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Abstract In this paper we present a new algorithm to
transform an RGB color image to a grayscale image.
We propose using non-linear dimension reduction tech-
niques to map higher dimensional color vectors to lower
dimensional ones. This approach generalizes the gradi-
ent domain manipulation for high dimensional images.
Our experiments show that the proposed algorithm gen-
erates competitive results and reaches a good compro-
mise between quality and speed.
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1 Introduction

In this paper we investigate how ISOMAP [35], a non-
manifold learning technique, can be used for color-image
processing. We also present an ISOMAP based frame-
work to map a higher dimensional image to a lower
dimensional image, e.g. map a color RGB image to a
grayscale image. The problem can be formulated as fol-
lows. An m × n multi-channel image can be seen as a
higher dimensional tensor ID ∈ Rm×n×D where each of
the mn pixels corresponds to a color vector Ci with D

spectral samples. As output of this algorithm we want
to map this image to a lower dimensional display range,
i.e. a tensor Id ∈ Rm×n×d with all entries constrained
to lie between 0 and 1 and d < D. In this paper we will
consider D = 3 and d = 1 and map the input image to
gray-scale.

We set two goals: 1) The color distances from the
input color space can be controlled by the user in the
output color space. 2) The algorithm should make use of
the dynamic range of the display device to show details
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in the image. We will propose an elegant solution that
combines both goals in a unified framework.

We are interested in applying manifold learning tech-
niques to the problem at hand. This gives two interest-
ing results: 1) a new operator for image processing; 2)
the mapping quality and speed.

One popular technique in the image processing com-
munity is to extract the gradient field and then ma-
nipulate it to a desirable target. In the end, the tar-
get images are reconstructed from the target gradient
field [16]. When dealing with multidimensional input,
the calculation of the gradient becomes controversial.
Our manifold learning approach generalize the idea to
multidimensional data: we first get the matrix of the
pairwise distances for the input pixels and then ma-
nipulate the distances in the matrix. In the end, we
reconstruct an output that preserves the manipulated
distances.

The quality and speed performances of our algo-
rithm are compared to several recent approaches, pub-
lished by Gooch et al. [17], Rasche et al. [27], Grundland
et al. [18] and Smith et al [32]. Gooch et al. [17], Rasche
et al and [27] are computationally slow. The algorithm
by Gooch et al. [17] does not allow higher dimensions
because it is intrinsically linked to the L∗a∗b∗ color
space and the algorithm by Rasche et al. [27] does not
scale well to a higher number of spectral samples in an
image. By contrast, our solution computes a non-linear
mapping by using a linear operator in a sub-manifold of
the higher dimensional color space. This approach gives
similar visual quality as well as improves computation
times and can extend to higher dimensions. Our algo-
rithm is slower than a fixed global mapping, e.g. Smith
et al [32]. While such a simple operator can get great
results on a large number of images, it is easy to show
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that a fixed global mapping can eliminate arbitrarily
large features.

Our major contributions are as follows:

– We are the first to apply non-linear manifold learn-
ing to the color to gray conversion problem. Our al-
gorithm gives competitive results compared to state-
of-the-art algorithms.

– In our RGB to gray mapping algorithm we propose
a new way of nonlinearly adjusting the contrast by
a single parameter.

One major design decision is if the mapping should
be global or local. While most recent tone mapping al-
gorithms favor a local mapping, Rasche et al. [27] argue
that a global mapping is important to avoid artifacts
when it comes to mapping higher dimensional color vec-
tors to lower dimensional ones. It is worth mentioning
that the default implementation of Rasche et al [27]
compares every pixel to every other pixel when min-
imizing the objective function. The authors also sug-
gested an alternative implementation by limiting the
comparison to only a small spatial neighborhood for
each pixel. This will accelerate their algorithm. How-
ever, this also turns the algorithm into a local contrast
enhancement operator since widely separated points in
original space may be assigned to the same output in-
tensity if surrounded by sufficiently different other color
values. Smith et al. [32] also has a local edge sharpen-
ing step. In this paper we will present a global mapping
algorithm. However, our algorithm can use a local map-
ping to increase contrast as a post process. As other
existing algorithms have the same option, we will not
make a potential post process a focal point of this pa-
per.

2 Related Work

There is a large number of techniques to convert a
high dynamic range luminance image to a low dynamic
range luminance image. These techniques are broken
down into local and global methods. Global mappings
ensure that identical color values are mapped to iden-
tical color values, so that each pixel in an image can be
mapped separately [1,37]. Local mappings are typically
more complex and slower, however they can adapt the
mapping function locally to produce better results [13,
16, 22, 29]. As these methods have several advantages
and disadvantages, recent work also focused on com-
bining tone mapping operators [23] and evaluation of
tone mapping [21,26].

In recent years, transforming a color image into a
gray scale image attracted the interest of several re-
searchers [4,14,17,18,24,27,28,34,36]. The problem is to

find a lower dimension embedding of the original data
that can best preserve the contrast between the data
points in original data. These papers are very related
to our work and we compare our results against two of
them in this paper. The main difficulty of previous work
is that they use complex and slow non-linear optimiza-
tion algorithms. We believe that this is too complex for
the problem at hand. In contrast, we want to follow
the strategy of manifold learning and first detect a sub-
manifold in higher dimensional data before computing a
mapping [5, 11, 25, 30, 31, 35]. It worth mentioning that
recently two other accelerated methods are proposed
and report very good quality. Grundland et al [18] make
use of predominant component analysis and accelerate
with gaussian pair sampling. Smith et al [32] first use a
fast global mapping and then use a local edge sharpen-
ing technique based on the laplacian pyramid. We also
compare our results to theirs in this paper.

The second similar problem is multispectral and hy-
perspectral image visualization. Traditionally, these im-
ages have been visualized as a cube with a suite of in-
teractive tools [33]. One set of tools allows to extract
one spectral band at the time or cycle through spectral
bands as an animation. To create RGB images, inter-
active tools can be used to specify red, green, and blue
values as linear combinations of spectral bands. That
means an rgb value is computed by a matrix vector
multiplication. Along these lines several authors sug-
gest methods how to automatically create linear com-
binations of spectral bands to define the green, red, and
blue color channels of a visualization [12, 20, 38, 39]. In
this paper we compare our results to two such meth-
ods, Jacobson et al. [20] and visualization based on
PCA [38]. Recent investigation suggest that nonlinear-
ity exists in hyperspectral data [19]. Actually ISOMAP
has been adopted for hyperspectral image visualization
in [2, 3]. We believe it is interesting to extend their
work to color to gray image conversion. A faster vi-
sualization strategy for hyperspectral visualization was
proposed by Cui et al [8]., but their method cannot be
directly applied to the color to grayscale problem.

There is a larger number of general dimensionality
reduction algorithms in the literature. Prominent exam-
ples are ISOMAP [35], Local Linear Embedding(LLE) [30],
Laplacian Eigenmap Embedding [5]. ISOMAP is a spe-
cial version of multidimensional scaling, which uses geodesic
distance instead of Euclidean distance between the points.
LLE tries to preserve the local linear structure of the
original point set and casts it as an eigenvalue prob-
lem. Laplacian Eigenmap Embedding formulates the
problem as a spectral graph cut and also solves it as
an eigenvalue problem. In recent years, more advanced
versions of manifold learning algorithms are proposed.



3

Fig. 1 From left to right: original image, pca mapping, color2gray mapping, and our results.

These include Hessian Eigenmap Embedding [11], Con-
formal Maps [31], and Diffusion Maps [25]. These meth-
ods are usually computationally more expensive.

3 Overview

3.1 Algorithm Goals

We formally state the problem as follows. The input to
the algorithm is an m×n image as tensor ID ∈ Rm×n×D

where each of the N = mn pixels correspond to a color
vector Ci with D spectral samples. The output of this
algorithm is a tensor Id ∈ Rm×n×d where each of the N

pixels corresponds to a color vector ci with d spectral
samples and all entries are constrained to lie between 0
and 1. For color to gray conversion D = 3 and d = 1.
There is a one to one correspondence between a color
vector (pixel) Ci and ci.

Our first goal is to find a global mapping that pre-
serves the pairwise distances between all input pixels.
This goal can be formalized as finding a mapping that
minimizes E:

E =
1
2

N∑

i=1

N∑

j=1

(||ci − cj || − dist(Ci, Cj))2 (1)

E can also be presented in a matrix form:

E =
1
2
||Mc −MC ||F (2)

where F denotes the Frobenius norm, this equa-
tion is in matrix form. Mc and MC are both matrices.
Mc(i, j) = ||ci − cj || and MC(i, j) = dist(Ci, Cj).

The second goal is making use of the dynamic range
of the display to show image details. This goal is par-
tially in conflict with the first goal and difficult to qual-
ify in a formula, but we found a consistent way to in-
tegrate the second goal with the first goal by model-
ing a distance function dist(Ci, Cj) that provides some
user control of the output. It is very important that we
only make consistent modifications. For example, a lo-
cal tone mapping operator can produce colorful images,
but the original meaning of the input is not preserved.
This can be very counterproductive for visualization,
because pixels are no longer comparable. Similarly, a
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Fig. 2 Overview of our algorithm:

global operator such as histogram equilization in all
color bands sometimes introduce artificial features that
are not present in the data set .

3.2 Algorithm Overview

An overview of our algorithm is shown in figure 2. It
computes a nonlinear mapping. In general, a nonlinear
mapping is much better at adapting to the structure of
the data and it was therefore also used in previous ap-
proaches. The algorithm includes the following stages:

Color Space Preprocessing: We take an input
image and consider each pixel as a higher dimensional
color vector. This gives us a set of vectors in a higher
dimensional color space. If the input image has RGB
color vectors we additionally map all pixels from RGB
to L∗a∗b∗ color space.

Sub-manifold Detection: Find a sub-manifold in
higher dimensional space, by computing geodesic rather
then Euclidian distances. This stage includes finding
nearest neighbors, computing a geodesic distance ma-
trix, and managing contrast by transforming the ma-
trix. The output of this stage is a distance matrix defin-
ing pairwise distances between all pairs Ci and Cj .

Optimized Mapping: Find an optimized mapping
from higher to lower dimensional color vectors. At this
stage each color vector Ci is mapped to a lower dimen-
sional color vector ci based on a matrix decomposition.
This operation is very fast and finds a global optimum.

Color Space Postprocessing: The color mapping
can be used to construct a lower dimensional image
Id. Postprocessing can include local (a gradient domain
poission solver [16]) or global (histogram equalization)
tone mapping operators.

Acceleration Strategy:While the above algorithm
steps define a working algorithm, we need to accelerate
the algorithm and reduce memory consumption by us-
ing a subsampling strategy. The main idea is to sub
sample the rows of the matrix DC .

4 An Introduction to ISOMAP

In this section we give a brief introduction to ISOMAP,
a very successful strategy for manifold learning that
was proposed by Tenenbaum et al. [35]. ISOMAP in
essence is a special version of the classical multidimen-
sional scaling (Classical MDS) algorithm [6].

4.1 Classical MDS Algorithm

Classical MDS [6] provides a solution for equation 2.
Since a global optimum cannot be found for 2, classical
MDS does not minimizing the F-norm of the difference
matrix Mc−MC in equation 2 directly. Instead, it min-
imizes the difference of two transformed matrices. The
transform first computes an element-wise square of a
matrix and then centers it. The centering operator τ for
a matrix M can be computed by τ(M) = −HMH/2,
and H = I−1/N ∗O with O being a matrix of all ones.
If we denote the element-wise square of Mc and MC as
M2

c and M2
C respectively, we can express the objective

of the transformed minimization problem as:

E = ||τ(M2
c )− τ(M2

C)||F (3)

Geometrically, we are now minimizing the pairwise
angular distances instead of the pairwise Euclidean dis-
tances. The benefit we gain from this transform is that



5

the global optimum of equation 3 can be computed in
close form. Let us denote λ1, λ2, . . . λd as the largest d

eigenvalues of matrix τ(M2
C) and v1, v2, . . . vd as their

corresponding eigenvectors. Then the d-dimensional out-
put ci is computed as [9].

ci =




√
λ1 · v1i√
λ2 · v2i

. . .√
λd · vdi


 (4)

4.2 The ISOMAP Algorithm

In classical MDS, how to calculate dist(Ci, Cj) is left for
the user to decide. In the ISOMAP algorithm, Tenen-
baum et al. proposed using the geodistance between the
input data points for dist(Ci, Cj): the input dataset is
treated as a graph. Each input point in the original D-
dimensional space is a node in the graph and connected
to its k nearest neighbors(k is a parameter provided by
the user). The distance between two points Ci and Cj

is calculated as the shortest path between the two cor-
responding nodes in the graph.

The ISOMAP algorithm has two computational bot-
tlenecks [10]: First, for a graph that has N nodes, it
takes (O(N2logN)) to find all pairwise shortest path
in the matrix DC using Dijkstra’s algorithm. Second,
we need to solve the eigenvalue problem for the N by
N matrix τ(MC), which takes O(N3). The overall com-
plexity is O(N3). For a medium size image with size 300
by 300, the total number of pixels, which is N , equals
90000 and the algorithm is very slow.

4.3 The Landmark ISOMAP Algorithm

In [9], an accelerated version of ISOMAP is proposed
called landmark ISOMAP. The new algorithm starts by
selecting only a small fraction of the whole input point
set called landmark points L1, L2, . . . Ln. If we denote
n as the number of landmark points then usually we
pick n = dN ∗0.02e. The original ISOMAP algorithm is
run on the n landmark points to get a skeleton for the
output in the d-dimensional output space. The rest of
the output is embedded into the skeleton by projecting
to the first d principle axes of the landmark points.
We denote the squared pairwise distance matrix for the
landmark points as L2

C and λi and vi as the eigenvalues
and eigenvectors of τ(L2

C) as before. We further define
δi as a column vector of the squared distances from Ci

to all the landmark points and δL to be the mean of all

the column vectors of L2
C . Now we can express the jth

component of ci as

cij = −1
2

vj√
λj

(δi − δL) (5)

Since only the pairwise distances between the land-
marks and the remaining points are needed for the in-
terpolation, the cost for Dijkstra’s algorithm is reduced
to O(nNlogN). The ISOMAP algorithm on landmark
points requires O(n3). Since n << N , the overall com-
plexity is reduced to O(NlogN).

5 Algorithm Details

In the following we explain in detail how the landmark
ISOMAP algorithm is used for our color to gray map-
ping problem.

5.1 Color Space Preprocessing

Given an RGB image with m rows and n columns, we
can interpret each pixel as a color vector Ci in a D-
dimensional color space yielding N = mn color vec-
tors. If we are working with RGB images as input we
transform each of the vectors Ci into CIEL∗a∗b∗ color
space. This transformation is useful, because the Eu-
clidean distance between the pixels in L∗a∗b∗ is similar
to the visual difference perceived by human eyes. The
L∗ coordinate refers to the luminance and the a∗ and
b∗ coordinates describe the position of the pixel in a
two-dimensional chromatic space. The positive a∗-axis
points towards red and the negative a∗-axis points to-
wards green. Similarly, the positive b∗-axis points to-
wards yellow and negative b∗-axis points towards blue
blue. As the color space preprocessing is optional, we
use the same variables Ci to denote the input and the
output of this stage. L∗a∗b∗ Color space preprocessing
only works when the input is an RGB image. Figure 3
shows an example color space. For multispectral images
it is important to drop the spectral bands that are de-
stroyed by atmospheric water vapor. Additionally, we
provide the option to scale individual spectral bands
(we did not use this feature in our results).

5.2 Submanifold Detection

This part of the algorithm computes pairwise distances
between two color vectors Ci and Cj . There are sev-
eral choices for a distance function dist(Ci, Cj) from
equation 1 and we want to propose a different one from
previous work. For example, Rasche et al. [27], use the
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Fig. 3 Left: input image. Right: color distribution in L*a*b color
space. This figure shows how an image is mapped to CIEL∗a∗b∗

color space. The shown color distribution will require a non-linear
mapping to ensure a meaningful conversion to gray scale. Please
note, that no line can be found in color space so that a color
projection onto the line results in a useful gray scale conversion.

simple Euclidian distance function (in CIEL∗a∗b∗ color
space) and reduce the problem to a multi-dimensional
scaling problem that requires non-linear majorization
techniques to find a local optimal solution. Color2Gray
[17] define a more complex distance function as a combi-
nation of the luminance difference and the difference of
projection on a certain direction in the chromatic space.
This distance function leads to a non-linear optimiza-
tion problem that the authors solve with a conjugate-
gradient method.

Following the ISOMAP framework described in sec-
tion 4, we propose to use a transformed geodisc dis-
tance dist(Ci, Cj) = f(geodesic(Ci, Cj)) between two
color vectors. The geodesic distance is computed in a
manifold spanned by the color vectors and brings a sig-
nificant advantage. The strength of this algorithm is
that we can compute a global optimum directly with
multidimensional scaling. However, please note that the
geodesic distance computation provides a mapping of
one color space to another that is still non-linear and is
able to adapt to the structure of the data.

The distance computation has three steps: First, we
need to construct a graph by computing the k-nearest-
neighbors(KNN) of each input point Ci and connect
each point with its k nearest neighbors with an edge
weighted by their mutual distances. In our experiments,
k is usually set to 10 50. Second, we need to compute
a geodesic distance matrix by computing shortest dis-
tances from all the landmark points Li to the rest of
all points Ci in the graph. Third, we can manipulate
the geodesic distances to provide some user control to
improve the contrast in the final image.

An implementation detail worth mentioning is that
the graph constructed by the KNN algorithm might
not be connected. For example, k input points can be
tightly clustered and form a clique of the graph, so that
they will be isolated from the rest of the point set.
Since we need to know the distance matrix from the
landmark points to all the points and the entries of the

matrix cannot be infinity, we use a simple and fast so-
lution to alleviate this problem. We find the dominant
component in the graph that has the largest number of
points. For any other component, we add an edge con-
necting the two closest points between this component
and the dominant component.

5.3 Contrast Management

Our contrast management is motivated by a strategy
common in high dynamic range image tone mapping.
The input image is usually first transformed to a new
domain in which the manipulation becomes easier. Then
the output image is recovered from the manipulated im-
age in the new domain. In [16] the input is transformed
into the gradient domain, then the gradient is manipu-
lated and the output is recovered by solving a PDE. In
[15] the input is transformed into the wavelet domain,
then the wavelets coefficients are manipulated and the
output is recovered using the inverse wavelet transform.
Similarly, we transform the input into the pairwise dis-
tances domain, then we manipulate the distances, and
the output is recovered by the ISOMAP algorithm.

The manipulation can be done by nonlinearly scal-
ing the geodesic(Ci, Cj) distance function with another
function f . This allows to enhance contrast, while still
using a distance preserving mapping. We chose a sim-
ple function f(x) = xλ that allows the user to control
one parameter in the mapping. The output of our con-
trast management step is a distance matrix DC with
entries xij = f(geodesic(Ci, Cj)). This matrix can be
used to directly project color vectors in a lower dimen-
sional color space as described in the next subsection.
We illustrate the power of the parameter λ using two ex-
amples shown in figure 4 and 5. Intuitively, the param-
eter can either enhance local contrast (small distances)
and reduce global contrast (large distances), or enhance
global contrast and reduce local contrast. Please note
that the parameter controls geodesic distances.

Fig. 4 Right: Input Image: Middle: a small λ = 1 reveals a 70
Right: A bigger λ = 4 reveals a 29.

In figure 6 we demonstrate the usefulness of non-
linear mapping and geodesic distances. When we com-
pare the results of PCA and our algorithm, we can see
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Fig. 5 Possible settings for the candy example from figure 11
Right: a small λ = 0.8 preserves the details of the image well
and the spherical shape and the highlights of the candy are well
visible. Right: A bigger λ = 3 reduces local contrast and the
spheres look like flat circles.

that PCA is unable to detect the nonlinear structure
of the problem and does not show the two rectangles.
While it is not reasonable to assume that the colors of a
real world example with thousands of colors are aligned
in this way, this nonlinear structure problem would ap-
pear many times in subsections of the color space.

Fig. 6 Top Left: The PCA result on the input image in figure 3.
Top Right: our result. Bottom Left: We show how the original
colors are projected to 1D for the PCA result. Bottom Right: We
show how the original colors are projected to 1D for our result.

5.4 Landmark Selection

In the original paper [9] the author proposes to se-
lect the matrix rows randomly. The author suggests
that a more sophisticated clustering technique might
have disadvantages because the clustering problem is

domain specific and the computational cost of cluster-
ing is high. While these arguments are reasonable for a
general algorithm, our experiments show that cluster-
ing can improve the results of our algorithm. First, we
found that this is fairly risky to make a random selec-
tion, as parts of the color space with few color vectors
can receive no or insufficient samples. In graphics ap-
plications it might be interesting to ignore outliers, but
for visualization applications outliers often convey im-
portant and meaningful information. Second, we need
to build the kd-tree to accelerate the KNN algorithm so
we can reuse it for the computation of more uniformly
distributed landmarks. To select landmarks we can set
a parameter s that specifies the subsampling factor. We
traverse the kd-tree depth first and stop the traversal
if a node contains less than s×N points. We select the
centroid of all the points contained in the kd-tree node
as landmark.

5.5 Color Space Postprocessing

After we get a set of color vectors ci, we can assemble
the low dimensional image. If the output is grayscale
we linearly map the range of all output intensity values
to the range of [0, 1]. Additionally, we implemented his-
togram equilization and a gradient domain tone map-
ping algorithm [16] as potential post process to en-
hance contrast. However, while we found that these al-
gorithms can make certain images to look nicer, they
make it hard to compare with other algorithms. First,
these post-processing operations are in conflict with the
goals of the original algorithm and second the compar-
ison with other methods would be influenced. We also
omit a comparison to Smith et al [32]. They basically
use an edge sharpening operator to achieve their results
in difficult cases, but we consider this a potential post
process.

6 Results

6.1 Visual Comparison

The authors in [7] gave an exhaustive comparison of the
state-of-the-art color to gray algorithms. We run our al-
gorithm through the same set of test images with a fixed
parameter λ = 0.4. The number of nearest neighbors K

is fixed to 50. There are more complicated algorithms to
dynamically decide K according to the neighborhood of
a particular point, but we opted not to use these compu-
tationally more expensive apporach. In the results, we
found that with the help of λ we are able to enhance
the details in the original image in a novel way that no
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Fig. 7 From left to right: original color image; decolorize [18]; smith08 [32]; ours, λ = 0.4.

Fig. 8 From left to right: original color image; smith08 [32]; color2gray [17]; ours, λ = 0.4.

Fig. 9 From left to right: original color image; smith08 [32]; CIEY [14]; ours, λ = 0.4.

other algorithms can achieve. In figure 7, 8, 9, and 10
we show some examples. In each case we picked the best
two algorithms ranked in [7] and compare to our re-
sults. In figure 7, it can be observed that our result can
distinguish the color difference between the two anten-
nas. Also the body colors are better stratified than the
other two. The outlines in the upper parts of the wings
are also the clearest among the three. In figure 8, we
can see that in the middle right part of the tree, there
are three blocks of red leaves. Our method can high-
light these three red blocks. In figure 9, both other two
methods mapped the red pedals to similar colors as the
green leaves. In contrast, our method mapped the red
pedals to the brightest color in the whole image, which
is satisfactory. In figure 10, at the bottom left of the
original images, there are some faint circles that only
a careful observe can find. All other methods neglected
these circles. In contrast, our algorithm highlights these
circle. This might be helpful if these circles are real fea-
tures. At the same time, we also want to point out the

watch face and the printed page seem to be too bright.
We might also enhance noise and artifacts instead of
real features that are desirable. Results on other test
images can be found in the supplementary material of
the paper. It worth noting that, we are not doing an ob-
jective user study for the results like [7]. Therefore, we
are not claiming that our results are always better than
other algorithms. We emphasize that our algorithm can
highlights some features of the original images that
other algorithms might omit. It is not always the case
that our results are the most satisfactory. For exam-
ple, in figure 14, our method does not distinguish the
orange-highlighted lines and the pink-highlighted lines
very well. More comparisons are shown in the supple-
mentary material. In some cases, our results show salt-
and-pepper noise artifacts. We find that the artifacts
depend on the parameter k in the k-nearest-neighbors
search. We will further discuss this in section 6.3.
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Fig. 10 From left to right: original color image; smith08 [32]; decolorize [18]; ours, λ = 0.4.

6.2 Timing Comparison

We implemented our algorithm in Matlab on a 3.6Ghz
Xeon processor. The algorithm is of average complexity
and takes about 500 lines of code including the display,
input, and output routines. While Matlab greatly helps
the simplicity of implementation, a complete C++ im-
plementation would be much faster. However, since our
algorithm speed is already very competitive, we opted
against further low level optimizations and porting our
code to C++.

We used color images proposed in previous work to
compute an RGB color to gray scale mapping. We se-
lected a set of six input images that were picked as
examples in previous work, so that we could compare
directly to the images produced by other algorithms.
In figure 1 we compare the visual results of color blind
tests, a linear mapping by using PCA, a mapping us-
ing Color2gray [17], a mapping using the algorithm by
Rasche et al. [27], and our algorithm. We used the C++
implementation from the original authors for Color2gray
algorithm and Rasche et al. algorithm. We did not use
any GPU acceleration of all algorithms.

In the table 1 we show timings of the results. Even
though we compare our results in a matlab implemen-
tation we can outperform the implementation speed of
the other algorithms.

C2G [17] Rasche [27] Ours image size
Number 6 57 n/a 6 124*120
Number 35 52 n/a 6 128*125
Number 8 46 n/a 4 120*120
Candy 494 400 32 212*218
Flower 2100 330 86 311*300
Sunrise 1060 n/a 42 295*212

Table 1 Comparison of computation times in seconds of
Color2Gray, Rasche et al., and our algorithm. Each row of the
table are results for one dataset whose name is in the leftmost
column.

Figure 11, 12, and 13 we show more visual com-
parisons. We would argue that our visual result for the
candy image is stronger then the competing algorithms.

For the flower and sunrise image we can see advantages
and disadvantages in all algorithms.

6.3 Parameter Selection

We found that the parameter k in the k-nearest-neighbors
search algorithm plays an important role for the final
results. The larger the value of k, the higher the quality
of the results. An example is shown in figure 14. When
k is not big enough, there might be some noticeable
salt-and-pepper noise artifacts in the result. However,
increasing k will significantly increase the computation
time. For example, in figure 15, when k = 15, the com-
putation time is 10.37s. When k = 50, the computa-
tion time is 12.53s. When k = 200, the computation
time is 17.50s. Larger k will also make the distance ma-
trix less sparse and significantly increase the storage
requirement. For our experiments we fix k to be 50 to
balance the speed and the quality.

7 Discussion

In the following we discuss the results and the compar-
ison to other algorithms.

Local vs Global operator: Our mapping algo-
rithm is a global operator. It means that for two input
points Ci and Cj , if their values are the same, they will
always be mapped to the same grayscale value ci in
spite of their spatial locations in the input image. This
is in contrast to other local mapping operators, which
will distort the grayscale values to enhance local con-
trast. We did not include a local enhancement step for
two reasons: first, the local enhancement cannot be nat-
urally incorporated in the ISOMAP framework; second,
we believe in some cases global operators might be de-
sirable. For example, if we want to do tone mapping on
an output grayscale image or mutual information based
registration on an output image pair, global operators
will be preferable.

Control of the output: Similar to Color2Gray [17]
and Rasche et al. [27] we allow for some control of the
output. Similar to Color2Gray we are able to select a
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Fig. 11 From left to right: the original image, color2gray mapping [17]; Rasche et al. mapping [27]; ours, λ = 0.8.

Fig. 12 From left to right: the original image;color2gray mapping [17]; Rasche et al. mapping [27]; ours, λ = 2.0.

Fig. 13 From left to right: the original image; decolorize [18]; color2gray [17]; ours, λ = 2.0.

direction in L∗a∗b∗ color space and decide whether to
map this direction to a lighter or darker color. However,
we do not have an equivalent for luminance consistency
constraints in Rasche et al.’s algorithm. The idea of lu-
minance consistency is to enforce that the relative or-
der of luminance of colors of similar gamut is enforced.
While this control mechanism sounds reasonable in the
description, we were not able to verify its importance in
the test images and the influence of luminance consis-
tency constraints was also not evaluated in the original
paper. In contrast to previous approaches we provide a
parameter λ for contrast management.

Linear vs. non-linear optimization: We think
the strength of this algorithm is that it uses a lin-
ear operation to map colors from a higher dimensional
color space to a lower dimensional one. While the over-
all mapping is still non-linear, the non-linear aspect is
due to the sub-manifold detection and geodesic distance
computation that precedes the actual mapping step.
Our optimization can be computed directly by spectral

matrix decomposition and leads to a global optimum.
This part of the algorithm is very stable and does not
have the many problems of non-linear optimization. In
contrast, previous algorithms [17,27] use non-linear op-
timization. While non-linear optimization is a powerful
tool, it is also very hard to setup and it is not really
possible to know if the proposed solution is close to the
global optimum.

Submanifolds in color images: Similar to previ-
ous work our algorithm is beneficial if the color distribu-
tion in the original RGB image contains enough com-
plexity. Some color images are simple enough so that
the simple conversion with Photoshop is sufficient. Even
though our algorithm is especially suitable for color dis-
tributions that exhibit local or global lower dimensional
manifolds we found the output to be meaningful for all
input images.

Limitations: The algorithm has several limitations
and challenges. First, the sub-manifold detection algo-
rithm uses a k-nearest-neighbor algorithm (KNN) to
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Fig. 14 First row, from left to right: original image; CIEY [14]; decolorize [18]. Second row, comparison of different settings of
parameter k for our method. From left to right: k = 15; k = 30; k = 50.

Fig. 15 From left to right: original color image; Our method with k = 15; k = 50; k = 200; all the other parameters are fixed.

find neighbors for each color vector in color space. KNN
has some known disadvantages: a fixed number of K
might not work well on all dataset; KNN search be-
comes slow in high dimensions. It might be possible to
improve results using an adaptive KNN sampling algo-
rithm. This typically comes at the cost of implementa-
tion speed. It might actually be more useful to take the
opposite approach and use a fast approximate k near-
est neighbor algorithm instead. The second challenge
is the memory consumption of the algorithm. Part of
the problem arises from our implementation in matlab.
However, it would be worthwhile to explore more ag-
gressive subsampling and clustering strategies for rows
and columns.

8 Conclusions

In this paper we explained the ISOMAP algorithm and
used it for color image to grayscale conversion. We cast
the problem into a dimension reduction problem that
has a simple parameter for users to control the level of
contrast enhancement naturally. The speed of the algo-
rithm is fast and the quality is competitive with respect
to the state-of-the-art global color to gray algorithms.
There are several interesting avenues for future work.
First, we want to implement an out of core algorithm for
the mapping, so that a high quality reference solution
can be computed for very large images. Second, based
on the current solution, we want to improve the quality
of the mapping. We are also interested in algorithms for

pre-processing textures and shaders in computer games
to assist color blind users.
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