fact that the 3d structure is recovered from a
set of photographs which have been taken by a camera that was
in motion. In fact, this methodology applies to video sequences as
well [vGZ97], and it can also be performed with line-feature cor-
respondences across images [TK95, SKD06], which is especially
suitable to urban models.

The advantage of general SfM is its conceptual simplicity and
robustness. Furthermore, since it is a bottom-up approach that
makes only few assumptions about the input data, it is quite gen-
eral.

Sparse reconstruction. There is a number of papers which uti-
lize sparse SfM for exploration and reconstruction of urban en-
vironments. All these methods produce sparse 3d point clouds,
either as the end-product or as an intermediate step. In a series of
publications, Snavely et al. [SSS06,SSS07,SGSS08,SSG∗10] de-
veloped a system for navigation in urban environments which is
mainly based on sparse points and structure from motion camera
networks (cf. Figure 5). In this system, called “Photo Tourism,”
it is possible to navigate through large collections of registered
photographs. The density of photographs combined with sparse
point clouds and smooth animations gives the user the impression
of spatial coherence. These works contributed significantly to the
maturity of the current state-of-the-art of SfM and to the use of
unstructured collections of Internet images [LWZ∗08].

Figure 5: A sparse point cloud generated from several thou-
sands of unordered photographs, and one photo taken from nearly
the same viewpoint. Figure courtesy of Noah Snavely [SSG∗10],
c©2010 IEEE.

Further methods introduced semi-dense (quasi-dense) SfM
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[LL02, LQ05] and aimed at improving performance, scalability,
and accuracy [ASS∗09,FQ10,AFS∗10,COSH11] in order to deal
with arbitrarily high numbers of input photographs. Recent work
of Agarwal et al. demonstrates impressively how to reconstruct ar-
chitecture from over a hundred thousand images in less than one
day [AFS∗11]. They cast the problem of matching corresponding
images as a graph-estimation problem, where each image is a ver-
tex, and edges connect only images which depict the same object.
They approach this problem using multi-view clustering of scene
objects [FCSS10].

2.3. Multi-view stereo

The described procedure of SfM delivers networks of images that
are registered to each other, including their camera properties, as
well as sparse point clouds of 3d structure. However, the point
clouds are usually rather sparse and do not contain any solid ge-
ometry. The next step in order to obtain more dense structure is
usually called dense matching. It is used for image-based recon-
struction of detailed surfaces as for instance shown in Figure 6.
In this context, dense means to try to capture information from all
pixels in the input images – in contrast to sparse methods, where
only selected feature points are considered.

Figure 6: Comparison of 3d models created by different methods.
Left: Vergauwen and van Gool [VvG06], middle: Furukawa and
Ponce [FP07], right: Micusik and Kosecka [MK10]. Figure cour-
tesy of Branislav Micusik [MK10]. c©2010 Springer.

In this paper, we mention several dense matching methods
which have been utilized for urban reconstruction. For a more
detailed overview, we refer the reader to Scharstein and Szeliski
[SS02a] for two-view stereo methods, and to Seitz et al. [SCD∗06]
for multi-view stereo methods (MVS).

Furthermore, many multi-view stereo methods utilize a con-
cept called “plane-sweeping”. This process, originally proposed
by Collins [Col96], is approached with multiple to each other reg-
istered views. The main idea is to “sweep” a plane through the
3d space along one of the axes with rays shot from all pixels of
all cameras onto the plane. According to epipolar geometry, in-
tersections of the rays with each other at their hitpoints on the
plane indicate 3d structure points. Collins showed how to utilize
a series of homographies in order to efficiently accumulate these
points and to generate reconstructions [Col96]. The main advan-
tages of this idea are that (1) it works with an arbitrary number n
of images, (2) its complexity scales with O(n), and (3) all images
are treated in the same way. Thus, the method was called by the
author as true multi-image matching approach. Plane sweeping
has been successfully utilized for the recovery of dense structure
and was consecutively extended to utilize programmable graphics
hardware [YP03] and multiple sweeping directions [GFM∗07].
Bauer et al. [BZB06] proposed a method based on plane sweeping
in order to recover sparse point clouds of buildings.

Dense reconstruction. The dense structure of a surface is also
computed by a multi-view stereo matching algorithm proposed
by Pollefeys [PvGV∗04]. Vergauwen and Van Gool [VvG06] ex-
tended this method from regular sequences of video frames to still
images by improved feature matching, additional internal quality
checks and methods to estimate internal camera parameters. This
approach was introduced as the free, public ARC3D web-service,
allowing the public to take or collect images, upload them, and
get the result as dense 3d data and camera calibration parameters
[TvG11]. Images of buildings are among the most often uploaded
data. Further extensions to this methodology were presented by
Akbarzadeh et al. [AFM∗06] and Pollefeys et al. [PNF∗08].

Furukawa and Ponce [FP07, FP10] presented a different ap-
proach for multi-view stereo reconstruction. Their method uses
a structure from motion camera network as a preliminary solu-
tion, but further, it is based on matching small patches placed
on the surface of the scene object which are back-projected onto
the images. First, features like Harris corners [HS88] or DoG
spots [Low04] are detected and matched across images, which,
projected on the object, define the locations of the patches. These
are defined in such a way that their re-projected footprints cover
the actual images. They are then optimized such that a photomet-
ric discrepancy function across the re-projected patches is mini-
mized. The results are semi-dense clouds of small patches which
serve as a basis for denser structure triangulation and, finally, for
polygonal surface extraction. To achieve this, they employ the
Poisson surface reconstruction algorithm [KBH06], as well as an
iteratively refined visual hull method [FP08]. Also this 3d recon-
struction idea is very generic, and it has since been extended and
applied to 3d urban reconstruction as well [FCSS09a, FCSS10].

Another approach for the reconstruction of dense structures is
to perform pairwise dense matching [SS02a] of any two registered
views and then to combine the computed depth maps with each
other. Usually this approach is denoted as depth map fusion. There
are several ideas how to perform this, such as from Goesele et
al. [GCS06,GSC∗07], Zach et al. [ZPB07, IZB07], and Merrell et
al. [MAW∗07]. An practical and robust dense matching approach
has been also proposed by Hischmüller [Hir08]. It uses a pixel-
wise Mutual Information-based matching cost for compensating
radiometric differences of input images.

Figure 7: An initial rough surface (top) combined with a geo-
metric primitive model (bottom). Figure courtesy of Florent La-
farge [LKBV12], c©2012 IEEE.

A common problem of dense stereo methods is that the mod-
els exhibit a relatively high amount of noise along flat surfaces.
This is due to the nature of matching nearby points more or
less independently from each other. This, in fact, is a major
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obstacle in urban reconstruction, where most models are com-
posed of groups of planar surfaces. Several methods try to over-
come this problem by including hierarchical models [LPK09],
Manhattan-world assumptions [FCSS09a, FCSS09b], multi-layer
depth maps [GPF10], or piece-wise planar priors [MK09, MK10,
SSS09, CLP10, GFP10]. Recently, Lafarge et al. [LKBV12] pro-
posed a hybrid method which combines dense meshes with geo-
metric primitives (cf. Figure 7).

Generally, dense multi-view approaches deliver quite impres-
sive results, like the large scale system presented by Frahm et al.
[FFGG∗10]: it deals with almost 3 million images, performs im-
age clustering, SfM, and dense map fusion in one day on a single
PC. On the downside, these systems usually provide dense polyg-
onal meshes without any higher-level knowledge of the underly-
ing scene, even though such information is very useful in com-
plex architectural models. However, there exist other approaches
which provide well-defined geometric shapes and often also some
semantics. We cover such methods in Section 3.

3. Buildings & Semantics

In this section we turn our attention to approaches which aim at
reconstructing whole buildings from various input sources, such
as a set of photographs or laser-scanned points, typically by fitting
some parameterized top-town building model.

3.1. Image-based modeling

In image-based modeling, a static 3d object is modeled with the
help of one or more images or videos. Such methods are often
also referred to as photogrammetric modeling, especially in the
photogrammetry and remote sensing community. In this section
we restrict our review to approaches which model single buildings
mainly from ground-based or close-range photographs (cf. Figure
8).

Figure 8: Interactive image-based modeling: (1) input image with
user-drawn edges shown in green, (2) shaded 3D solid model, (3)
geometric primitives overlaid onto the input image, (4) final view-
dependent, texture-mapped 3D model. Figure courtesy of Paul De-
bevec [DTM96] c©1996 ACM.

Generally, in order to obtain true 3d properties of an object,
the input must consist of at least two or more perspective images
of the scene. There are also single-image methods which usually
rely on user input or knowledge of the scene objects in order to
compensate for the missing information.

Nonetheless, also multi-view methods make a number of as-
sumptions about the underlying object in order to define a top-
down architectural model which is successively completed from

cues derived from the input imagery. The outcome usually con-
sists of medium-detail geometric building models, in some cases
enriched with finer detail, such as as windows. Some methods also
deliver textures and more detailed façade geometry, but we omit
discussion of these features in this section, and instead elaborate
them in Sec. 4.

The degree of user interaction varies across the methods as
well. Generally, the tradeoff is between quality and scalability.
More user interaction leads to more accurate models and seman-
tics, but such approaches do not scale well to huge amounts of
data. Using fully automatic methods is an option, but they are
more error prone and also depend more on the quality of the input.

Interactive multi-view modeling. A seminal paper in this field
was the work of Debevec et al. [DTM96]. Their system, called
“Façade”, introduced a workflow for interactive multi-view recon-
struction.

Figure 9: A geometric model of a simple building (a); the model’s
hierarchical representation (b). The nodes in the tree represent
parametric primitives while the links contain the spatial rela-
tionships between the blocks. Figure courtesy of Paul Debevec
[DTM96] c©1996 ACM

The actual model is composed of parameterized primitive poly-
hedral shapes, called blocks, arranged in a hierarchical tree struc-
ture (cf. Figure 9). Debevec et al. based their modeling application
on a number of observations [DTM96]:

• Most architectural scenes are well modeled by an arrangement
of geometric primitives.
• Blocks implicitly contain common architectural elements such

as parallel lines and right angles.
• Manipulating block primitives is convenient, since they are at

a suitably high level of abstraction; individual features such as
points and lines are less manageable.
• A surface model of the scene is readily obtained from the

blocks, so there is no need to infer surfaces from discrete fea-
tures.
• Modeling in terms of blocks and relationships greatly reduces

the number of parameters that the reconstruction algorithm
needs to recover.

Composing an architectural model from such blocks turned out
to be quite a robust task which provides very good results (cf.
Figure 9). During the modeling process, the user interactively se-
lects a number of photographs of the same object and marks cor-
responding edges in each of them. The correspondences allow
establishing epipolar-geometric relations between them, and the
parameters of the 3d primitives can be fitted automatically using
a non-linear optimization solver [TK95]. Because the number of
views is kept quite low, and because many of the blocks can be
constrained to each other – thus significantly reducing the param-
eter space – the optimization problem can be solved efficiently
(e.g., up to a few minutes on the 1996 hardware).
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The high quality of the obtained results encouraged other re-
searchers to develop interactive systems. For example, another
image-based modeling framework called “Photobuilder” was pre-
sented by Cipolla and Robertson [CR99, CRB99]. Their work in-
troduced an interactive system for recovering 3d models from a
few uncalibrated images of architectural scenes based on vanish-
ing points and the constraints of projective geometry. Such con-
straints, like parallelism and orthogonality, were also exploited by
Liebowitz et al. [LZ98, LCZ99], who presented a set of methods
for creating 3d models of scenes from a limited numbers of im-
ages, i.e., one or two, for situations where no scene coordinate
measurements are available.

Lee et al. introduced an interactive technique for block-model
generation from aerial imagery [LHN00]. They extended the
method further and introduced automatic integration of ground-
based images with 3d models in order to obtain high-resolution
façade textures [LJN02a, LJN02b, LJN02c]. They also proposed
an interactive system which provides a hierarchical representa-
tion of the 3d building models [LN03]. In this system, informa-
tion for different levels of detail can be acquired from aerial and
ground images. The method requires less user interaction than the
“Façade” system, since it uses more automatic image calibration.
It also requires at most 3 clicks for creating a 3d model and 2
model-to-image point correspondences for the pose estimation.
Finally, they also handled more detailed façade and window re-
construction [LN04] (cf. Section 4.3).

Also El-Hakim et al. [EhWGG05, EhWG05] proposed a semi-
automatic system for image-based modeling of architecture. Their
approach allows the user to model parameterized shapes which
are stored in a database and can be reused for further modeling of
similar objects.

The next important advance of interactive modeling was the
combination of automatic sparse structure from motion methods
with parameterized models and user interaction. SfM provides a
network of registered cameras and a sparse point-cloud (cf. Sec-
tion 2). The goal is to fit a parameterized model to this data.

Figure 10: Interactive modeling of geometry in video. Left: Repli-
cating the bollard by dragging the mouse. Right: Replicating
a row of bollards. Figure courtesy of Anton van den Hengel
[vdHDT∗07a] c©2007 ACM.

A series of papers published by van den Hengel and colleagues
describe building blocks of an image and video-based reconstruc-
tion framework (cf. Figure 10). Their system [vdHDT∗06] uses
camera parameters and point clouds generated by a structure from
motion process (cf. Section 2) as a starting point for developing
a higher-level model of the scene. The system relies on the user
to provide a small amount of structure information from which
more complex geometry is extrapolated. The regularity typically
present in man-made environments is used to reduce the interac-
tion required, but also to improve the accuracy of fit. They extend
their higher-level model [vdHDT∗07a], such that the scene is rep-
resented as a hierarchical set of parameterized shapes, as already

proposed by others [DTM96, LN03]. Relations between shapes,
such as adjacency and alignment, are specified interactively, such
that the user is asked to provide only high-level scene information
and the remaining detail is provided through geometric analysis
of the images. In a follow-up work [vdHDT∗07b], they present a
video-trace system for interactive generation of 3d models using
simple 2d sketches drawn by the user, which are constrained by
3d information already available.

Figure 11: Results of interactive image-based modeling method.
Figure courtesy of Sudipta Sinha [SSS∗08], c©2008 ACM.

Sinha et al. [SSS∗08] presented an interactive system for gen-
erating textured 3d models of architectural structures from un-
ordered sets of photographs (cf. Figure 11). It is also based on
structure from motion as the initial step. This work introduced
novel, simplified 2d interactions such as sketching of outlines
overlaid on 2d photographs. The 3d structure is automatically
computed by combining the 2d interaction with the multi-view
geometric information from structure from motion analysis. This
system also utilizes vanishing point constraints [RC02], which are
relatively easy to detect in architectural scenes. Recently, Larsen
and Moeslund [LM11b] proposed an interactive method for mod-
eling buildings from sparse SfM point-clouds. It provides simple
block models and textures. The pipeline also includes an approach
for automatic segmentation of façades.

Automatic multi-view modeling. A number of image-based
and photogrammetric approaches attempt fully automatic mod-
eling. Buildings are especially suited to such methods because
the model can be significantly constrained by cues typically
present in architectural scenes, like parallelism and orthogonal-
ity. These attributes help to extract line-features and vanishing
points from the images, which opens the door for compact algo-
rithms [LZ98,Rot00,RC02,KZ02] that aim at both reliable camera
recovery and consecutive reconstruction of 3d structure.

While the mentioned papers provide well-defined tools for
multi-view retrieval of general objects, others proposed model-
based systems which aim more specifically at building reconstruc-
tion. An early project for reconstructing whole urban blocks was
proposed by Teller [Tel98]. Coorg and Teller [CT99] detected ver-
tical building planes using the space-sweep algorithm [Col96] and
provided a projective texture for their façade, however, their sys-
tem did not yet utilized any stronger top-down model of a build-
ing.

Werner and Zisserman [WZ06] proposed a fully automatic ap-
proach inspired by the work of Debevec et al. [DTM96]. Their
method accepts a set of multiple short-range images and it at-
tempts to fit quite generic polyhedral models in the first stage.
In the second stage, the coarse model is used to guide the search
for fitting more detailed polyhedral shapes, such as windows and
doors. The system employs the plane-sweep approach [Col96] for
polyhedral shape fitting, which was also used by Schindler and
Bauer [BKS∗03], who additionally introduced more specific tem-
plates for architectural elements.
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Figure 12: Example of fully automatic modeling: A labeled 3d
model is generated from several images of an architectural scene.
Figure courtesy of Anthony Dick [DTC04], c©2004 Springer.

The work of Dick et al. [DTC00, DTC04] also aims at an au-
tomatic acquisition of 3d architectural models from small image
sequences (cf. Figure 12). Their model is Bayesian, which means
that it needs the formulation of a prior distribution. In other words,
the model is composed of parameterized primitives (such as walls,
doors, and windows), each having assigned a certain probabilis-
tic distribution. The prior of a wall layout, and the priors of the
parameters of each primitive are partially learned from training
data, and partially added manually according to the knowledge
of expert architects. The model is reconstructed using a Markov
Chain Monte Carlo (MCMC) machinery, which generates a range
of possible solutions from which the user can select the best one
when the structure recovery is ambiguous. In a way this method
is loosely related to inverse procedural methods described later in
Section 3.3 because it also delivers semantic descriptions of par-
ticular elements of the buildings.

Xiao et al. [XFZ∗09] provided another automatic approach to
generate 3d models from images captured along the streets at
ground level. Since their method reconstructs a larger urban area
than a single building, we discuss it in Section 5.1.

Interactive single-view modeling. Assuming some knowledge
about the scene, it is often possible to reconstruct it from a sin-
gle image. Horri et al. [HAA97] provided an interactive interface
for adding perspective to a single photograph, which is then sub-
sequently exploited in order to simulate the impression of depth.
Shum and Szeliski [SHS98] introduced a system for interactive
modeling of building interiors from a single panoramic image.
Photogrammetric tools, e.g., a linear algorithm which computes
plane rectification, plane orientation, and camera calibration from
a single image [LCZ99], paved the way for further single-image
approaches. For example, van den Heuvel [vdH01] introduced an
interactive algorithm for extraction of buildings from a single im-
age. Oh et al. [OCDD01] proposed a tool for interactive depth-
map painting in a single photo, which is then utilized for render-
ing.

The most recent paper in this category was presented by Jiang et
al. [JTC09], who introduced an algorithm to calibrate the camera
from a single image, and proposed an interactive method which
allows for recovery of 3d points driven by the symmetry of the
scene objects. Its limitation is that it only works for highly sym-
metric objects because the epipolar constraints are derived from
symmetries present in the scene.

Automatic single-view modeling. Some fully automatic meth-
ods have been attempted. Hoiem et al. [HEH05] proposed a

method for creation of simplified “pop-up” 3d models from a sin-
gle image, by using image segmentation and depth assignments
based on vanishing points [RC02, KZ02]. Kosecka and Zhang
[KZ05] introduced an approach for automatic extraction of domi-
nant rectangular structures from a single image using a model with
a high-level rectangular hypothesis. Barinova et al. [BKY∗08]
propose a method for structure reconstruction using a Conditional
Random Field model. Recently, Wan and Li [WL11] proposed
an automatic algorithm for façade segmentation, which segments
building to a set of separate façades based on extraction of vanish-
ing points and lines.

To summarize image-based modeling, we must say that fully
automatic modeling still suffers considerable quality loss com-
pared to interactive approaches, and as of today, the best quality is
still obtained by interactive multi-view methods. For this reason,
due to the current demand for high-quality models, most close-
range reconstruction is approached with semi-automatic model-
ing.

3.2. LiDAR-based modeling

Another group of methods focusing on the reconstruction of build-
ings utilizes laser-scan data, also referred to as LiDAR-data (Light
Detection and Ranging). Generally, there are two main types of
this class of data: those acquired by ground-based devices (terres-
trial LiDAR), and those captured from the air (aerial LiDAR).

Laser scanning is widely used in the photogrammetry and re-
mote sensing community for measurement and documentation
purposes. In this paper, we omit those methods. Only in the recent
years, the goal of further segmentation and fitting of parameter-
ized high-level polyhedral models emerged, and we will focus on
those approaches.

Interactive modeling. Due to advances in laser-scanning tech-
nology, LiDAR data has become more accessible in recent time,
but also the quality demands on the models has grown due to
the larger bandwidth and higher resolution displays. While laser-
scans are in general dense and relatively regular – thus perfectly
suited for architectural reconstruction – on the other hand, the
practical process of acquisition is difficult and the resulting data
is often corrupted with noise, outliers and incomplete coverage.
In order to overcome such problems, several methods propose to
process the data with user interaction.

Figure 13: Results of interactive fitting of “SmartBoxes” to
u incomplete LiDAR data. Figure courtesy of Liangliang Nan
[NSZ∗10], c©2010 ACM.

Böhm [B0̈8] published a method for completion of terrestrial
laser-scan point clouds, which is done by interactively utilizing
the repetitive information typically present in urban buildings.
Another approach aiming for a similar goal was introduced by
Zheng et al. [ZSW∗10]. It is also an interactive method for consol-
idation which completes holes in scans of building façades. This
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method exploits large-scale repetitions and self-similarities in or-
der to consolidate the imperfect data, denoise it, and complete the
missing parts.

Another interactive tool for assembling architectural models di-
rectly over 3d point clouds acquired from LiDAR data was in-
troduced by Nan et al. [NSZ∗10]. In this system, the user de-
fines simple building blocks, so-called SmartBoxes, which snap
to common architectural structures, like windows or balconies.
They are assembled through a discrete optimization process which
balances between fitting the point-cloud data [SWK07] and their
mutual similarity. In combination with user interaction, the sys-
tem can reconstruct complex buildings and façades from sparse
and incomplete 3d point clouds (cf. to Figure 13).

Other approaches aim at the enhancement of LiDAR data by
fusing it with optical imagery. Some work on registration and
pose estimation of ground-images with laser-scan point clouds
was done by Liu and Stamos [LS07]. The method aims at robust
registration of the camera-parameters of the 2d images with the 3d
point cloud. Recently, Li et al. [LZS∗11] introduced an interactive
system for fusing 3d point-clouds and 2d images in order to gener-
ate detailed, layered and textured polygonal building models. The
results of this method are very impressive, of course again, at the
cost of human labor and extended processing time.

Another approach is to fit polygonal models into point clouds,
especially using the assumption of piece-wise planar objects.
Chen and Chen [CC07] proposed a pipeline that relies on minimal
user input. Recently, Arikan et al. [ASF∗13] proposed a frame-
work for the generation of polyhedral models from semi-dense
point-clouds. Their system automatically extracts planar polygons
which are optimized in order to “snap” to each other to form
an initial model. The user can refine it with simple interactions,
like coarse 2d strokes. The output is an accurate and well-defined
polygonal object (cf. Figure 14).

Figure 14: Interactive modeling: starting from a noisy and in-
complete point cloud, the method of Arikan et al. yields a coarse
polygonal model that approximates the input. Figure courtesy of
Michael Schwärzler [ASF∗13].

Automatic modeling. Similar as with image-based modeling,
there also exist many approaches that aim at full automation.
While such systems scale well with the data, they usually re-
quire the user to set up a number of parameters. This kind of
parametrization is very common in fully automatic methods and
it turns out to be also an often underestimated obstacle, since the
search for proper parameters can be very time consuming. The
benefit is that once good parameters are found for a dataset, it can
be processed automatically irrespective its actual size.

In earlier works, Stamos and Allen developed a system for
reconstruction of buildings from sets of range scans combined
with sets of unordered photographs [SA00b,SA00a,SA01,SA02].
Their method is based on fitting planar polygons into pre-clustered
point-clouds. Bauer et al. [BKS∗03] also proposed an approach
for the detection and partition of planar structures in dense 3d

point clouds of façades, like polygonal models with a consider-
ably lower complexity than the original data.

Pu and Vosselman [PV09b] proposed a system for segmenting
terrestrial LiDAR data in order to fit detailed polygonal façade
models. Their method uses least-squares fitting of outline poly-
gons, convex hulls, and concave polygons, and it combines a poly-
hedral building model with the extracted parts. The reconstruction
method is automatic and it aims at detailed façade reconstruction
(refer to Section 4.2).

Toshev et al. [TMT10] also presented a method for detecting
and parsing of buildings from unorganized 3d point clouds. Their
top-down model is a simple and generic grammar fitted by a de-
pendency parsing algorithm, which also generates a semantic de-
scription. The output is a set of parse trees, such that each tree
represents a semantic decomposition of a building. The method is
very scalable and is able to parse entire cities.

Figure 15: Results of the automatic method which uses LiDAR
segmentation. Figure courtesy of Qian-Yi Zhou [ZN10], c©2010
Springer.

Zhou and Neumann [ZN08] presented an approach for auto-
matic reconstructing building models from airborne LiDAR data.
This method features vegetation detection, boundary extraction
and a data-driven algorithm which automatically learns the princi-
pal directions of roof boundaries. The output are polygonal build-
ing models. A further extension [ZN10, ZN11] produces polygo-
nal 2.5d models composed of complex roofs and vertical walls.
Their approach generates buildings with arbitrarily shaped roofs
with high level of detail, which is comparable to that of inter-
actively created models (cf. Figure 15). Recently they improved
their method using global regularities in the buildings [Neu12].

Vanegas et al. [VAB12] proposed an approach for the recon-
struction of buildings from 3d point clouds with the assumption
of Manhattan World building geometry. Their system detects and
classifies features in the data and organizes them into a con-
nected set of clusters from which a volumetric model descrip-
tion is extracted (cf. Figure 16). The Manhattan World assump-
tion has been successfully used by several urban reconstruction
approaches [FCSS09a,VAW∗10], since it robustly allows to iden-
tify fundamental shapes of most buildings. Recently, Lafarge and
Alliez [LA13] introduced an novel method for surface reconstruc-
tion from unstructured point sets that is structure-preserving.

Another important field is point sets segmentation. Korah et
al. [KMO11] published a method for segmentation of aerial ur-
ban LiDAR scans in order to determine individual buildings, and
Shen et al. [SHFH11] proposed a hierarchical façade segmenta-
tion method based on repetitions and symmetry detection in ter-
restrial LiDAR scans (cf. Section 4.2). Wan and Sharf [WS12]
proposed an automatic method which uses a simplified predefined
grammar that is fitted by probabilistic optimization. Their method
delivers good results but is restricted to a small number of possible
input buildings.

While LiDAR data is accessible for quite a while, and methods
which aim at robust fitting of top-down models into it deliver good
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Figure 16: Automatic reconstruction of a building with volumetric
models. For purposes of visual evaluation, the reconstructed vol-
ume is superimposed over the original point set, including noise
and obstacles (left), and textured with photographs of the build-
ings (right). Figure courtesy of Carlos Vanegas [VAB12], c©2012
IEEE.

results, the whole potential of this combination is still not fully
exhausted, thus, we may expect further interesting papers on this
topic in the near future.

3.3. Inverse procedural modeling

A new and growing area is that of inverse procedural modeling
(IPM), where the framework of grammar-driven model construc-
tion is not only used for synthesis, but also for the reconstruction
of existing buildings. Traditional forward procedural urban mod-
eling provides an elegant and fast way to generate huge, complex
and realistic looking urban sites. A recent survey [VAW∗10] pre-
sented this approach for the synthesis of urban environments. An
inverse methodology is applicable to many types of procedural
models, but such an exploration has been quite prolific with re-
spect to building models. The most general form of the inverse
procedural modeling problem is to discover both the parameter-
ized grammar rules and the parameter values that, when applied
in a particular sequence, yield a pre-specified output.

Discovering both the rules and the parameter values that re-
sult in a particular model effectively implies compressing a 3d
model down to an extremely compact and parameterized form.
Stava et al. proposed a technique to infer a compact grammar from
arbitrary 2d vector content [SBM∗10]. Bokeloh et al. [BWS10]
exploited partial symmetry in existing 3d models to do inverse
procedural modeling. Recently, Talton et al. [TLL∗11] used a
Metropolis-based approach to steer which rules (from a known
large set) and parameter values to apply in order to obtain a 3d
output resembling a pre-defined macroscopic shape. Benes et al.
[BvMM11] defined guided procedural modeling as a method to
spatially dividing the rules (and productions) into small guided
procedural models that can communicate by parameter exchange
in order to obtain a desired output.

Various methods have specialized the inverse framework to the
application of building reconstruction, often by assuming that the
rules are known – thus inferring only the parameter values. A
very complete, yet manual solution to this problem was presented
by Aliaga et al. [ARB07]. They interactively extract a repertoire
of grammars from a set of photographs of a building and utilize
this information in order to visualize a realistic and textured ur-
ban model (cf. Figure 17). This approach allows for quick mod-
ifications of the architectural structures, like number of floors or

windows in a floor. The disadvantage of this approach is the quite
labor-intensive grammar creation process.

Another grammar-driven method for automatic building gen-
eration from air-borne imagery was proposed by Vanegas et al.
[VAB10]. Their method uses a simple grammar for building ge-
ometry that approximately follows the Manhattan World assump-
tion. This means that it expects a predominance of the three mutu-
ally orthogonal directions. The grammar converts the reconstruc-
tion of a building into a sequential process of refining a coarse
initial building model (e.g., a box), which they optimize using
geometric and photometric matching across images. The system
produces complete textures polygonal models of buildings (Figure
18). Recently, Vanegas et al. [VGDA∗12] introduced a framework
that enables adding intuitive high level control to an existing large
urban procedural model.

Figure 17: Example of inverse procedural modeling of a building
from a photograph (top) and the application of the grammar to
generate novel building variations (bottom). Figure or [ARB07],
c©2007 IEEE.

Hohmann et al. [HKHF09,HHKF10] presented a modeling sys-
tem which is a combination of procedural modeling with GML
(generative modeling language) shape grammars [Hav05]. Their
method is based on interactive modeling in a top-down manner,
yet it contains high-level cues and aims at semantic enrichment of
geometric models. A more generic approach of generative model-
ing has been proposed recently by Ullrich and Fellner [UF11].

Mathias et al. [MMWvG11] reconstruct complete buildings as
procedural models using template shape grammars. In the recon-
struction process, they let the grammar interpreter automatically
decide on which step to take next. The process can be seen as
instantiating the template by determining the correct grammar pa-
rameters. Another approach where a grammar is fitted from laser-
scan data was published by Toshev et al. [TMT10].

Also in the photogrammetry community the idea of IPM has
found a wide applicability in papers aiming at reconstruction of
buildings and façades: Ripperda and Brenner introduced a prede-
fined façade grammar which they automatically fit from images
[BR06,Rip08] and laser scans [RB07,RB09] using the Reversible
Jump Markov Chain Monte Carlo (RJMCMC). A similar ap-
proach was proposed by Becker and Haala [BH07, BH09, Bec09]
but in this system they also propose to automatically derive a
façade-grammar from the data in a bottom-up manner.

Other work aims on grammar-driven image segmentation. For
example, Han and Zhu [HZ05,HZ09] presented a simple attribute
graph grammar as a generative representation for made-made
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scenes and propose a top-down/bottom-up inference algorithm for
parsing image content. Is simplifies the objects which can be de-
tected to square boxes in order to limit the grammar space. Nev-
ertheless, this approach provides a good starting point for inverse
procedural image segmentation.

The field of inverse procedural modeling is relatively new and
still not very well researched. For this reason, we expect more
exciting papers on this topic in the near future.

Figure 18: Results of the automatic method which uses aerial im-
agery registered to maps and an inverse procedural grammar. Fig-
ure courtesy of Carlos Vanegas [VAB10], c©2010 IEEE.

4. Façades & Images

In this section we focus on approaches aiming at the reconstruc-
tion and representation of façades. In recent years, many different
approaches for the extraction of façade texture, structure, façade
elements, and façade geometry have been proposed.

First, we discuss façade image processing approaches which
aim at an image-based representation of façades. Here we include
panorama imaging and projective texturing. Second, we continue
with façade-parsing methods. These methods aim at automatic
subdivision of façades into their structural elements. Third, we
address the topic of interactive façade modeling systems which
aim at higher quality and level of detail.

4.1. Façade imagery

Imagery is essential in urban reconstruction as both a source of
information as well as a source of realism in the final renderings.
Additional advantages of imagery are its, in general, simple ac-
quisition process, and also the fact, that there exists an enormous
amount of knowledge about its processing. It has been the subject
of very active research in the recent two decades. In this section
we cover urban panorama imaging as well as texture generation
approaches.

Panoramas and image stitching. Panoramas are traditionally
generated for the purpose of visualizing wide landscapes or sim-
ilar sights, but in the context of urban reconstruction, panoramas
might already be seen as final results of virtual models on its own.

In practice, panoramas are composed from several shots taken
at approximately the same location [SS02b,Sze06]. For urban en-
vironments, often the composed image is generated along a path
of camera movement, referred to as strip panorama. The goal of
those methods is to generate views with more than one viewpoint
in order to provide an approximation of an orthographic projec-
tion. Variants of those are pushbroom images, which are ortho-
graphic in the direction of motion and perspective in the orthogo-
nal one [GH97, SK03], and the similar x-slit images presented by
Zomet et al. [ZFPW03]. Similar approaches for the generation of
strip-panoramic images was proposed also by Zheng [Zhe03] and
Roman et al. [RGL04]. Agarwala et al. [AAC∗06] aim at the cre-
ation of long multi-view strip panoramas of street scenes, where

each building is projected approximately orthogonal on a proxy
plane (cf. Figure 19). Optimal source images for particular pix-
els are chosen using a constrained Markov Random Field (MRF)
optimization process [GG84, KZ04].

Panoramas are usually generated by stitching image content
from several sources, often also referred to as photomosaics. The
stitching of two signals of different intensity usually causes a visi-
ble junction between them. An early solution to this problem were
transition zones and multi-resolution blending [BA83]. Pérez et
al. [PGB03] introduced a powerful method for this purpose: im-
age editing in the gradient domain. There is a number of further
papers tackling, improving, accelerating and making use of this
idea [PGB03, ADA∗04, Aga07, MP08]. Zomet et al. presented an
image stitching method for long images [ZLPW06]. The founda-
tions behind the gradient domain image editing method are de-
scribed in the aforementioned papers as well as in the ICCV 2007
Course-Notes [AR07].

Texture generation. Another fundamental application of im-
agery is its necessity for texturing purposes. The particular prob-
lem of generating textures for the interactive rendering of 3d urban
models can be addressed by projective texturing from perspective
photographs. Most interactive modeling systems, like “Façade”
[DTM96], allow sampling projective textures on the reconstructed
buildings. Based on input from video [vdHDT∗07c] or image col-
lections [ARB07,SSS∗08,XFT∗08], they introduce projective tex-
ture sampling as part of their modeling pipeline and they rely on
user interaction in order to improve the quality of the results.

Others also proposed tools for texturing of existing models, like
an interactive approach by Georgiadis et al. [GSGA05], or an au-
tomatic by Grzeszczuk et al. [GKVH09]. There are further fully
automatic attempts (most of them in the photogrammetry litera-
ture) which aim at projective texture generation for existing build-
ing models [CT99, WH01, WTT∗02, B0̈4, OR05, GKKP07, TL07,
TKO08, KZZL10].

More tools dedicated to interactive enhancement and inpaint-
ing for architectural imagery were presented by Korah and Ras-
mussen [KR07b] who detected repetitive building parts to inpaint
façades, Pavic et al. [PSK06] who proposed an interactive method
for completion of building textures. Musialski et al. [MWR∗09]
used translational and reflective symmetry in façade-images to re-
move unwanted content (cf. Figure 20), and multi-image stitch-
ing to obtain obstacle-free near-orthographic views [MLS∗10].
Eisenacher et al. [ELS08] used example-based texture synthesis
to generate realistically looking building walls.

Figure 20: The input image on the left contains a traffic light
and several cables. To the right the unwanted objects have been
successfully removed by utilizing the symmetry in the façade im-
age [MWR∗09].

Recently, some interesting tools for façade imagery process-
ing have exploited the matrix factorization methodology. Matrix
factorization allows for good approximation of low-rank matrices
with a small number of certain basis functions [Str05]. Façade im-
ages are usually of low-rank due to many orthogonal and repetitive
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Figure 19: A multi-viewpoint panorama of a street in Antwerp composed from 107 photographs taken about one meter apart with a
hand-held camera. Figure courtesy of Aseem Agarwala [AAC∗06], c©2006 ACM.

patterns. The approach presented by Ali et al. [AYRW09] utilizes
factorization for a compression algorithm in order to overcome a
memory transfer bottleneck and to render massive urban models
directly from a compressed representation. Another method pro-
posed by Liu et al. [LMWY09, LMWY13] aims at inpainting of
missing image data. Their algorithm is built on studies about ten-
sor completion using the trace norm and relaxation techniques.
Façades are well suited for such algorithms due to many repeti-
tions (cf. Figure 21).

While processing of urban imagery is basically a well re-
searched topic, it still provides some challenges. Especially the
issue of segmentation of façades is an active research direction,
and we will elaborate on it in the next section.

Figure 21: Façade in-painting. The left image is the original im-
age. Middle: the lamp and satellite dishes together with a large
set of randomly positioned squares has been selected as missing
parts (80% of the façade shown in white). The right image is the
result of the tensor completion algorithm proposed in [LMWY09],
c©2009 IEEE.

4.2. Façade decomposition

Many different approaches for extraction of façade texture, struc-
ture, façade elements and façade geometry have been proposed.
Most methods interpret façade reconstruction as an image seg-
mentation problem, others define it as a feature detection chal-
lenge. Some resort to classical images processing tools which act
locally, others face the problem as a global one and usually pro-
pose grammars in order to fit a top-down model of the façade.
While recent interactive algorithms, which we review in the next
section, deliver very good results, automatic façade segmentation
is still an error-prone problem.

In the first step, façade imagery is usually processed with clas-
sic image processing methods, like edge [Can86], corner [HS88]
and feature [Low04, BETvG08] detection as basic tools to in-
fer low-level structure. We omit low-level processing and for de-
tails we refer to textbooks, e.g., Gonzales and Woods [GW08], or
Sonka et al. [SHB08].

The next step is to employ the low-level cues in order to infer
more sophisticated structure, like floors or windows. Most ear-
lier attempts were based on locally acting filtering and splitting
heuristics, but it turned out that such segmentation ist not enough
to reliably detect structure in complex façades. The necessity of
higher-order structure has emerged, thus, many methods turned

to symmetry detection, which is widely present in architecture.
These approaches often combine the low-level cues with unsu-
pervised clustering [HTF09], with searching and matching algo-
rithms, as well as with Hough transforms. Another trend of current
research is towards machine learning [Bis09, HTF09] in order to
fit elements in databases, or to infer façade structure with prede-
fined grammars or rules. In this section we provide an overview
over these various approaches.

Heuristic segmentation. Wang and Hanson [WH01] and Wang
et al. [WTT∗02] proposed a system which aims at the generation
of textured models and the detection of windows. They introduced
a façade texture based on the weighted average of several source
images projected on a (previously registered) block model, which
serves both for texturing and for detection of further detail (i.e.
windows). They proposed a heuristic oriented region growing al-
gorithm which iteratively enlarges and synchronizes small seed-
boxes until they best fit the windows in the texture. Another use
of local image segmentation and heuristics is presented by Tsai et
al. [TLLH05, TLH06, TCLH06], who calculate a “greenness in-
dex” to identify and suppress occlusions by vegetation on façade
textures extracted from drive-by video sequences. They detect lo-
cal mirror axes of façade parts in order to cover holes left after
removing the occluding vegetation. In both methods the used as-
sumptions, e.g., that windows are darker than their surrounding
façade, or the “greenness index”, are, however, weak and often
provide erroneous results.

Lee and Nevatia [LN04] proposed a segmentation method that
uses only edges. They project the edges horizontally and vertically
to get the marginal edge-pixel distributions and assume that these
have peaks where window-frames are located. From the thresh-
olded marginal distributions they construct a grid which approxi-
mates a subdivision of the façade. While the subdivisions are often
quite good, on the downside, this approach depends very strongly
on the parameters of the edge detector.

Symmetry and pattern detection. Symmetry abounds in archi-
tecture, which is mostly the result of economical manufacturing
and aesthetic design.

In image processing, early attempts include [RWY95], who
introduced a continuous symmetry transform for images. Later,
Schaffalitzky and Zisserman [SZ99] detected groups of repeated
elements in perspective images, and Turina et al. [TTvG01,
TTMvG01] detected repetitive patterns on planar surfaces, also
under perspective skew, using Hough transforms. They demon-
strated that their method works well on building façades. Further,
a considerable amount of work on this topic has been done by
Liu and collaborators [LCT04]. They detected crystallographic
groups in repetitive image patterns using a dominant peak ex-
traction method from the autocorrelation surface. Other image
processing approaches utilized the detected symmetry of regu-
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lar [HLEL06] and near-regular patterns [LLH04, LBHL08] in or-
der to model new images.

Further approaches specialized on detecting affine symmetry
groups in 2d images [LHXS05, LE06] and in 3d point clouds
[MGP06,PSG∗06]. Follow-ups of those methods introduced data-
driven modeling frameworks for symmetrization [MGP07] and
3d lattice fitting (cf. Figure 22) in laser-scans of architecture
[PMW∗08, MBB10].

The work finally boiled down to the insight that the repeti-
tive nature of façade elements can be exploited to segment them.
Berner et al. [BBW∗08,BWM∗11] and Bokeloh et al. [BBW∗09]
proposed a set of methods to detect symmetry in ground-based
urban laser scans. A heuristic segmentation based on detection of
symmetry and repetitions was proposed by Shen et al. [SHFH11].
Their method segments LiDAR scans of façades and detects con-
catenated grids. It automatically partitions the façade in an adap-
tive manner, such that a hierarchical representation is generated.

Figure 22: This example shows automatic symmetry detection re-
sults performed on point-clouds of architectural objects. Figure
courtesy of Mark Pauly [PMW∗08], c©2008 ACM.

Detection of repeated structures in façade images was ap-
proached by Korah and Rasmussen who introduced a method for
automatic detection of grids [KR07a]. Also others approached
with this task, like Wenzel et al. [WDF08], and Musialski et al.
[MRM∗10], who proposed methods to detect rectilinear patterns
in orthographic-rectified façade images using sparse image fea-
tures. A similar method was also introduced by Zhao and Quan
[ZQ11], who later extended their method do detect per-pixel sym-
metries [ZYZQ12].

Others detect symmetry directly in perspective images. For ex-
ample, Wu et al. [WFP10] proposed a method to detect grid-
like symmetry in façade images under perspective skew, which
they have used to reconstruct dense 3d structure in a follow-up
work [WACS11]. Park et al. [PBCL10] introduced a method to
detect translational symmetry in order to determine façades.

Another approach has been pursuit by Alsisan and Mitra
[AM12] who propose a combination of grid-detection and a MRF-
regularization in order to provide variation-factored façade repre-
sentation. Also Tylecek and Sara [TS10] pursued a similar ap-
proach, where both systems detect grids of windows in ortho-
rectified façade images using a weak prior and MCMC optimiza-
tion. A framework for the detection of regularly distributed façade
elements has been published by AlHalawani et al. [AYLM13].
Additionally, detection of regularly places structures has also been
proposed for segmentation of LiDAR data of façades [MS12] who
also adapt a voting-scheme for lattice detection.

Recently, Nianjuan et al. [NTC11] proposed a method for de-
tecting symmetry across multi-view networks of urban imagery.
A similar setup was used by Ceylan et al. [CML∗12] in order to
detect reliable symmetry across multiple registered images, which
is utilized to recover missing structure of buildings.

Learning and matching. Another group of methods specializes
in the detection of windows and other pre-specified structural ele-
ments. Some rely on template matching, others try to detect more
general shapes, like simple rectangles. The advantage of template
matching is that the results look very realistic. However, the dis-
advantage is that the windows are in most cases not authentic
because there is no template database that contains all possible
shapes.

For example, Schindler and Bauer [SB03] matched shape
templates against dense point clouds using supervised learning.
Mayer and Reznik [MR07] matched template images from a man-
ually constructed window image database against their façades.
Müller et al. [MZWvG07] matched the appearance of their geo-
metric 3d window models against façade image-tiles.

Some approaches combine template matching with machine
learning, e.g., Ali et al. [ASJ∗07], who proposed to train a clas-
sifier, or Drauschke et al. [DF08], who used Adaboost [SS99].
These systems identify a high percentage of windows even in im-
ages with perspective distortion.

Another approach, which is based on rectangles, is the window-
pane detection algorithm by Cech and Sara [CS08], which iden-
tifies strictly axis-aligned rectangular pixel configurations in a
MRF. Given the fact that the majority of windows and other façade
elements are rectangular, a common approach to façade recon-
struction is searching for rectangles or assuming that all windows
are rectangular. Also Haugeard et al. [HPFP09] introduced an al-
gorithm for inexact graph matching, which is able to extract rect-
angular window as a sub-graph of the graph of all contours of the
façade image. This serves as an basis to retrieve similar windows
from a database of images of façades.

An approach for segmentation of registered images captured at
ground level into architectural units has been proposed by Zhao
et al. [ZFX∗10]. Recently, Dai et al. [DPSV12] tackled the prob-
lem of façade segmentation and labelling without using any prior
knowledge.

Learning of features has also been used for other input data,
like geometric models. Sunkel et al. [SJW∗11] presented a user-
supervised technique that learns line features in such models.

Façade parsing. The term façade parsing denotes methods that
aim at knowledge-based object reconstruction, which means that
they employ an a-priori top-down model that is supposed to be fit-
ted by cues derived from the data (i.e., images or laser scans). In
fact, some methods utilize the concept of inverse procedural mod-
eling presented in Section 3.3. In a first step, a formal grammar is
either predefined manually [ARB07, Rip08], or automatically de-
termined in a bottom-up manner from the data [Bec09]. In a sec-
ond step, the grammar is fitted according to the underlying data,
which results in very compact representations.

One of the first who proposed grammar-based segmentation
were Alegre and Dellaert [AD04]. They introduced a set of rules
from a stochastic context-free attribute grammar, and a Markov
Chain Monte Carlo (MCMC) solution to optimize the parame-
ters. Mayer and Reznik [MR05, MR06, MR07] and Reznik and
Mayer [RM07] published a series of papers in which they present
a system for façade reconstruction and window detection by fitting
an implicit shape model [LLS04], again using MCMC optimiza-
tion.

A single-view approach for rule extraction from a segmenta-
tion of simple regular façades was published by Müller et al.
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[MZWvG07]. They cut the façade image into floors and tiles in
a synchronized manner in order to reduce it to a so-called irre-
ducible form, and subsequently fit grammar-rules into the detected
subdivision. This method is limited to rectilinearly distributed
façades (cf. Fig. 25). Van Gool et al. [vGZBM07] provided an
extension which detects similarity chains in perspective images
and a method to fit shape grammars to these.

Brenner and Ripperda [BR06, RB07, Rip08, RB09] developed
in a series of publications a system for detecting façade ele-
ments and especially windows from images and laser scans. In
this work, a context-free grammar for façades is derived from a
set of façade images and fitted to new models using the Reversible
Jump Markov Chain Monte Carlo technique (RJMCMC). Becker
and Haala [BH07, BHF08, Bec09, BH09] presented in a series of
papers a system which attempts to automatically discover a formal
grammar. This system was designed for reconstruction of façades
from a combination of LiDAR and image data.

Pu and Vosselman proposed a higher-order knowledge-driven
system which automatically reconstructs façade models from
ground laser-scan data [PV09b]. In a further approach, they com-
bine information from terrestrial laser point clouds and ground
images. The system establishes the general structure of the façade
using planar features from laser data in combination with strong
lines in images [PV09a, PV09c].

Figure 23: Automatic 3d reconstruction of a building with mul-
tiple façades visible from the street. Figure courtesy of Olivier
Teboul [STK∗12].

This topic is also of wide interest in the computer vision com-
munity. In an automatic approach, Koutsourakis [KST∗09] exam-
ines a rectified façade image in order to fit a hierarchical tree
grammar. This task is formulated as a Markov Random Field
[GG84], where the tree formulation of the façade image is con-
verted into a shape grammar responsible for generating an inverse
procedural model (cf. Section 3.3). Teboul et al. [TSKP10] extend
this work by combining a bottom-up segmentation through super-
pixels with top-down consistency checks coming from style rules.
The space of possible rules is explored efficiently. In a recent
follow-up they improve their method by employing reinforcement
learning [TKS∗11, TKS∗13]. In their recent work [STK∗12] they
present a multi-view approach which uses depth maps and an evo-
lutionary algorithms to determine the parameters of a predefined
grammar. This allow them to segment not only single façades, but
also 3d models of buildings (cf. Figure 23).

Riemenschneider et al. [RKT∗12] proposed an approach which
uses generic grammars as a model and a set of irregular lattices in
order to determine the structure of non-trial façades. Other recent
work by Martinovic et al. [MMWvG12] introduced a method to
decompose the façade into three basic layers of different granu-
larity and to apply probabilistic optimization in order to obtain

a semantic segmentation of the model. Another interesting ap-
proach was proposed by Yang et al. [YHQT12] who fit a binary
split grammar by treating the façade as a matrix and decomposing
it into rank-1 approximations.

While newer approaches based on inverse procedural model-
ing provide quite stable results, the quality and the level of detail
of these methods is still not good enough for current demands.
In practice, the expected quality for production is much higher,
therefore manual or interactive methods still have wide applica-
bility.

4.3. Façade modeling

The previous section presented an overview of automatic façade-
subdivision approaches. All these methods share the property that
they create models of low or intermediate level of detail and com-
plexity. Interactive approaches, on the other hand, promise better
quality and higher level of detail.

An interactive image-based approach to façade modeling was
introduced by Xiao et al. [XFT∗08]. It uses images captured along
streets and also relies on structure from motion as a source for
camera parameters and initial 3d data. It considers façades as flat
rectangular planes or simple developable surfaces with an asso-
ciated texture. Textures are composed from the input images by
projective texturing. In the next step, the façades are automati-
cally subdivided using a split heuristic based on local edge detec-
tion [LN04]. This subdivision is then followed by an interactive
bottom-up merging process. The system also detects reflectional
symmetry and repetitive patterns in order to improve the merging
task. Nonetheless, the system requires a considerable amount of
user interaction in order to correct misinterpretations of the auto-
matic routines.

Hohmann et al. [HKHF09] proposed a system for modeling of
façades based based on the GML shape grammar [Hav05]. Sim-
ilar as in the work of Aliaga et al. [ARB07], grammar rules are
determined manually on the façade imagery and can be used for
procedural remodeling of similar buildings.

Another interactive method for the reconstruction of façades
from terrestrial LiDAR data was proposed by Nan et al.
[NSZ∗10], which is based on semi-automatic snapping of small
structural assemblies, called SmartBoxes. We mention the method
also in Section 3.2.

Figure 24: Results of interactive modeling with the method of Mu-
sialski et al. [MWW12]. The façade image has been segmented
into 1346 elements. c©2012 The Eurographics Association and
Blackwell Publishing Ltd.

Recently, Musialski et al. [MWW12] introduced a semi-
automatic image-based façade modeling system (cf. Figure 24).
Their approach incorporates the notion of coherence, which
means that façade elements that exhibit partial symmetries across
the image can be grouped and edited in a synchronized manner.
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They also propose a modeling paradigm where the user is in con-
trol of the modeling workflow, but is supported by automatic mod-
eling tools, where they utilize unsupervised clustering in order to
robustly detect significant elements in orthographic façade im-
ages. Their method allows modeling high detail in competitive
time.

While interactive methods seem to be too slow and not scal-
able, the advantage of the high-quality output is a considerable
value (refer to Figure 25). For this reason, we believe that with the
plethora of research in automatic computer vision algorithms, it
will become equally important to study the efficient integration of
automatic processing and user interaction in future.

Figure 25: Comparison of the results of the automatic method of
[MZWvG07] (left, 409 shapes, excluding windows matched from
a template library) to the interactive method of [MWW12] (right,
1,878 shapes). Left image courtesy of Pascal Müller [MZWvG07].

5. Blocks & Cities

The problem of measuring and documenting the world is the ob-
jective of the photogrammetry and remote sensing community. In
the last two decades this problem has been also extended to au-
tomatic reconstruction of large urban areas or even whole urban
agglomerations. Additionally, also the computer vision and com-
puter graphics communities started contributing to the solutions.
In this section we want to mention several modern approaches
which have been proposed in this vast research field.

The common property of large-scale approaches is the demand
of minimal user interaction or, in the best case, no user interaction
at all, which leads to the best possible scalability of the algorithms.
There is quite a variety of methods, which either work with aerial
or ground-level input data or both. It is difficult to compare these
methods directly to each other since they have been developed
in different contexts (types of input data, types of reconstructed
buildings, level of interactivity, etc.). For this reason we do not
attempt a comparison; we will merely review the mentionable ap-
proaches and state their main contributions and ideas.

In large scale reconstruction, there is a trend towards multiple
input data types. Some publications involve aerial and ground-
based input, some also combine LiDAR with imagery. Other
methods introduce even more data sources, like a digital eleva-
tion model (DEM), a digital terrain model (DTM), or a digital
surface model (DSM). Finally, some methods incorporate posi-
tioning systems, like the global positing system (GPS), or local
inertial navigation systems (INS).

In this survey we omit a detailed discussion on remote sensing
concepts and refer to further literature [CW11]. A number of pa-
pers up to the year 2003 have been also reviewed in a survey by Hu

et al. [HYN03]. Haala and Kada [HK10] provide a survey of au-
tomatic approaches in the photogrammetry community. Another
important related work is the International Society for Photogram-
metry and Remote Sensing (ISPRS) test project on urban classi-
fication and 3d building reconstruction [RSJ∗12] that aims at the
evaluation for building detection, tree detection, and 3d building
reconstruction in the photogrammetry and remote-sensing com-
munity [RSGW13].

5.1. Ground-based reconstruction

One of the earlier approaches to reconstruct large urban areas was
the work of Früh and Zakhor. They published a series of articles
that aim at a fully automatic solution which combines imagery
with LiDAR. First they proposed an approach for automated gen-
eration of textured 3d city models with both high detail at ground
level and complete coverage for the bird’s-eye view [FZ03]. A
close-range façade model is acquired at the ground level by driv-
ing a vehicle equipped with laser scanners and a digital camera un-
der normal traffic conditions on public roads. A far-range digital
surface model (DSM), containing complementary roof and terrain
shape, is created from airborne laser scans, then triangulated, and
finally texture-mapped with aerial imagery. The façade models are
first registered with respect to the DSM using Monte Carlo local-
ization, and then merged with the DSM by removing redundant
parts and filling gaps. In further work [FZ04], they improved their
method for ground-based acquisition of large-scale 3d city mod-
els. Finally, they provided a comprehensive framework which fea-
tures a set of data-processing algorithms for generating textured
façade meshes of cities from a series of vertical 2d surface scans
and camera images [FJZ05].

In the realm of image-based methods, Pollefeys et al.
[PvGV∗04] presented an automatic system to build visual models
from images. This work is also one of the papers which pioneers
fully automatic structure from motion of urban environments. The
system deals with uncalibrated image sequences acquired with a
hand-held camera and is based on features matched across multi-
ple views. From these both the structure of the scene and the mo-
tion of the camera are retrieved (cf. Section 2.2). This approach
was further extended by Akbarzadeh et al. [AFM∗06] as well as
Pollefeys et al. [PNF∗08].

Figure 26: Examples of dense reconstruction after depth map fu-
sion. Figure courtesy of Arnold Irschara [IZB07], c©2007 IEEE.

Another image-based approach is the work of Irschara et
al. [IZB07, IZKB12] which provides a combined sparse-dense
method for city reconstruction from unstructured photo collec-
tions contributed by end users (cf. Figure 26). Hence, the “Wiki”
principle, well known from textual knowledge databases, is trans-
ferred to the goal of incrementally building a virtual representa-
tion of a local habitat. Their approach aims at large scale recon-
struction, using a vocabulary tree [NS06] to detect mutual cor-
respondences among images, and combines sparse point clouds,
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camera networks, and dense matching in order to provide very
detailed buildings.

Xiao et al. [XFZ∗09] proposed to extend their previous method
[XFT∗08] in order to provide an automatic approach to generate
street-side photo-realistic 3d models from images captured along
the streets at ground level. They employ a multi-view segmenta-
tion algorithm that recognizes and segments each image at pixel
level into semantically meaningful classes, such as building, sky,
ground, vegetation, etc. With a partitioning scheme the system
separates buildings into independent blocks, and for each block,
it analyzes the façade structure using priors of building regular-
ity. The system produces visually compelling results, however it
clearly suffers quality loss when compared to their previous, in-
teractive approach [XFT∗08].

Another system introduced by Grzeszczuk et al. [GKVH09]
aims at fully automatic texturing of large urban areas using ex-
isting models from GIS databases and unstructured ground-based
photographs. It employs SfM to register the images to each other
in the first step, and than the iterated closest point (ICP) algo-
rithm [BM92] in order to align the SfM 3d point clouds with the
polygonal geometry from GIS databases. In further steps their sys-
tem automatically selects optimal images in order to provide pro-
jective textures to the building models.

A ground-level city modeling framework which integrates re-
construction and object detection was presented by Cornelis et
al. [CLCvG08]. It is based on a highly optimized 3d reconstruc-
tion pipeline that can run in real-time, hence offering the possibil-
ity of online processing while the survey vehicle is recording. A
compact textured 3d model of the recorded path is already avail-
able when the survey vehicle returns to its home base (cf. Figure
27). The second component is an object detection pipeline, which
detects static and moving cars and localizes them in the recon-
structed world coordinate system.

Figure 27: A collection of rendered images from the final 3d city
model taken from various vantage points. Figure courtesy of Nico
Cornelis [CLCvG08], c©2008 Springer.

In general, ground-based systems are usually limited to rel-
atively small areas compared to airborne approaches. However,
these methods are the only ones to provide small-scale details,
thus, the objective is often the combination of both acquisition
methods.

5.2. Aerial reconstruction

Aerial imagery is perhaps the most often used data source for re-
construction of urban environments, and has been explored in the
photogrammetry and remote sensing community for many years.
There has been a significant number of successful approaches in
the past decade, like those of Baillard et al. [BZ99], the group
of Nevatia et al. [NN01, NP02, KN04], or Jaynes et al. [JRH03].

Many approaches often combine imagery with other input data. In
this section we review several systems developed in recent years.

Wang et al. [WYN07] combined both aerial and ground-based
imagery in a semiautomatic approach. The framework stitches the
ground-level images into panoramas in order to obtain a wide
camera field of view. It also detects the footprints of buildings
in orthographic aerial images automatically, and both sources are
combined, where the system incorporates some amount of user
interaction in order to correct wrong correspondences.

Another multi-input method was proposed by Zebedin et al.
[ZBKB08]. This framework combines aerial imagery with addi-
tional information from DEMs. They introduced an algorithm for
fully automatic building reconstruction, which combines sparse
line features and dense depth data with a global optimization al-
gorithm based on graph cuts [KZ04]. Their method also allows
generating multiple LODs of the geometry. Also Karantzalos and
Paragios [KP10] proposed a framework for automatic 3d building
reconstruction by combining images and DEMs. They developed
a generalized variational framework which addresses large-scale
reconstruction by utilizing hierarchical grammar-based 3d build-
ing models as a prior. They use an optimization algorithm on the
GPU to efficiently fit grammar-instance from the information ex-
tracted from images and the DEM.

A recent method of Mastin et al. [MKF09] introduced a method
for fusion of 3d laser data and aerial imagery. Their work employs
mutual information for registration of images with LiDAR point
clouds, which exploits the statistical dependency in urban scenes.
They utilize the downhill simplex optimization to infer camera
pose parameters and propose three methods for measuring mutual
information between LiDAR and optical imagery.

Figure 28: Automatic urban area reconstruction results from a
DSMs (left): without (middle) and with textures (right). Figure
courtesy of Florent Lafarge [LDZPD10], c©2010 IEEE.

Another source for large-scale reconstruction is a digital sur-
face model (DSM), which can be obtained automatically from
aerial and satellite imagery. Lafarge et al. [LDZPD10] proposed to
use a DSM in order to extract individual building models. It treats
each building as an assembly of simple 3d parametric blocks,
which are placed on the DSM by 2d matching techniques, and
then optimized using an MCMC solver. The method provides in-
dividual building models of urban areas (cf. Figure 28).

Others utilize imagery only. Liao et al. [LLM11] proposed an
multi-view stereo algorithm for efficient reconstruction. Another
recent method by Garcia-Dorado and Aliaga [GDA13] aims at the
reconstruction of planar-hinged buildings Generally, methods that
use aerial data provide a number of benefits over ground-based
approaches and are thus still an active field.

5.3. Massive city reconstruction

In this section we mention several methods which employ fully
automatic methodologies and also provide reconstructions of en-
tire urban areas. One significant factor which allows for such vast
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reconstruction is the general technological progress in the data
acquisition process, such as the easy access to huge collections
of images on the Internet, or the presence of many accurate and
large LiDAR data sets. The second, perhaps more important, fac-
tor is the development of smart and scalable reconstruction algo-
rithms. No hardware advantage will compensate for exponentially
scaling approaches, thus development of such algorithms is still a
challenge.

In the image-based reconstruction domain, an impressive sys-
tem was recently presented by Frahm et al. [FFGG∗10]. It is ca-
pable of delivering dense structure from unstructured Internet im-
ages within one day on a single PC. Their framework extends to
the scale of millions of images, what they achieve by extending
state-of-the-art methods for appearance-based clustering, robust
estimation, and stereo fusion (cf. Section 2), and by parallelizing
the tasks which can be efficiently processed on multi-core CPUs
and modern graphics hardware.

Poullis and You introduced a method for massive automatic re-
construction from images and LiDAR [PY09a, PY09b, PY09c].
Their system automatically creates lightweight, watertight polyg-
onal 3d models from airborne LiDAR. The technique is based on
a statistical analysis of the geometric properties of the data and
makes no particular assumptions about the input. It is able to re-
construct areas containing several thousand buildings, as shown
in Figure 29. Recently they extended their method for textur-
ing [PY11].

Figure 29: Large scale reconstruction of Downtown Denver and
surrounding areas. The model is a polygonal mesh generated from
air-borne LiDAR data. Figure courtesy of Charalambos Poullis
[PY09a]. c©2009 IEEE.

Also Zhou and Neumann proposed a similar approach [ZN09,
ZN11]. Generally, while the results of recent methods are very
impressive, automatic large-scale reconstruction remains an open
problem. With the goal of very detailed and dense virtual urban
habitats, the problem still remains a very difficult one. The chal-
lenges lie in the management and processing of huge amounts of
data, in the developments of robust automatic as well as fast and
scalable algorithms, and finally, in the integration of many differ-
ent types of data.

Lafarge and Mallet [LM11a, LM12] published an approach
which aims at even more complete modeling from aerial LiDAR.
Its advantage is that it not only reconstructs building models, but
also the inherent vegetation and complex grounds. Furthermore, it
is also generalized such that it can deal with unspecified urban en-
vironments, e.g., with business districts as well as with small vil-
lages. Geometric 3d-primitives such as planes, cylinders, spheres
or cones are used to describe regular roof sections, and are com-
bined with mesh-patches to represent irregular components. The

various geometric components interact through a non-convex op-
timization solver. Their system provides impressive large-scale re-
sults as shown in Figure 30.

Figure 30: Reconstruction of two large urban environments with
closeup crops. Figure courtesy of Florent Lafarge [LM11a].
c©2011 IEEE.

6. Conclusions

Despite the large body of existing work on urban reconstruction,
we believe it is still a great time to conduct research in this area.
The topic is very important and the many open problems leave
room for significant contributions.

Most importantly, the fully automatic algorithms rely on as-
sumptions that are not met in practice, so that the quality of the
obtained results is not sufficient for most applications. Contribu-
tions in this area might be difficult to obtain, but their impact can
be significant.

Further, we believe that investigating the combination of inter-
active techniques and automatic algorithms is important from a
practical standpoint. It is a common misconception that user in-
teraction can be efficiently used as a post-processing step to clean
up automatic results. Typically, an efficient framework can only be
achieved with a tighter coupling of user interaction and automatic
computation throughout the modeling pipeline.

There are several excellent examples of how the analysis of
large photo collections can lead to impressive results. We believe
that this remains a hot topic and that studying questions related
to large-scale data analysis and using the modeling effort of many
users will be fruitful.

Further, there is still more room for contributions related to
higher-level shape analysis and understanding, such as symmetry
detection, the reconstruction of functionality, and inverse proce-
dural modeling.

Finally, if high-quality urban models become easier accessible
and more widespread, the investigation of novel applications will
become more attractive in a wider range of research fields.
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