
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 1

Geometry Synthesis on Surfaces Using
Field-Guided Shape Grammars

Yuanyuan Li, Fan Bao, Eugene Zhang, Member, IEEE, Yoshihiro Kobayashi, and Peter Wonka Member, IEEE,

Abstract—We show how to model geometric patterns on surfaces. We build on the concept of shape grammars to allow the grammars to be guided
by a vector or tensor field. Our approach affords greater artistic freedom in design and enables the use of grammars to create patterns on manifold
surfaces. We show several application examples in visualization, anisotropic tiling of mosaics, and geometry synthesis on surfaces. In contrast
to previous work we can create patterns that adapt to the underlying surface rather than distorting the geometry with a texture parametrization.
Additionally, we are the first to model patterns with a global structure thanks to the ability to derive field-guided shape grammars on surfaces.

Index Terms—shape grammars, tensor fields, vector fields, surfaces, geometry synthesis

F

1 INTRODUCTION

In this paper we introduce the concept of field-guided shape
grammars. In previous work, shape grammars have been used
to model geometric or organic patterns in the plane and three-
dimensional objects like architecture and trees. Extending
shape grammars with fields will result in a modeling approach
that can create three-dimensional geometry or texture on
surfaces. This approach can also provide more freedom in
artistic design.

One of the main results of our framework is that we can not
only generate local and stationary patterns (geometric textures)
on surfaces such as previous work [1] but also patterns with a
global structure. We show two example patterns with a global
structure. In the tree example (Fig. 2) the branching structure
is global and cannot be produced by a texture synthesis or
geometric tiling algorithm. In the radial pattern (Fig. 5) the
structure is global because shapes are aligned according to
concentric circles increasing in size. As comparison we show
an example for a local pattern in Fig. 3 right.

Our approach is to use field-guided shape grammars. We
consider a variety of fields, such as vector fields, second-
order tensor fields, and higher-order tensor fields. A field
can be used to guide a grammar in multiple ways. First, the
spatial relationship of shapes is defined through curves that
are streamlines [2] or hyperstreamlines in a field. Second,
the grammar can use a field to influence parameters such as
parameters for rotation, scaling, and color. Third, the grammar
can use the field in the rule selection process itself.

The major contributions of this paper are the following:

• We introduce field-guided shape grammars. We show
that field-guided shape grammars are able to create a

• Y. Li, F. Bao, Y. Kobayashi, and P. Wonka are with the PRISM lab, Arizona
State University, Tempe.
E-mail: liyuan84|dr.yoshihiro.kobayashi|pwonka@gmail.com

• E. Zhang is with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvaliis.
E-mail: zhange@eecs.oregonstate.edu

large class of designs that are difficult to create by other
methods.

• In contrast with the existing geometric texture synthesis
approaches, we are the first to show the design of patterns
with a global structure on surfaces.

In Section 2, we review previous work related to our ap-
proach including a discussion on strength and limitations in
designing global geometry patterns on surfaces. In Section 3,
shape grammars that can procedurally generate patterns in the
Euclidean plane are illustrated. Section 4 describes our main
framework for Field Guided Shape Grammars, including how
to generate a guiding vector or tensor field as well as how
the guiding field is used for pattern synthesis on surfaces.
We also describe a simple pattern optimization technique in
this section. In Section 5 , we demonstrate the capability of
our approach with a number of applications such as image-
based mosaic tiling, tensor field visualization, and modeling of
geometry on surfaces. We discuss the strength and limitations
of our approach in Section 6 and conclude in Section 7.

2 RELATED WORK

In the following section we review related work in the area
of procedural modeling, vector and tensor field design and
processing, graph and tiling design, and texture and geometry
synthesis on surfaces.

Procedural Modeling with grammars has several successful
applications in computer graphics. L-systems have been very
effectively applied to plant modeling [3] and street model-
ing [4]. Comparable to our work L-systems use transfor-
mations on a local coordinate system, similar to a LOGO-
style turtle. While L-systems have been extended to interact
with their environments, such as general surfaces [5], [6],
height fields [4], and curves [7], they usually do not consider
several challenges of the geometry itself that are important for
generating patterns on surfaces. Existing methods can grow
patterns in the plane or 3D space but not on surfaces. Our
work is also related to shape grammars in architecture [8], [9],
[10] in that we use the notation and scope concept (coordinate

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 2

Fig. 1. In this paper we describe how to model geometry patterns on surfaces. We use a shape grammar (left) that is guided
with a user-designed tensor field (middle) to produce the final result (right).

system plus scale) presented by Mueller et al. [8]. At a lower
level, generative mesh modeling can produce complex surfaces
from simpler ones [11] similar to subdivision surfaces.

Vector and Tensor Field Design: Vector field design refers
to generating a vector field that satisfies user constraints.
Vector field design has many applications such as texture
synthesis [12], non-photorealistic rendering [13], [14], and
hair modeling [15]. Vector field design has been recently ex-
tended to tensor field design [16] and higher-order tensor field
design [17], with applications in non-photorealistic render-
ing [16], [17], street modeling [18], geometry remeshing [19],
[20], [16], and surface parametrization [20]. There has been
an abundance of recent research in developing techniques and
systems for the design and processing of vector and tensor
fields [21], [16], [22], [17], [23], [24].

Pattern Design: Similar to L-systems, leaf venation pat-
terns [25] can be created by growing a graph. Tile patterns
can be classified according to the regularity of the patterns
and according to the complexity of the shapes. The simplest
designs are circle layouts or points samples [26], [27], [28],
[29]. In the planar case rectangles can be used to create
mosaic patterns guided by a vector field [30]. Jigsaw image
mosaics can place more general shapes, but do not offer much
control over the orientation [31]. Shapes can also be placed
by example [32]. In architecture, optimization can be used
to place tiles on a surface [33], [34], [35]. An interesting
application of tiles on surfaces are brick designs [36].

Texture Synthesis: Example-based texture synthesis
[37], [38], [39], [40] can be used to improve the visual
detail on meshes. Patterns of geometric elements have
also been generated using a biologically-motivated cellular
development simulation [41] together with a constraint to
keep the cells on a surface. The patch-based approach [42]
[43], [44] is a popular technique among example-based
texture synthesis that minimizes the seams between patches
through searching for the “min-cut”. Bhat et al. proposed an
algorithm [45] to extend the idea of texture synthesis to 3D
volumetric textures. Mesh quilting [1] is a geometric texture
synthesis algorithm to spread a 3D texture sample given in the
form of a triangle mesh. Although this approach can generate

nice geometry patterns, it also has several limitations. First,
due to the inherent characteristics of texture synthesis, it
can only generate local and stationary patterns which look
similar everywhere. Patterns with global structures (see
Fig. 2) cannot be generated with texture synthesis. Second,
as an example-base approach, a manually designed mesh is
required as input. In addition, how to spread the pattern is
usually hard-coded. In contrast, in our approach the user can
flexibly control this procedure using grammar rules. Finally,
mesh quilting on surfaces depends on local parameterizations
of surface patches, so that patterns in regions with very high
curvature can be significantly distorted.

Fig. 2. A tree pattern with a global structure on a plane. This
pattern cannot be generated by taking small example patches
of a tree and quilting them.

3 SHAPE GRAMMARS IN THE EUCLIDIAN PLANE

In this section we explain how to use shape grammars to model
patterns in the plane. This lays the foundation for designing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 3

patterns on surfaces (see Section 4).

In this paper, we build upon existing work in grammar-based
modeling, mainly CGA Shape as introduced by Mueller et
al. [46]. For the examples illustrated in this paper we will
mainly use the scope commands add, scale, translate, and
rotate (originally used in L-systems [3]). Our contribution is
the incorporation of vector and tensor fields into the grammars
and an extension to modify the behavior of rules by local
optimization using collision detection and shape merging.
These parts are described in Section 4. We will refer to
the grammar as Field-Guided Shape Grammar (FGSG). The
grammar is classified as a sequential grammar of which Chom-
sky grammars [47] and CGA Shape are typical examples. In
the following we briefly review the most relevant concepts
of the grammar and give examples of how the grammar
can model patterns in the plane. Then we will explain how
the grammar can be embedded into fields and moved onto
surfaces.

Fig. 3. Left: The scope of a shape. The point P, together with
the three axes X , Y , and Z and a size vector S define a box in
space that contains the shape. Right: A pattern in the plane.

Shape: The grammar works with a configuration of shapes. A
shape consists of a symbol (string), geometry (geometric at-
tributes), and numeric attributes. Shapes are identified by their
symbols which is either terminal (∈ Σ) or non-terminal (∈V).
The corresponding shapes are called terminal shapes and non-
terminal shapes. The most important geometric attributes are
the position P, three orthogonal vectors X , Y , and Z describing
a coordinate system, and a size vector S. These attributes
define an oriented bounding box in space called scope (see
Fig. 3).

Production process: A configuration in grammar is a finite
set of basic shapes. The production process can start with
an arbitrary configuration of shapes A, called the axiom, and
proceeds as follows: (1) select an active shape with a symbol
B in the set, (2) choose a production rule with B on the
left hand side to compute a successor for B, a new set of
shapes BNEW (3) mark the shape B as inactive and add the
shapes BNEW to the configuration and continue with step (1).
When the configuration contains no more non-terminals, the
production process terminates. To control the derivation, we
assign a priority to all rules to obtain a (modified) breadth-first
derivation: we simply select the shape with the rule of highest
priority in step (1). If priorities are not used we can select to
follow a depth-first or breadth-first derivation.

Notation: Production rules are defined in the following form:

id: predecessor : cond ; successor : prob

where id is a unique identifier for the rule, predecessor ∈ V
is a symbol identifying a shape that is to be replaced with
successor, and cond is a guard (logical expression) that has
to evaluate to true in order for the rule to be applied.Later
we will see that cond is helpful to adapt the production with
respect to the properties of surface geometry and tensor field
(see Section 4.3). The rule is selected based on a probability
prob. For example, the rule

1: A ; M C : 0.5

replaces the shape A with shapes M and C with a probability
of 0.5.prob is very helpful in generating stochastic patterns
(See Fig. 1). To specify the successor shapes we use different
forms of rules explained in the remainder of this section.

Scope-transformation rules: We use scope commands add,
scale, translate, and rotate to modify shapes: T (tx, ty, tz) is
a translation vector that is added to the scope position P,
Rx(angle), Ry(angle), and Rz(angle) rotate the respective axis
of the coordinate system, and S(sx,sy,sz) sets the size of the
scope. We use [and] to push and pop the current scope on a
stack. Any non-terminal symbol ∈V in the rule will be created
with the current scope. Similarly, the command I(ob jId) adds
an instance of a geometric primitive with identifier ob jId. Any
three-dimensional model can be used.

Example: The example grammar below illustrates the design
of a planar pattern by growing outwards from a seed shape.
The result is depicted in Fig. 4. An example of a pattern with
a global structure is shown in Fig. 5.

1: Axiom ; P;
2: P ; [RZ(30) T(0.6, 0, 0) A]

[RZ(150) T(0.6,0, 0) A]
[RZ(-90) T(0.6,0, 0) A];

3: A ; B [T(0.6, 0, 0) RZ(60) T(0.6, 0, 0) A]
[T(0.6, 0, 0) RZ(-60) T(0.6, 0, 0) A];

4: B ; S(1.0, 1.0, 0.6) I(”torus”);

4 FIELD-GUIDED SHAPE GRAMMARS

In this section we describe how to design patterns on surfaces
using field-guided shape grammars. We first give a motivation
for our design choices (Section 4.1). Then we describe the
tools we use to design a vector or tensor field on surfaces
(Section 4.2). In Section 4.3 we explain a new algorithm
for deriving shape grammars on surfaces while querying the
field. During the grammar derivation, the pattern is optimized
locally by integrating collision detection and shape merging
(see Section 4.4).

4.1 Why Field-Guided Shape Grammars?

At the core of our approach is the use of fields in various
aspects of the original shape grammars. These aspects include:

1) using a field to guide the translation command translate.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 4

Fig. 4. This example shows a design in the plane. The
colors denote the order of placement and are not part of the
design. The pattern grows outward starting from a single scope
(symbol) placed in the middle of the pattern.

Fig. 5. A radial pattern with a global structure.

2) using another field or its properties as parameters in the
shape grammar commands. We give two common ex-
amples: (1) controlling the rotation of the scope relative
to a vector or tensor field and (2) using the length of
vectors in a vector field or eigenvectors in a tensor field
to control the scaling or amount of translation of a shape.

3) allowing attributes of the field to select production rules.

Here a tensor refers to a matrix, i.e, the tensor is of second-
order. However, our system can also make use of a scalar
field, a vector field or a high-order tensor field, in which the
order is higher than two.

There are a number of justifications for a field-guided shape
grammar. First, it can be directly applied to surfaces. In
contrast, the original shape grammar would need a (global)

parametrization. We believe that it is significantly simpler to
design a field then to design a parametrization. The field
as well as the surface normal provide a good local frame
for propagation of shapes on a surface. Second, by mapping
properties of a field to the shapes generated by the grammar,
we provide control for local pattern properties, such as the size
and the orientation of shapes. Third, by incorporating tensor
fields into the grammar, we can achieve different layouts by
providing different input tensor fields which are used to guide
the growth of the shape tree (Fig. 12 shows different fields
and their corresponding artistic design or image mosaicing).

In the remainder of this section, we will describe what modifi-
cations are needed for field-guided shape grammars. We start
out by describing the field design process (Section 4.2). Then
we describe field-guided shape grammars (Section 4.3) and
two strategies for optimizing shape placement (Section 4.4).

4.2 How to Design a Field?

While FGSG works with a variety of fields, such as vector
fields, second-order tensor fields, and higher-order tensor
fields, we limit our description to the second-order tensor field
case. A tensor field T for a manifold surface M is a smooth
tensor-valued function:

T (p) =
(

T11(p) T12(p)
T21(p) T22(p)

)
, p ∈M (1)

A point p is degenerate (singular) when T11(p) = T22(p) and
T12(p) = T21(p) = 0. At a degenerate point, the tensor is
isotropic and the eigenvectors are undefined. There are a vari-
ety of restrictions that can be placed on the field. For example,
eigenvectors of non-singular tensors can be limited to vectors
of unit length, or the angle between both unit eigenvectors can
be limited to π

2 . Using both of these restrictions yields tensors
of the form:

T (p) =
(

cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
(2)

with major and minor eigenvectors directions θ and θ +π/2,
respectively. To design a tensor field on surfaces, we adapt
the interactive tensor field design algorithms of [16], which
has two stages, initialization and editing. We describe our
implementation next.

During the initialization stage, the tensor field is designed
with user-specified design elements placed on surface. The
user can choose either a regular element, which can guide the
nearby tensor’s direction, or a singular element, which can
be a wedge, a trisector, a node, a center or a saddle (see
Fig. 6 [16]). The tensor elements are propagated over the
surface usingGaussian radial basis functions (RBF) to define
a basis field. This propagation requires the computation of a
geodesic polar map [48]. For each vertex p on the surface, we
assign polar coordinates (ρ,θ) with respect to the center c of
a design element d. The shortest path between p and c on the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 5

surface is called a geodesic [48]. The magnitude component
ρ is the geodesic distance, i.e. the length of the geodesic. The
angular component θ is the angle of the geodesic with respect
to some local frame at c. Wecalculate the geodesic distance
using fast marching with a spherical wavefront propagation
algorithm [49] to get the distance component ρ . Based on
geodesic distances, the angular component can be computed
by accelerated particle tracing. The user can place multiple
elements on the surface and the final result is obtained by
adding upthe tensor components contributed by each individ-
ual basisfield.

T (pi) = ∑
j

e−d jρi j Tj(ρi j,θi j) (3)

The variable pi denotes a vertex on the surface, Tj(ρ,θ)
denotes the j-th basis function (using polar coordinates), and
d j denotes the decay constant for Tj(ρ,θ). ρi j and θi j are the
polar coordinates of vertex i with respect to basis element j.
The generated field is a continuous tensor field on the surface,
but there are usually some unnecessary singular points.

Fig. 6. Five types of singular elements used for tensor field
design.

In the editing stage, the user can smooth regions by componen-
twise discrete Laplacian local smoothing [16] and modifying
tensors at vertices directly. The main purpose of this stage
is to reduce the number of unwanted singularity pointsFig. 7
provides an example that shows how tensor field smoothing
can reduce the number of singularities in the field and increase
the smoothness of the field.

Field-Guided Shape Grammars are independent of the field
design. While we reimplemented many components of a
field design system, we additionally allow the loading of an
arbitrary field from a file. The fields that we consider store
vectors or tensors at vertices. Note that the field elements are
defined in the tangent plane of the vertex. The tangent plane
of a vertex is typically not coplanar with any of its adjacent
faces. Therefore, the interpolation of fields within polygons
(triangles) on the surface is a non-trivial problem. We use a
piecewise interpolation scheme [16] to obtain a continuous
tensor field on the mesh surface based on the values at vertices.
This scheme was adapted from vector fields on surfaces [21].

4.3 Field-Guided Shape Grammars

As with the original shape grammar we model most patterns
by growing them from one (or multiple) seed shape outwards.
With our interactive user interface it is possible to model
the axiom (Section 3) of the grammar by placing one or
multiple scopes in the field and to assign a symbol to each of

Fig. 7. Tensor fields before and after smoothing on a foot
model. The colored dots are singularities (yellow=wedge,
blue=trisector). The left one is the field before smoothing, while
the right one is the field after 300 iteration of local Lapla-
cian smoothing. Notice smoothing reduces both the geometric
complexity as well as the topological complexity (number of
degenerate points) in the field.

Fig. 8. Translating local frames along a curve which may be
a streamline in a vector field or a hyperstreamline in a tensor
field.

these scopes. We consider three ways how a tensor field can
guide a shape grammar during the derivation: 1) The field can
change the translation command, 2) The field can be queried
to determine parameters, and 3) The field can be queried to
select rules. We describe the three concepts in the following.

The grammar can use an arbitrary number of input fields. A
typical setup is to use one tensor field to guide the translation
command F1 and a second tensor field to guide the rotation of
shapes on a surface F2. This is important for pattern design,
because the direction of growth of a pattern is not necessarily
identical with the direction of shape alignment (even though
these fields are also often the same).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 6

Guiding the translation command: Unlike the original
shape grammar, the translation command T (tx, ty, tz) cannot
be simply computed by vector addition in the Euclidean
space.Instead we want to transport the scope on the surface
while maintaining the angle between the orientation of the
scope and the eigenvectors of the tensor field. Each scope
defines a local coordinate system with axis Xscope, Yscope,
and Zscope and has an origin Pscope. The origin is associated
with a point on a surface Psur f ace. The point Psur f ace is itself
associated with a vector or tensor in the field on the surface. A
translation along (tx, ty) is treated differently than a translation
along tz. A translation in the tz direction simply changes the
offset of the position P from the surface, i.e. a translation
along tz moves the scope along the surface normal at Psur f ace.
A translation in the plane spanned by (tx, ty) is handled by
mapping the translation direction into the tangent plane. This
mapping defines a (hyper)streamline l in the field that goes out
in that direction. We then canmove the scope in the field such
that the angles between the scope and the (hyper)streamline
as well as the offset to the surface remain constant. See
Fig. 8 for an illustration of a scope being transported along
a streamline (a vector field) or a hyperstreamline (a tensor
field).A (hyper)streamline is a curve that is tangent to an
(eigen)vector field everywhere along its path. Please note that
in general we trace at an angle within the field,i.e. along
a rotated version of the original vector field or eigenvector
field. Everywhere along the streamline l the streamline has
the same angle to the vectors in the vector field or the major
eigenvectors in the tensor field. This angle is θ = atan2(tx, ty),
and the length of streamline is

√
t2
x + t2

y . This is slightly more
complicated for tensor fields that have arbitrary angles between
eigenvectors, i.e., asymmetric tensor fields. When using the
translation command we implicitly assume that the translation
uses the first specified field. We adopt the approach in [13]
to trace the hyperstreamline. Tracing a hyperstreamline near
a degenerate point, such as a wedge or trisector, can lead
to undesirable artifacts in geometry placement. For example,
if an integration point is exactly on the degenerate point,
tracing will stop as no outgoing direction is available. While
stopping tracing is one option, it is not optimal as the growth of
patterns might be accidently terminated in certain directions.
To overcome this problem, we propose the following heuristic.

Suppose that a triangle T contains a degenerate point d in
its interior. Consider a hyperstreamline l that has just entered
T from one of the edges e. The intersection point between
l and e is pin. Our heuristic involves a three step process:
1) We continue regular tracing starting at pin until a jump
condition is met at a point pn. A robust jump condition for
a point pi on the hyperstreamline is to test if pi is close to
the singularity d, i.e. if ||pi− d|| < ε . 2) We reflect pn with
respect to the singularity d to obtain the jump destination p′,
p′ = 2d− pn. If p′ is outside of T , we clamp it to the edge of
T . 3) We compute a new tracing direction at p′ and continue
regular tracing until the hyperstreamline leaves the triangle at
point pout . For the trisector case, we require that the outgoing
direction at p′ has the same oriented angle with respect to
pn p′ as the incoming direction at pn. For the wedge case we

use the negative oriented angle. As a result the angle of the
tracing direction at p′ with respect to the tensor field is usually
different from the angle at pn with respect to the field. While
the heuristic is relatively straightforward, it works reasonably
well in practice, i.e., for the test models we have employed
for this paper. See Fig. 9 for an illustration.

Fig. 9. Illustration of tracing through a singular point. In the
wedge case (Left), if the streamline is too close to the singular
point, it would turn back to the incoming direction without
special treatment. See the text in the paper for an explanation
of the tracing algorithm in this special instance.

Querying parameters of the field: We can access field
values associated with the current surface point Psur f ace in
the grammar. Similar to previous shape grammars we use the
notation of the form Fi.xxx, e.g. F1.vector1 to denote the
major eigenvector of the first (tensor) field. In the following
we describe three different categories of values that can be
queried:

Given a vector field V and a point Psur f ace, we can query
the following information: (a) the field value V (Psur f ace),
(b) the Jacobian ∇V (Psur f ace), and (c) the divergence, curl,
andcurvature ([50], page 6).

Given a second-order tensor field T , we can query these
parameters: (a) the field value, (b) the tensor gradient
∇T (Psur f ace), (c) the major and minor eigenvalues and eigen-
vectors, (d) the mean, principal, and Gaussian curvatures
when the tensor field is a curvature tensor field, and (e) the
divergence and curl of each eigenvector field.

In addition, we can query the relationship between multiple
co-existing fields at point Psur f ace and relationships between
the scope and the field. For example, we found it often helpful
to query the angle between an axis of the scope, e.g. the X
axis, and a direction vector of the field, e.g. the first major
eigenvector of a tensor field. In this example we would use
the notation F1.Xangle1. This is useful to align the scope with
a field just before using the instancing command to place the
shape. We also have commands to query derived information,
such as the length of vectors (e.g. F1.length1).

Selecting rules based on the field: The rules in a shape
grammar can have a condition block that can also make use
of field values. We simply allow the condition block of a rule
to access the same values as the command parameters. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 7

example below shows how glyph shapes can be selected based
on curvature values for the visualization in Fig. 11.

1: S : (F1.mincurv>=0) && (F1.maxcurv>=0) ; I(”Ellipse1.obj”)
2: S : (F1.mincurv>=0) && (F1.maxcurv<0) ; I(”Ellipse2.obj”)
3: . . .

4.4 Optimized Shape Placement

During the process of shape distribution, a shape may be
assigned to a position that partially overlaps with other shapes.
In order to test and remove unwanted spatial overlap, optional
collision detection and shape merging are introduced in our
solution. The mechanisms are explained as follows.

Collision: A collision detection mechanism tests for intersec-
tions between shapes and between patterns. The low level
collision detection tests whether a newly generated shape
overlaps with any other previously-generated shape. Several
different mechanisms can be use to check whether two shapes
intersect each other: (1) calculating the Euclidean distance of
representative points of two shapes (e.g. the shape centers, or
points on the boundary), (2) calculating the geodesic distance
of representative points of two shapes, (3) calculating the min-
imal distance between two shapes using a distance field, (4)
detecting a collision based on the precise mesh representation.
The first two approaches are less accurate, but much faster. The
latter two are more precise, but need more time to compute.
After experimenting with all four methods, we have finally
decided that the collision detection algorithm method (4) is
fast enough and has the least drawbacks for our application.
We use the Bullet Physics Library [51] to detect the collision
between shapes. We use a specific instancing command IC to
insert a shape with collision testing enabled or alternatively
turn on collision testing for all shapes via a global flag. We
also allow the user to use collision detection on a set of shapes.
The goal is to consider a collision of one shape in the set as
collision of the whole set. A new Command Lock is introduced
to generate a set of shapes as a whole and test collision on
the complete set. An example is given below:

1: Pattern ; Lock{ Component1 | Component2 | . . . | Componentk }
2: Component1 ; . . .
3: . . .

Another issue is how to stop the derivation when a collision
is detected. One strategy is to omit the shape in collision and
to continue to derive new production rules. This can cause
problems in some situations, because the placement of new
shapes only makes sense if the previous shapes have been
successfully placed. Therefore, we also use a second option,
where we cull the rest of a command string in a production
if a collision is detected. In the example below, we assume
that I(”X .ob j”) results in a collision. We would further derive
shape B, but cull shapes D and E.

1: A ; B I(”X.obj”) D E

Unfortunately, the instancing command often only appears
after other intermediate rules. In the example below instancing

only happens in rule 3. In our experience, it is important to
detect this case and consider the shape C to be in collision and
still cull shapes D and E. We therefore derive simple rules
that only place one shape in a depth-first manner to detect
collisions.

1: A ; B C D E
2: C ; F
3: F ; I(”X.obj”)

Shape Merging: Sometimes a shape of the same kind overlaps
with another shape. In this case we might not want to remove
the second shape, but merge the position and orientation
of both shapes. To do this we introduce a new instancing
command IM that can give a threshold for the maximally
allowed distance and maximally allowed rotation for two
identical shapes to be merged.

Shape merging can be divided into two categories, one is
merging of points (i.e. origin of two coordinate frames), the
other is merging of line segments. Merging of point shapes
is simple, when the distance (either Euclidean or geodesic)
between two shapes is smaller than a certain threshold, we
only keep one of the shapes which we move towards the other
shape as if it was attracted by some force.

Shape merging of line segments is particularly important
because it can remove the discontinuity at the intersection of
different lines. A linear structure is composed of a series of
short segments, each one of which is connected with its direct
predecessor and successor. These short segments are used to
regenerate a smooth mesh of a linear shape using special
shape replacement commands. A linear structure is constructed
by Line and LineSeg commands in the grammar. In a shape
grammar, two lines have a high probability to intersect when
they are growing towards each other. Since a linear structure
consists of a series of short line segments (usually a cylinder
or cuboid shape) in our approach, simply removing segments
according to collision detection would leave a noticeable gap
between two lines. We connect one line to the other at their
intersection point to remove this discontinuity. Every time
when we generate a new line segment a, we first find Set
S of potentially intersecting line segments. S is constructed
so that for every line segment b in it, the distance of central
points of a and b must be less than a threshold r. Next, for
each such a and b, we test whether they intersect each other.
In case of one or multiple intersections we clip the new line
to end at the first intersection. Whether a line is merged or not
can be specified as a parameter in the Line command. Once a
line is merged, it will not be deleted as in collision detection,
but the derivation of this line command will be stopped here.
An example of shape merging is illustrated in Fig. 10.

5 APPLICATIONS

We demonstrate our Field-Guided Shape Grammars with three
applications: tensor field visualization, curvilinear mosaic
tiling, and geometry synthesis on surfaces. The fields used
in these examples were created with three to ten tensor design
elements and several tensor-valued smoothing operations [52].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 8

Fig. 10. This figure shows shape merging of line shapes. The left figure shows the distribution without merging of lines. The
middle figure shows how the gaps are filled after lines are merged at intersections. The right images shows the graph structure
of the pattern.

5.1 Tensor Field Visualization

Visualizing second-order tensor fields remains a major chal-
lenge for the visualization community. One of the main reasons
has been the multivariate nature of second-order tensor fields.
Even in the symmetric case, a tensor contains two scalar
values (major and minor eigenvalues) and two directions
(major and minor eigenvectors). A typical approach is to use
hyperstreamlines following the major and minor eigenvector
fields to illustrate them. Then color is used to show one of
two eigenvalues or the total tensor magnitude. Glyphs such as
ellipsoids have been used as an alternative which can show
both the eigenvalues and eigenvectors. However, such glyphs
cannot be used to show tensors with negative eigenvalues such
as the curvature tensor.

We address this by using different types of shapes to represent
different scenarios. When both eigenvalues are non-negative,
we use ellipses as in existing methods. If one of the eigen-
values is negative, we will add a separating line segment that
passes through the center of the ellipse and is parallel to the
corresponding eigenvector. If both eigenvalues are negative,
then two separating line segments are added which form a
cross that divide the ellipse evenly along both eigenvector
directions. See Fig. 11 for an example (top: ellipses only;
bottom: ellipses or divided ellipses). Notice that our system
can easily place different types of shapes using the same
grammar.

5.2 Curvilinear Mosaic Tiling

Using mosaics tiles as an image representation is a fascinating
form of art that has received attentions from the graphics
community. Various techniques exist that can generate the
appearance of decorative tile mosaics [53], [30]. Most of
these methods are based on centriodal Voronoi diagrams when
placing the tiles which are squares or rectangles whose aspect
ratio is close to that of a square. In this work, we use our Field-
Guided Shape Grammar to generate the curvilinear mosaics

with greater aspect ratios. Such curvilinear mosaics can allow
stronger emphasis on the anisotropy in the underlying image
as well as allows more artistic freedom. See Fig. 12 for two
examples: a cat (left) and the Mona Lisa (right). In order to
generate such mosaics, a base field whose streamlines have
the desired shape is designed on a plane, then mosaic tiles are
distributed on this plane by the field and grammar commands.

5.3 Geometry Synthesis on Surfaces

We show several examples of patterns generated on surfaces.
Instead of designing local geometric patterns by example we
can design local and global patterns by specifying rules of the
shape grammar. Our system is implemented using C++, and
we use a computer with an Intel 2.66 Ghz CPU to produce
the results. We include our examples as additional material
with this submission. Table 1 shows the time and mesh size
of each example result. We can see that in most cases our
algorithm is able to generate complex pattern on a surface in
a few seconds. In the following we give a short description of
the different examples.

1) Fig. 13 shows a global pattern of branches and leaves
on a surface. We show this pattern on a torus, a bunny,
and an organic model.

2) Fig. 14 shows a pattern that consists of a set of small
star shapes organized in two concentric circular patterns.

3) Fig. 1 and Fig. 15 left show a crack pattern that consists
of linear tubes with gaps between them and smallar
circular shapes next to the linear structure.

4) Fig. 15 middle shows the direct application of the planar
pattern from Fig. 5 to a horse. The grammar was not
modified to apply the pattern on the surface.

5) Fig. 15 right is a global pattern of a tree on a surface.
6) To study the application of a local pattern we used the

example from Fig. 4 and applied it to a dragon model
(Fig. 16) as well as a union of three rotated tori (Fig. 17),
a genus 7 surface.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 9

Fig. 11. Two glyph-based tensor field visualization methods
applied to the curvature tensor of the feline model: (top) using
ellipses only to represent the absolute values of the principle
curvatures, and (bottom) negative curvatures are represented
by additional shapes shown in the middle.

7) Fig. 18 shows the planar pattern from Fig. 5 applied to
the happy buddha model.

8) Fig. 19 shows a global pattern that grows different
layouts depending on the location on the surface. The
blue tiles, red ellipsoids, and green tiles are placed with
different rules.

Fig. 12. A tile mosaic of a cat (left) and the Mona Lisa (right).

TABLE 1
Statistics of geometry synthesis examples

Example # rules input size output size time
(# of faces) (# of faces) (in secs)

Fig. 13 Left 10 9,600 568K 0.5
Fig. 13 Middle 10 12,000 352K 1
Fig. 13 Right 10 1,280 750K 3
Fig. 14 Left 9 1,280 739K 9
Fig. 14 Right 9 21,504 723K 17
Fig. 1 7 12,000 521K 182
Fig. 15 Left 7 1,280 265K 15
Fig. 15 Middle 14 12,000 867K 1
Fig. 15 Right 13 2,748 483K 13
Fig. 16 Left 12 23,242 1.2M 10
Fig. 16 Middle 12 40,000 965K 42
Fig. 17 12 40,000 4M 12
Fig. 18 30 20,000 662K 1
Fig. 19 13 8,704 134K 3

The images in the paper are rendered with V-Ray.

Fig. 14. A grammar applied to an organic architectural model
(left) and a pear (right).

6 DISCUSSION

Comparison to previous work: Through the applications
above we can see the difference between FGSG and previous
parameterization-based methods [1], [54]. Parameterization is
well suited for cases where the distribution of shapes in the
pattern is simple repetition, and the distortion of individual
shapes is not very important. Our approach has advantages
where the distribution has a more complex, i.e. global, struc-
ture, and does not allow distortion of individual shapes, which
is difficult to handle with parameterization. Also, our approach

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 10

Fig. 13. A stem and leaf pattern growing on three different surfaces.

Fig. 15. Left: the pattern shown in Fig. 1 applied to an organic shape. Middle: This pattern is the direct application from the
grammar that generated Fig. 5. Right: The pattern from Fig. 2 is applied to the surface of a vase.

Fig. 17. This figure illustrates that porting a pattern to a surface
requires careful rewriting of design rules. The left image is a
simple application of the pattern in Fig. 4 to a surface using
only collision detection. The right image uses a better grammar
that grows linear shapes using snapping of the end points and
subsequently replaces the linear shapes with more complex
shapes.

can generate complex patterns from very simple shapes hi-
erarchically while parameterization needs an example input
pattern to repeat. In addition, using parameterization in shape
synthesis is much slower due to the computational cost of
the involved optimization algorithms. While it is also possible

to use grammars in the parameter domain of a parametrized
surface, distortions in the parameterization and discontinuities
introduced by the seams make the grammar generation process
a more challenging endeavor. In texture synthesis on surfaces,
direct synthesis [39], [55] is also preferable to texture synthesis
using a parameterization [54].

Limitations: A limitation of our method is that we do not
currently use global optimization as a post-process. Therefore,
our approach is not competitive with highly specialized pattern
generation algorithms, such as surface remeshing [56]. We be-
lieve that it should be possible to integrate low level continuous
optimization with a grammar driven design process. In future
work we wish to develop a mixed discrete and continuous op-
timization where the grammar suggests discrete shape graphs
that are further optimized by a global optimization algorithm,
such as sequential quadratic programming (SQP) or Quasi-
Newton. A second limitation is that several grammars produce
artifacts when the placement of shapes is too dense, such as
the Dragon example in Fig. 16. To make this example work we
had to implement two additional rules that allow the grammar
querying the angles to nearby shapes. It still took up to ten
tries to get reasonable results. We therefore believe that our
algorithm is mainly suitable for patterns that are not too dense,
such as plants growing on surfaces. A third limitation is that

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 11

Fig. 16. The pattern from Fig. 4 adapted to grow on surfaces. Left: a pattern with big shapes. Middle: a pattern with smaller
shapes. Right: A rendering of the shapes without the surface. While the shape placement algorithm can place shapes under the
surface resulting in occluded shapes, this rendering shows that the surface is still fully covered.

Fig. 18. The application of the pattern from Fig. 5 to the happy
buddha model. The inset shows a view from the top down.

a grammar has to be designed manually using a specification
in a text file. As shown in figure 17 not all strategies are
successful and several design iterations are required to achieve
good results. This is similar to modeling using scripting in
major modeling programs like Maya and requires a skill set
that not all designers or modelers possess. Therefore, we also
want to explore interactive interfaces to model global patterns
on surfaces as part of our future work.

7 CONCLUSION

In this paper we introduced Field-Guided Shape Grammars.
These grammars allow us to encode a large class of pattern

Fig. 19. A pattern that uses three different growing strategies
based on the location on the surface. Blue tiles and red ellipses
on top and green tiles on the bottom.

designs and apply them to fields in the plane and fields on
surfaces. Instead of distorting a pattern design by surface
parametrization, we place designs directly on the surface and
adapt the pattern to the surface directly through the rules of
the grammar.

As future work we plan to explore more applications such
as non-photorealistic rendering and vector and tensor field
visualization. In addition, subtracting geometry from a 3D
surface based on a field is an interesting problem that we wish
to explore.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 12

ACKNOWLEDGEMENTS

The authors would like to thank Christopher Grasso for
rendering images in this paper and thank the reviewers for
their help and suggestions. We thank Marc Levoy and the
Stanford’s graphics Lab, Bruce Teeter, and the AIM@SHAPE
Shape Repository for the models used in this work. The cat
image is a courtesy of Greg Turk.This work was supported
by the US National Science Foundation (NSF), contracts IIS
0757623, IIS 0915990, IIS 0917308, and CCF 0546881.

REFERENCES

[1] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and
H. Shum, “Mesh quilting for geometric texture synthesis,” Proceedings
of ACM SIGGRAPH 2006, vol. 25, no. 3, pp. 690–697, 2006.

[2] G. Turk and D. Banks, “Image-guided streamline placement,” in Pro-
ceedings of the 23rd annual conference on Computer graphics and
interactive techniques. ACM New York, NY, USA, 1996, pp. 453–
460.

[3] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants.
Springer Verlag, 1991.

[4] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,” in
Proceedings of ACM SIGGRAPH 2001, E. Fiume, Ed. ACM Press,
2001, pp. 301–308.

[5] P. Prusinkiewicz, M. James, and R. Měch, “Synthetic topiary,” in
Proceedings of ACM SIGGRAPH 94, A. Glassner, Ed. ACM Press,
Jul. 1994, pp. 351–358.

[6] R. Měch and P. Prusinkiewicz, “Visual models of plants interacting with
their environment,” in Proceedings of ACM SIGGRAPH 96, H. Rush-
meier, Ed. ACM Press, Aug. 1996, pp. 397–410.

[7] P. Prusinkiewicz, P. Mündermann, R. Karwowski, and B. Lane, “The use
of positional information in the modeling of plants,” in Proceedings of
ACM SIGGRAPH 2001, E. Fiume, Ed. ACM Press, 2001, pp. 289–300.

[8] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Procedural
Modeling of Buildings,” in Proceedings of ACM SIGGRAPH 2006 /
ACM Transactions on Graphics, 2006.

[9] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant architec-
ture,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 669–677, 2003.

[10] M. Lipp, P. Wonka, and M. Wimmer, “Interactive visual editing of
grammars for procedural architecture,” ACM Transactions on Graphics,
vol. 27, no. 3, pp. 102:1–10, Aug. 2008, article No. 102. [Online].
Available: http://www.cg.tuwien.ac.at/research/publications/2008/LIPP-
2008-IEV/

[11] S. Havemann, “Generative mesh modeling,” PhD Thesis, TU Braun-
schweig, 2005.

[12] G. Turk, “Texture synthesis on surfaces,” in SIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 2001, pp. 347–354.

[13] A. Hertzmann, “Painterly rendering with curved brush strokes of
multiple sizes,” in SIGGRAPH ’98: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques. New
York, NY, USA: ACM, 1998, pp. 453–460.

[14] A. Hertzmann and D. Zorin, “Illustrating smooth surfaces,” in SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 517–526.

[15] S. Paris, W. Chang, O. I. Kozhushnyan, W. Jarosz, W. Matusik,
M. Zwicker, and F. Durand, “Hair photobooth: geometric and photomet-
ric acquisition of real hairstyles,” in SIGGRAPH ’08: ACM SIGGRAPH
2008 papers. New York, NY, USA: ACM, 2008, pp. 1–9.

[16] E. Zhang, J. Hays, and G. Turk, “Interactive tensor field design and
visualization on surfaces,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 1, pp. 94–107, 2007.

[17] J. Palacios and E. Zhang, “Rotational symmetry field design on sur-
faces,” ACM Trans. Graph. (SIGGRAPH 2007), vol. 26, no. 3, p. 55,
2007.

[18] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interactive
procedural street modeling,” ACM Trans. Graph., vol. 27, no. 3, p. 103,
2008.

[19] M. Marinov and L. Kobbelt, “Direct anisotropic quad-dominant remesh-
ing,” in PG ’04: Proceedings of the Computer Graphics and Applica-
tions, 12th Pacific Conference. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 207–216.

[20] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic global
parameterization,” ACM Trans. Graph., vol. 25, no. 4, pp. 1460–1485,
2006.

[21] E. Zhang, K. Mischaikow, and G. Turk, “Vector field design on surfaces,”
ACM Trans. Graph., vol. 25, no. 4, pp. 1294–1326, 2006.

[22] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang,
“Vector field editing and periodic orbit extraction using morse decom-
position,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 4, pp. 769–785, 2007.

[23] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe, “Design of tangent
vector fields,” in SIGGRAPH ’07: ACM SIGGRAPH 2007 papers. New
York, NY, USA: ACM, 2007, p. 56.

[24] N. Ray, B. Vallet, W. C. Li, and B. Lévy, “N-symmetry direction field
design,” ACM Trans. Graph., vol. 27, no. 2, p. 10, 2008.

[25] A. Runions, M. Fuhrer, B. Lane, P. Federl, A.-G. Rolland-Lagan, and
P. Prusinkiewicz, “Modeling and visualization of leaf venation patterns,”
ACM Transactions on Graphics, vol. 24, no. 3, pp. 702–711, 2005.

[26] D. Dunbar and G. Humphreys, “A spatial data structure for fast poisson-
disk sample generation,” ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2006), vol. 25, no. 3, pp. 503–508, 2006.

[27] G. Turk, “Generating textures on arbitrary surfaces using reaction-
diffusion,” in Proceedings of ACM SIGGRAPH 91. ACM Press, 1991,
pp. 289–298.

[28] J. Kopf, D. Cohen-Or, O. Deussen, and D. Lischinski, “Recursive
wang tiles for real-time blue noise,” ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2006), vol. 25, no. 3, pp. 509–518, 2006.

[29] V. Ostromoukhov, “Sampling with polyominoes,” ACM Trans. Graph,
vol. 26, no. 3, p. 78, 2007.

[30] A. Hausner, “Simulating decorative mosaics,” in SIGGRAPH Proceed-
ings, 2001, pp. 573–580.

[31] J. Kim and F. Pellacini, “Jigsaw image mosaics,” in SIGGRAPH 2002
Conference Proceedings, ser. Annual Conference Series, J. Hughes, Ed.
ACM Press/ACM SIGGRAPH, 2002, pp. 657–664.

[32] T. Ijiri, R. Mech, T. Igarashi, and G. Miller, “An example-based
procedural system for element arrangement,” Comput. Graph. Forum,
vol. 27, no. 2, pp. 429–436, 2008.

[33] H. Pottmann, A. Schiftner, P. Bo, H. Schmiedhofer, W. Wang, N. Bal-
dassini, and J. Wallner, “Freeform surfaces from single curved panels,”
ACM Transactions on Graphics, vol. 27, no. 3, pp. 76:1–76:10, Aug.
2008.

[34] H. Pottmann, Y. Liu, J. Wallner, A. Bobenko, and W. Wang, “Geometry
of multi-layer freeform structures for architecture,” ACM Transactions
on Graphics, vol. 26, no. 3, pp. 65:1–65:11, Jul. 2007.

[35] Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, “Geometric
modeling with conical meshes and developable surfaces,” ACM Trans-
actions on Graphics, vol. 25, no. 3, pp. 681–689, Jul. 2006.

[36] J. Legakis, J. Dorsey, and S. J. Gortler, “Feature-based cellular texturing
for architectural models,” in Proceedings of ACM SIGGRAPH 2001,
E. Fiume, Ed. ACM Press, 2001, pp. 309–316.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 13

[37] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in IEEE International Conference on Computer Vision,
Corfu, Greece, September 1999, pp. 1033–1038.

[38] L. Wei and M. Levoy, “Fast texture synthesis using tree-structured
vector quantization,” in Proceedings of the 27th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co. New York, NY, USA, 2000, pp. 479–488.

[39] G. Turk, “Texture synthesis on surfaces,” Computer Graphics Proceed-
ings, Annual Conference Series (SIGGRAPH 2001), pp. 347–354, 2001.

[40] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H. Shum, “Synthesis of
bidirectional texture functions on arbitrary surfaces,” ACM Transactions
on Graphics, vol. 21, no. 3, pp. 665–672, 2002.

[41] K. Fleischer, D. Laidlaw, B. Currin, and A. Barr, “Cellular texture
generation,” in Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. ACM New York, NY, USA, 1995,
pp. 239–248.

[42] A. Efros and W. Freeman, “Image quilting for texture synthesis and
transfer,” in Proceedings of SIGGRAPH 2001. Los Angeles, CA, 2001,
pp. 341–346.

[43] L. Liang, C. Liu, Y. Xu, B. Guo, and H. Shum, “Real-time texture
synthesis by patch-based sampling,” ACM Transactions on Graphics,
vol. 20, no. 3, pp. 127–150, 2001.

[44] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick, “Graphcut tex-
tures: Image and video synthesis using graph cuts,” ACM Transactions
on Graphics, vol. 22, no. 3, pp. 277–286, 2003.

[45] P. Bhat, S. Ingram, and G. Turk, “Geometric texture synthesis by
example,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing. ACM New York, NY, USA, 2004,
pp. 41–44.

[46] P. Müller, “Procedural modeling of cities,” in SIGGRAPH ’06: ACM
SIGGRAPH 2006 Courses. NY, USA: ACM Press, 2006, pp. 139–184.

[47] N. Chomsky, “Three models for the description of language,” Informa-
tion Theory, IRE Transactions on, vol. 2, no. 3, pp. 113–124, 1956.

[48] B. O’Neill, Elementary differential geometry. Academic Pr, 1997.

[49] R. Kimmel and J. Sethian, “Computing geodesic paths on
manifolds,” Proceedings of National Academy of Sciences,
USA, 95(15): 8431-8435., 1998. [Online]. Available: cite-
seer.ist.psu.edu/article/kimmel98computing.html

[50] H. Theisel, “Vector field curvature and applications,” Doktorarbeit, FB
Informatik, Universit at Rostock, 1995.

[51] “Bullet physics library,” http://bullet.sourceforge.net, accessed May 11,
2009.

[52] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,
“Anisotropic polygonal remeshing,” ACM Transactions on Graphics,
vol. 22, no. 3, pp. 485–493, 2003.

[53] P. Haeberli, “Paint by numbers: abstract image representations,” in SIG-
GRAPH ’90: Proceedings of the 17th annual conference on Computer
graphics and interactive techniques. New York, NY, USA: ACM, 1990,
pp. 207–214.

[54] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped textures,” Computer
Graphics Proceedings, Annual Conference Series (SIGGRAPH 2000),
pp. 465–470, Aug. 2000.

[55] L. Y. Wei and M. Levoy, “Texture synthesis over arbitrary manifold
surfaces,” Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 2001), pp. 355–360, 2001.

[56] L. Wang, S. You, and U. Neumann, “Large-scale urban modeling
by combining ground level panoramic and aerial imagery,” in 3D
Data Processing, Visualization, and Transmission, Third International
Symposium on, 2006, pp. 806–813.

Yuanyuan Li received his BS in Computer Sci-
ence from Zhejiang University, China in 2002 and
is currently an MS Candidate at Arizona State Uni-
versity, Tempe. He currently works at the Partner-
ship for Research in Spatial Modeling (PRISM) lab.
His research interests include procedural modeling,
computational geometry and image-based real-time
rendering.

Fan Bao received his BS and MS degree in Com-
puter Science from Tsinghua University, Beijing,
China in 2005 and 2008, respectively. He is currently
working toward a Ph.D. degree at Arizona State
University, Tempe. His research interests include
computer graphics, procedural modeling, and visu-
alization.

Eugene Zhang received the PhD degree in com-
puter science from Georgia Institute of Technology in
2004. He is currently an assistant professor at Ore-
gon State University, where he is a member of the
School of Electrical Engineering and Computer Sci-
ence. He received an NSF CAREER Award in 2006.
His research interests include computer graphics,
scientific visualization, and geometric modeling. He
is a member of the IEEE Computer Society and the
ACM.

Yoshihiro Kobayashi received the PhD degree from
University of California, Los Angeles in 2001. He is
a faulty research associate at the Partnership for
Research in Spatial Modeling (Prism) lab, at Arizona
State University. His research interests include de-
sign computation in architecture, procedural archi-
tectural/urban modeling, visualization and simulation
in virtual reality urban environments, and design
information management.

Peter Wonka received the MS degree in urban plan-
ning and the doctorate in computer science from
the Technical University of Vienna. He is currently
with Arizona State University (ASU). Prior to coming
to ASU, he was a postdoctorate researcher at the
Georgia Institute of Technology for two years. His
research interests include various topics in computer
graphics, visualization, and image processing. He is
a member of the IEEE.

