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Abstract— In this paper we propose a new framework to
visualize hyperspectral images. We present three goals for such a
visualization: preservation of spectral distances, discriminability
of pixels with different spectral signatures, and interactive
visualization for analysis. The introduced method considers all
three goals at the same time and produces higher quality output
than existing methods. The technical contribution of our mapping
is to derive a simplified convex optimization from a complex non-
linear optimization problem. During interactive visualization,
we can map the spectral signature of pixels to RGB colors
using a combination of principal component analysis and linear
programming. In the results we present a quantitative analysis
to demonstrate the favorable attributes of our algorithm.

Index Terms— hyperspectral image visualization, perceptual
color distances, PCA, linear programming.

I. INTRODUCTION

Hyperspectral images contain hundreds of spectral samples
per pixel. To visualize such images, the many spectral bands
must first be projected to a lower dimensional space, typically
the RGB color space of a monitor.

In this paper we present a framework to visualize hyper-
spectral images. The problem can be formulated as follows.
A w× h hyperspectral image with d bands can be seen as a
higher dimensional tensor Td ∈ Rw×h×d where each of the wh
pixels is described by a vector Xi with d spectral samples. As
output of this algorithm we want to map the image to a lower
dimensional display range, i.e. a tensor Tk ∈ Rw×h×k with all
entries constrained to lie between 0 and 1 (normalized display
range) and k < d. In this paper, we consider the case k = 3 to
map to the display range of a color monitor.

We set out by defining three goals for such a visualization:
1) The distances from the input spectral space should be
preserved in the output color space to provide a perceptually
meaningful visualization, 2) the algorithm should make use
of the dynamic range of the display device to show details in
the image, and 3) the algorithm should allow for interactive
exploration.

Hyperspectral image visualization is usually provided as a
functionality in hyperspectral image analysis software such
as Multispec [1], ENVI [2], Geomatics [3], TnTlite [4],
HyperCube [5] and HIAT [6]. A direct visualization method is
to render the image as a 3D cube [3], [6]. To explore different
bands as grayscale images, one set of tools allows a user to
cycle through all bands or to flicker between two bands [5].
To extract an RGB color image for visualization, interactive
tools can be used to pick three bands and assign them to
the red, green, and blue channels directly [2], [1]. More
sophisticated mappings can be created through user-specified

linear combinations of spectral bands [5], data independent
visually meaningful linear combinations [7], or data dependent
automatically computed combinations using PCA (Principle
Component Analysis) or MNF (a noise reduction version of
PCA) [2], [4]. Additionally, ICA (Independent Component
Analysis) has been proposed for dimension reduction [8], [9],
but ICA is significantly slower than PCA and it is not clear
how to rank the significance of different channels provided by
ICA. An alternative idea for visualization would be to borrow
from non-linear methods for dimension reduction, such as
local linear embedding(LLE) and ISOMAP. Two recent non-
linear color mapping approaches by Gooch et al. [10] and
Rasche et al. [11] report running times of minutes to compute
a mapping for input images with three spectral samples.
In general, we expect these existing non-linear techniques
to require significantly more computation time than linear
methods, especially for d >> 3.

The main problem that we observed is that existing methods
map spectral samples to unbounded three-dimensional Euclid-
ian space. After dimension reduction they all use a second non-
uniform mapping to color space that creates colorful images
but also the illusion of salient features that are not present
in the data. Examples are non-uniform scaling, standard de-
viation stretch, and histogram equalization. Therefore, these
algorithms sacrifice the first goal (preservation of spectral
distances) to satisfy the second (using the dynamic range of
the display).

In this paper we propose a novel strategy for hyperspectral
image visualization that uses a higher quality mapping. The
main idea of our approach is to derive a fast optimization
procedure that can perform dimension reduction while consid-
ering the boundaries of the HSV [12] color space (see figure 4
for a short introduction). During the visualization a user can
interactively explore the hyperspectral dataset using spatial and
spectral lenses to configure a non-linear mapping. Our major
contribution is as follows:

• We present a high quality framework for hyperspectral
image visualization. We provide the quality of non-linear
methods, while preserving much of the interactivity only
available with simple linear methods. Both visual and
quantitative comparisons suggest that our method satis-
fies the three goals simultaneously better than existing
methods.

II. RELATED WORK

We review related work in three categories: hyperspectral
image visualization, color to gray mapping, and dimensionality
reduction.
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A. Hyperspectral Image Visualization

Traditionally, hyperspectral images have been visualized
as a cube with a suite of interactive tools [13]. One set of
tools allows a user to extract one spectral band at a time
or cycle through spectral bands as an animation. To create
RGB images, interactive tools can be used to specify red,
green, and blue values as linear combinations of spectral
bands. This means an RGB value is computed by a matrix
vector multiplication. Along these lines several authors have
suggested methods to automatically create linear combinations
of spectral bands to define the green, red, and blue color
channels of a visualization [14], [15], [7], [16]. In this paper
we compare our results to two such methods: 1) The Color
Matching Function(CMF) algorithm proposed by Jacobson et
al. [7], and 2) a traditional PCA based method described
in [14], Section II. The main problem in existing visualiza-
tion software toolkits is the application of post processing
algorithms to enhance the image. Examples are non-uniform
scaling, standard deviation stretch, and histogram equalization.
These algorithms disproportionately enhance minor features. It
is worth noting that a visualization can be specifically designed
for different applications. For example, a visualization can be
used as a post-process for classification [17].

B. Color to Gray Mapping

In recent years, transforming color images to gray scale
attracted the interest of several researchers [10], [18], [11],
[19]. The problem is to find a lower dimension embedding of
the original data that can best preserve the contrast between
the data points in the original data. While these papers are
an inspiration for our work, their methodologies do not easily
extend to higher dimensions, due to memory consumption and
computation time.

C. Dimensionality Reduction

There is a larger number of general dimensionality re-
duction algorithms in the literature. Prominent examples
are ISOMAP [20], Local Linear Embedding [21], Lapla-
cian Eigenmap Embedding [22], Hessian Eigenmap Embed-
ding [23], Conformal Maps [24], and Diffusion Maps [25].
These algorithms are theoretically very strong. However, there
are two issues. First, these algorithms assume that the data
lies in a nonlinear submanifold in the original space. This
assumption must be verified before these nonlinear dimension
reduction methods can be used on hyperspectral images.
Although previous work [26], [27] suggests that nonlinearity
exists in hyperspectral imagery, the nonlinearity is typically
data-dependent. Second, nonlinear dimension reduction meth-
ods are usually slow and memory intensive. For example, a
small 100× 100 image gives rise to a distance matrix with
1004 = 100 million entries. Computing the SVD decomposi-
tion (a typical step needed in these methods) does not scale
well to larger images and a 500× 500 image is already out
of reach for current workstations. In [28], an accelerated
version of ISOMAP is implemented for hyperspectral images.
The method greatly enhances the algorithm speed but running
times are still not fast enough for an interactive visualization.

III. OVERVIEW

Here we give an overview of the paper. First, we lay out
three goals of the visualization and derive quantitative metrics
that we will use to compare our algorithm to previous work.
Second, we give the motivation for our algorithm and explain
how we derived it. Third, we give a short description of the
individual steps of the algorithm.

A. Goals

Preservation of distances: The first goal of our visual-
ization is to create an image such that the perceptual color
distances are similar to the Euclidian distances between the
high dimensional spectral samples. We follow the argumen-
tation which suggests that the Euclidian distance in RGB
color space is not a good measure for the perceptual distance
(see for example [29] and [14]). Therefore, we attempt to
preserve Euclidian distances in a perceptual colors space,
L*a*b* [12]. To evaluate the preservation of distances in
L*a*b* we define a correlation based metric similar to [7].
Let X be the vector of all pairwise Euclidian distances of the
pixels in the high dimensional spectral space and let vector
Y be the corresponding pairwise Euclidean distances of the
pixels in L*a*b* space. The correlation γ can be calculated
using the following formula:

γ =
XTY/|X |− X̄Ȳ
std(X) · std(Y )

(1)

|X | denotes the number of elements in X , X̄ and std(X)
denote the mean and standard deviation respectively. In the
ideal case the normalized correlation equals 1 and the closer
the correlation is to 1 the better the distance is preserved. In
practice, the images we consider are too large to consider all
pairwise distances, so that we accelerate the computation by
subsampling.

It is important to discuss alternative design choices for
metric γ . An alternative to Euclidian distances in original
space is to only consider the spectral angles in original space,
e.g. [7]. While spectral angles contain enough information for
endmember identification in classification applications, the ra-
diant intensities in original space carry additional information
about ground textures that reflect shape and contours [7]. This
is very important for a series of tasks such as georeferenc-
ing [2], registration [30] and change detection [31]. Another
idea suggested by [7] is to ignore the luminance values in
L*a*b* space. In our experience, better performance can be
achieved when making use of the full color space including
the luminance value.

Separability of features: Correlation alone does not guar-
antee that colors can be well distinguished. It is still possible
that the resulting image is too dark or too bright, because
the color space is not efficiently used and too many pixels
fall within a smaller part of the color space. Therefore, we
use a metric δ that measures how well pixels are mapped to
distinguishable colors. The key idea is that the average distance
between two pixels in perceptual color space should be as large
as possible:
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δ = |Y |1/|Y | (2)

where Y is from equation 1, |Y |1 denotes the L1 norm,
and |Y | is the number of elements of the vector. Therefore δ
denotes the average pairwise Euclidean distance in the L*a*b*
color space. The same metric was independently suggested
by [16]. Larger values of δ indicate a better separability of
features and we therefore try to maximize δ .

Interactive visualization: For an effective visualization
the data set should be interactively explored by a human
user. We consider two aspects of the interactive visualization.
First, the computation time should not exceed a few seconds.
Second, it is important to have a method that is compatible
with interactive tools for data exploration. In this paper we
introduce spatial and spectral lenses as example tools and
show how the algorithm can be integrated into an interactive
hyperspectral image visualization framework.

B. Design Choices

Fig. 1. Comparing two visualization algorithms for a multi spectral data set.
Left: visualization with PCA. Right: visualization with enhanced PCA. Note
how smaller features are exaggerated. The first three eigenvectors are mapped
to (R,G,B) channels respectively.

We first present our analysis of the state of the art and then
discuss three possible approaches to improve the visualization.
The third approach is the one we follow in this paper.

State of the Art: State-of-the-art techniques use a two-step
framework which is shown in the first row of figure 2. These
techniques map the high dimensional spectral samples to an
unbounded 3D Euclidean Space in the dimension reduction
step. Even though the mathematical transformations, such as
PCA and ICA, perform typically well when mapping to an
infinite space, the color space has an actual boundary that
needs to be respected. We call this problem the boundary
problem. Please note that this problem is similar to the tone
reproduction problem in computer graphics [32]. For example,
the RGB color space has a cube as a boundary and the Lab
color space is bounded by concave surfaces. Therefore, these
methods need a second transformation which actually maps 3D
points to RGB triples for visualization purposes. The simplest
transformation is uniformly scaling the point set so that it
fits into a cube. The three coordinates of the scaled space
can be used as the red, green, and blue color values. Usually
the points are sparsely distributed in the cube so that the
resulting image tends to be too dark (see figure 1 left). In the
quantitative analysis this visualization has good preservation

of distances (γ), but not a high separability of features (δ ).
Therefore, different alternatives to uniform scaling have been
proposed to enhance the separability of features (δ ) of the
final image such as an exponential transform, non-uniform
scaling, standard deviation mapping, the auto normalization
transform, histogram equalization [33] and tone mapping [34]
techniques. An example of enhanced PCA visualization is
shown in figure 1 right. However, these techniques work on
each color channel separately and therefore distort perceptual
color distances non-uniformly. As a result minor features in the
data can be disproportionably exaggerated and the preservation
of distances is poor (γ).

Approach One: The first idea we considered was to replace
the second mapping with a mapping to L*a*b* color space to
better keep perceptual distances (see figure 2, row 2). The
L*a*b* color space is the most popular choice in this context.
However, the envelope of L*a*b* space has a concave and
curved boundary and the cascading of two mappings produced
similar undesirable side effects to existing methods.

Approach Two: To avoid complications due to two map-
pings, we intended to directly map points in Ed to L*a*b*
space, posing the problem as a constrained optimization (see
figure 2, row 3).

Approach Three: Approach two seems to be the ideal
solution for preserving perceptual distance. However, the
L*a*b* color space has concave non-linear boundaries. A
constrained optimization that maps the dataset into L*a*b*
is very time consuming and does not meet our interactive
speed requirement. Therefore, we opted for a third approach
(see figure 2, row 4) that uses the HSV color space instead
of L*a*b* color space. Although HSV color space is not as
good as L*a*b* space, it is still much better than RGB color
space in preserving perceptual distance. Our experiments will
show that even though we optimize color distances in the HSV
color space, the distances in the L*a*b* color space are well
preserved according to our correlation metric. Additionally,
this simplification allowed us to derive a solution based on a
convex optimization that can be solved at interactive speeds.
Overall, using HSV color space is a good compromise between
quality and speed requirements. Next, we present an overview
of our method and fill in algorithm details in section IV.

C. Pipeline

The proposed framework includes four steps (see figure. 3)
described in the following.

1) Preprocessing: The motivation for pre-processing is to
accelerate the computation time. Pre-processing consists
of a vector quantization method to cluster the spectral
signature of image pixels into M clusters. Optimization
is performed on cluster representatives and interpolation
is performed on the remaining spectral samples. We
implemented the faster median cut algorithm [35] and
the higher quality k-means algorithm [36]. For each
cluster, we select one representative point. The output
of this stage are the representative points and cluster
membership information for all the pixels (spectral sam-
ples). See section IV-A for details. The performance
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Fig. 2. Four different strategies to address the hyperspectral image visual-
ization problem. The state of the art is shown in the top row. Two possible
alternatives are shown in row 2 and 3. Our approach is shown in row 4 (These
alternatives are discussed in section III-B).

Fig. 3. Pipeline of our framework. Step 1: The points in high dimension
are first clustered and representatives for clusters are extracted; Step 2:
Representatives are projected to 2d; Step 3: the coordinates in the third
dimension are computed using linear programming; Step 4: Interpolation of
other points.

and parameter settings for number of clusters M are
evaluated in section V.

2) Dimension Reduction: In this stage we want to map
the representative points to the HSV color space. Our
solution is a two-step algorithm that is tradeoff between
computation speed and quality according to the metrics
γ and δ . First, we project the representative points onto
a 2D plane using principle component analysis. The
points are then enclosed by a circle which constitutes
the boundary in the hue-saturation plane of the HSV
color space. Second, we employ a convex optimization
to assign intensity values to the representative points.

3) Interpolation and Color Mapping: The hue-saturation
components of the remaining points are computed by
projecting to the 2D plane used in the previous step.
The intensity component of a point is decided by the
distance to its representative point. Finally, all points
are mapped into the HSV cone.

4) Interactive Visualization: We provide a suite of interac-
tive tools to explore and analyze a hyperspectral dataset.
We provide three types of tools: 1) linear transformations
of the color space. 2) spatial lenses so that the user can
interactively select a subregion of the image and recalcu-
late a mapping that enhances the visual discriminability
of the features in the subregion. 3) Spectral lenses that
enhance the visual discriminability of pixels similar to
a user specified spectral signature.

IV. METHODOLOGY

A. Preprocessing

The input to the preprocessing step is the original data set, a
high dimensional tensor Td ∈ Rw×h×d where each of the w×h
pixels is described by a vector Xi with d spectral samples. The
output of the preprocessing step is the following clustering
information: 1) a w×h integer map with values ranging from
1 to M. The integer is the cluster id for the corresponding pixel,
2) the centroid of each cluster, denoted as {Rd

1 ,R
d
2 , ...R

d
M},

and 3) the average Euclidean distance of all points to their
representative point, denoted as {r1,r2, ...rM}.

We implemented dimension reduction as an option to accel-
erate the clustering. We use PCA to first reduce the number of
bands and keep 99.9% of information from the original data
sets. This results in keeping the first 10 to 20 eigenvectors. The
clustering algorithm is conducted in the projected subspace.
This acceleration is fairly conservative and has negligible
influence on the output. Therefore, we use it for all results
in this paper. We use a C implementation of the k-means and
the median cut clustering algorithm. For both algorithms we
tried various settings for number of clusters (M). We found
that choosing median cut clustering with M = 50 gives a good
balance between speed and quality of the mapping. We analyze
clustering performance and the influence of parameter settings
in section V-C.

B. Dimension Reduction

1) Problem Formulation: Our method for dimension reduc-
tion starts from a multidimensional scaling perspective. Given
the spectral samples in original d-dimensional Euclidean space
denoted as {X1,X2, ...Xn}, each of them being a vector in d-
dimensions, we try to map them to three-dimensional color
vectors denoted as {C1,C2, ...Cn}. To introduce the problem,
we only consider the goal of preservation of distances and
ignore the boundaries of the color space, so that we allow any
color vector in unbounded three-dimensional Euclidian space.
That means, we want to find a mapping that minimizes the
objective function E:

E =
N

∑
i=1

N

∑
j=i+1

(Dd(i, j)−D3(i, j))2 (3)

or in compact form:

E =
1
2
||Dd −D3||F (4)

F denotes the Frobenius norm, Dd and D3 are matrices
so that Dd(i, j) denotes the Euclidean distance between Xi
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and Xj and D3(i, j) denotes the Euclidean distance between
Ci and Cj. It is possible to solve this optimization problem
using majorization [37] techniques. However, a more popular
approach is to center matrix Dd and D3 first. The centering
operator τ can be computed by τ(D) = −HSH/2, where
S = D2 and H = I−1/N ∗O with O being a matrix of all ones
and N being the number of rows of square matrix D. This
transforms the problem to minimizing the objective function
E:

E = ||τ(Dd)− τ(D3)||F (5)

The importance of the centering operator is that it trans-
forms the problem from a non-linear optimization to an
eigendecomposition problem. The main idea is to replace
distances with dot products. The global optimum of equation 5
is selected as the 3 eigenvectors of matrix τ(Dd) that are asso-
ciated with the largest 3 positive eigenvalues. Each color vector
Ci can map the first three eigenvectors to any combination
of red, green, and blue. This approach is called the classical
dimensional scaling. It can be shown that the result is exactly
the same as performing PCA on the dataset and computing the
projection on the 3 principle components associated with the
first 3 largest eigenvalues [37]. In summary, PCA is one of the
best and most popular 3d projections in the sense of classical
multidimensional scaling. However, we need to find a mapping
that constrains the vectors Ci to lie within the boundaries of a
color space.

2) Dimension Reduction Using Convex Optimization: The
main motivation and technical contribution of our approach is
to derive a convex optimization for the dimension reduction
step. Our main ingredients are the use of the HSV color space
and a novel solution to split the dimension reduction in two
steps. The envelop of the HSV color space is a right circular
cone whose height equals the radius of the base plane. The
HSV space is shown in figure 4. Our algorithm to map the
points from the original d-dimensional space into a 3d cone
shape has the following steps: 1) We first compute the hue-
saturation component of the representative points using linear
projection. 2) Second, we assign the intensity component
of the representative points. For the second step we will
explain how we model the intensity assignment as a linear
programming problem.

3) Projection to 2D hue-saturation space: The goal of this
step is to project the representative points {Rd

1 ,R
d
2 , ...R

d
M} in

the original d-dimensional space to a 2-dimensional space. The
projected points are denoted by {R2

1,R
2
2, ...R

2
M}. Note that the

superscripts denote the dimensionality of the space the points
reside in. The 2d space will be parallel to the base plane
of the HSV color cone. We use a fast projection using the
principal component analysis for this step. Second, we need
to find a circle in the plane that describes the boundary of the
HSV cone. We use the centroid of the points {R2

1,R
2
2, ...R

2
M}

as middle point of the circle and set radius = ratio ∗ Far,
where Far denotes the distance of the centroid to the farthest
point (see figure 5 left). We need to slightly enlarge the circle
because we only use representative points at this step and
other points will still be further away. We use ratio = 1.2

Fig. 4. The HSV color space is bounded by a circular cone. On the left we
show a cross section of the cone. Hue ranges from 0 to 360 and describes the
spectrum of pure colors, Saturation is the distance to the center of the circle
and describes color strength. Adding more white will make the color weaker.
On the right we show the cone in 3D. The Value coordinate describes how
bright or dark the color is.

as an initial heuristic, but the user can modify this parameter
interactively. Please note that we do not want to enclose all
projected points in the base circle, because this would make
our method sensitive to outliers. Up to now the hue-saturation
component of the representative points are decided up to a
rotation factor. This degree of freedom can also be set by the
user during interactive exploration (see section. IV-D.1).

4) Computing the intensity component: In this step we
compute the intensity components for all representative points
denoted as {I1, I2, ...IM}. Note that (R2

1, I1),(R2
2, I2), ...(R2

M, IM)
together fully describe the final projection in 3d space
(R3

1),(R
3
2), ...(R

3
M). Please note that we use negative intensity

values between 0 and −1 since the cone is upside down (−1
maps to black). The principal goal is to preserve the mutual
distances of representative points in original space as much as
possible (see equation 3) while respecting several constraints.
The problem can be modeled as a linear programming prob-
lem. We will describe our solution in five parts. 1) First we
describe the objective function, 2) We show how the objective
function can be transformed to map to a convex optimization
algorithm, 3) We explain how to incorporate the boundaries of
the HSV cone as constraints, 4) We explain how to add cluster
separability as constraint, and 5) we show how to solve the
problem numerically.

Objective function: The objective in equation 3 is to keep
D3 as close to Dn as possible. At this step in the algorithm we
already have a 2d projection as a partial solution and we only
need to solve for 1d coordinates in the third dimension. We
denote the pairwise distance matrix for {R2

1,R
2
2, ...R

2
M} in 2d

space as D2, and the pairwise distance matrix for {I1, I2, ...IM}
as D1. In the ideal case D1(i, j) =

√
(Dd(i, j))2 − (D2(i, j))2

according to the Pythagorean theorem. Therefore, we want to
minimize the following objective function E:

E =
M

∑
i=1

M

∑
j=i+1

|D1(i, j)−
√

(Dd(i, j))2 − (D2(i, j))2| (6)

Transforming to a linear programming problem: Even
though the term under the square root in equation 6 is a
constant, the resulting optimization is still non-convex. The
reason for this is the absolute value in D1(i, j) = |Ii − I j|.
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Therefore, we cannot solve the minimization problem using
linear programming. The key insight to bypass this problem is
to decide the order of {I1, I2, ...IM} using a reasonable criterion
beforehand. This order becomes the first set of constraints:

i f Dist(i) ≥ Dist( j); Ii ≥ I j (7)

We will discuss the meaning of Dist(i) and why we impose
these constraints shortly. Now D1(i, j) = Ii − I j when Ii ≥ I j,
or D1(i, j) = I j− Ii when Ii < I j. The absolute value disappears
and the problem is reduced to a linear programming problem.

Cone boundary Constraints: The second set of constraints
are straightforward: we want to restrict the position of the
points in final 3d space within a cone shape. Let’s denote
Dist(i) as the distance from point R2

i to the origin of the base
circle, since the height of the cone is equal to the radius of base
circle, we know that |Ii|+Dist(i) ≤ Radius must be satisfied,
shown in figure 5 right. Therefore, if Range(i) = Radius−
Dist(i), the following two constraints must be applied to make
R3

i stay in a cone:

Ii ≤ 0 and Ii ≥−Range(i) (8)

Transforming to LP problem constraints: Now we look
back at the first set of constraints and explain why they make
sense. Since the smaller the Dist(i), the larger Range(i) is, we
intentionally make the final 3d points appear more like a cone
shape by arranging their intensity value in descending order
according to Dist(i). It is worth mentioning that other methods
exist to decide the order of {I1, I2, ...IM}. For example, we can
use the total energy in the original space: |Rd

i |1 to order them.
We tested this setting and final results do not form a good
cone shape.

Cluster separability constraints: The third and last set of
constraints is designed to separate important points. Remember
the we define ri as the average distance to the ith representative
point for all points belonging to that cluster. We define two
representative points to be well separated if ri + r j ≤ Dd(i, j).
We want the cluster center to remain well separated in the final
3d space: ri + r j ≤ D3(i, j). This boils down to the following
constraint:

i f ri + r j ≤ Dd(i, j) then√
(ri + r j)2 − (D2(i, j))2 ≤ D1(i, j) (9)

Solve convex optimization: Now we have fully set up the
linear programming model: minimize eq.(6) subject to eq.(7),
eq.(8) and eq.(9). We solve it with CLP1. CLP is a C++
library of several linear programming solvers. We use the
Primal-Dual method implemented in the library. This is not
the fastest method but it works fast enough for our application.
Alternatively, instead of minimizing eq.(6), we can minimize
the following term Ē:

1https://projects.coin-or.org/Clp

Ē = max
i=1...M, j=i+1,...M

|D1(i, j)−
√

(Dd(i, j))2 − (D2(i, j))2|
(10)

This formulation uses the infinity norm instead of the
1-norm. We believe it gives a better theoretical guarantee.
Therefore, we use this objective function for all results in this
paper. The derivation of the corresponding linear programming
problem is analogous to the derivation presented in this
section.

Fig. 5. Left: The 2d projection in enclosed in a circle; Right: the range of
the intensity for each point. The X-Y plane is the hue-saturation plane and
the Z axis corresponds to value from the HSV color space.

C. Interpolation and Color Mapping

1) Interpolate All Points: At this stage, the coordinates
of the representative points are fully determined in 3d space
(HSV color space). In this step we will map all the remaining
points based on the location of the representative points.
The coordinates in the hue-saturation plane are decided by
projecting all other points in original space to the same plane
using the first two principle components we have used for the
representative points. Note that alternatively we can use the
first two principle components of all data points with similar
computation time. However, performing PCA on all points will
bias favorably towards the separability of clusters with a larger
number of members. The intensity Ip for a particular pixel Pd

is decided by the following formula:

Ip = Ii + f lag∗
√

Edist(Pd ,Rd
i )−Edist(P2,R2

i ) (11)

In the formula i denotes which cluster Pd belongs to. Ii is
the intensity value we have decided in the previous section.
Edist(p, i) denotes the Euclidean distance between p and i
in original space. f lag is either 1 or −1 denoting whether
pixel Ip should be darker or lighter than its representative
points intensity Ii. f lag is decided by comparing the sum of
all bands values for this pixel to the sum of all bands for the
representative point in the original space. In figure 6 we show
the mapped cone shape of a real data set (LunarLake02).

2) Fit the Color Cone to Data Cone: Now the basic idea
is to make the color cone big enough to enclose the data
cone such that all points are mapped to different colors. This
corresponds to the largest red cone shown in figure 7 left. To
fit the cone so that it encloses all data points might not be the
best strategy due to outliers in the data. The display strategy
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Fig. 6. All data points are mapped to 3D Euclidean space using our method
described in section IV. Note how they form a cone shape. The units are
Euclidean distances in the original dataset.

Fig. 7. Left: how to fit the color cone to the data cone; Right: The HSV
cone can be rotated by the user.

is to allow the user to shift the color cone up and down along
the Z axis and scale the radius of the cone to enhance different
parts of the data. This idea is illustrated using the green and
pink cone in figure 7 left. Data points outside the color cone
will be clamped to the boundary of the cone.

D. Interactive Visualization

In the following we outline three tools useful for interactive
visualization: 1) interactive tone rotation, 2) spatial lenses, and
3) spectral lenses.

1) Interactive Tone Rotation: The user can rotate the ori-
entation of the base plane. This is shown in figure 7 right.
Note that the intensities do not need to be re-calculated due
to the symmetric structure of the cone. Remapping can be
computed in less than a second for millions of points. We
found that functionality very helpful to enhance the contrast
and to change the visualization to more aesthetic color choices.

2) Spatial Lens: We propose to use spatial lenses to im-
prove the contrast in selected regions. We can specify a region
interactively and recompute a mapping only on that part of the
data. The region is treated as an input image itself. Although
we still use the same thematic labeling which we got from
the preprocessing step for the whole data set, we re-map these
colors to a cone shape in itself. This allows us to enhance
smaller features while locally keeping proportional perceptual
distances. A local mapping is also achievable with PCA on
the subregion. The PCA will also perform well if the selected
region is sufficiently small. This is illustrated in figure 8:

We see in CMF, the features are distinguished fairly well,
however, the overall contrast can be improved. In the PCA
without enhancement, the features are not easily distinguished,
especially for the slim white branches at the upper right
corner. In the PCA with enhancement setting, the results are
very colorful and features are distinguishable. However, the
color mapping does not correspond to the true distance and is
misleading. For example, at the middle part near the bottom
we see a big contrast of yellow and pink areas, even though
these regions have similar spectral signatures. More results for
the spatial lens are available in section V.

3) Spectral Lens: Another tool we offer is to enable the user
to interactively pick one particular pixel in the result image
and highlight pixels that have a similar spectral signature to the
pixel in original space. This way we can use a larger portion
of the color space for selected features and their surrounding.
We implement this functionality by creating a new cluster
whose centroid is set to be the pixel the user has picked
and the members to be all the pixels within some radius in
original space. We call this new center Rd

M+1. Note that the
thematic labeling map is changed due to insertion of the new
cluster. Then the mapping algorithm is re-computed with a
new constraint specifying IM+1 ≥ Ii for all i ≤ M. The goal
of this constraint is to guarantee that the neighborhood of this
pixel is ”highlighted”. The results are shown in the middle
image of the top row of figure 11 and figure 12. Note that
there are also some other algorithms available to achieve a
similar goal. For example, a well known technique is to set
the hue and saturation components of all the points within
a distance directly to the same as that of the selected pixels
and keep their intensity values untouched. We argue that our
approach is more systematic by intentionally making the rest
of the points less ”highlighted”. Additionally, our approach
can provide more hue-saturation variations within the cluster.

V. RESULTS

A. Implementation Details

We implemented our algorithm in Matlab on a 3.6Ghz Xeon
processor. The algorithm takes less than 1000 lines of code
including the display, input, and output routines. While Matlab
greatly helps the simplicity of implementation, a complete
C++ implementation would be faster. However, since our
algorithm speed is already very competitive, we opted against
further low level optimizations and porting our code to C++.

We use the AVIRIS data which is available for download
online.2 Each dataset has 219 bands ranging from 400 to 2500
nm with uniform steps of 10 nm. The image size is usually
around 500 by 500. We picked seven data sets: the scene 01,
02 and 03 from site Moffett Field, scene 01 and 02 from site
Lunar Lake and scene 01 and 02 from site Cuprite.

We compared our method against four previously published
algorithms: color matching functions (CMF), principal com-
ponent analysis (PCA), principal component analysis with
outlier reduction (PCA 2%), principal component analysis
with histogram equilization (PCA HE), spectral band sampling

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 8. Top left: result using our spatial lens; Top right: result of CMF,
zoomed in; Bottom left: result using PCA; Bottom right: result using PCA with
histogram equalization The rectangular region is selected within the yellow
border in the top left image of figure 12. Algorithmic details are described in
section V-A.

(SBS), and ISOMAP. Note that ISOMAP is a nonlinear dimen-
sion reduction method. ISOMAP preserves geodesic distances
rather than Euclidean distances. Therefore, we only visually
compare ISOMAP results to ours.

CMF linearly projects the dataset using three fixed basis
vectors which are called color matching functions in [7].
The PCA method uses the largest three principle components
(P1,P2,P3) to map all pixels to three-dimensional Euclidian
space and then linearly scales the whole dataset so that it
fits into the (unit) RGB cube. The projection on (P1,P2,P3)
is mapped to (R,G,B) channels respectively. The PCA 2%
method also uses PCA and scaling to the RGB cube, but
instead of linearly scaling, 2 percent of the pixels at the
ends of each channel are saturated in order to enhance the
contrast. A saturated pixel value is one that is moved outside
the RGB cube through scaling and subsequently clamped to
the boundaries of the cube. Similarly, PCA with histogram
equalization uses PCA for dimension reduction and scaling to
the RGB cube, but then uses histogram equalization for each
color channel. SBS is the simplest algorithm that directly maps
the 6th, 20th and 40th bands to RGB color bands respectively.
Finally, we also implemented a method that uses ISOMAP
to do dimension reduction. The implementation of ISOMAP
follows [38]. The algorithm takes half an hour to get a mapping
for an image of 500 × 500 × 219. The implementation of
ISOMAP in [28] reports 4.4 hours on images with 1.8×106

samples where each sample has 124 bands. Since the algorithm
complexity is O(Nlog2(N)), we estimate the running time on
an image of 500× 500× 124 will take at least 500 seconds.
We therefore believe that current implementations do not meet
the interactive display requirement.

B. Quantitative Comparison

We measure the quality of the mapping based on the
two metrics γ , indicating the preservation of distances (see
equation 1) and δ indicating the separability of features (see
equation 2). The result for γ is shown in table I and result
for δ is shown in table II. Note that a good mapping should
have γ close to 1 and δ as high as possible. To accelerate the
quantitative comparison we randomly subsample pixels so that
in each row and column only every fifth pixel is used in the

TABLE I
COMPARISON OF CORRELATION γ

Our CMF PCA PCA2% PCA HE
Moffett01 0.96 0.94 0.91 0.68 0.46
Moffett02 0.96 0.79 0.92 0.51 0.35
Moffett03 0.93 0.69 0.96 0.68 0.41

LunarLake01 0.95 0.82 0.92 0.53 0.21
LunarLake02 0.84 0.81 0.95 0.37 0.27

Cuprite01 0.90 0.87 0.91 0.55 0.32
Cuprite02 0.91 0.88 0.95 0.43 0.28

TABLE II
COMPARISON OF AVERAGE DISTANCE δ

Our CMF PCA PCA2% PCA HE
Moffett01 38.2 16.4 13.0 50.3 81.4
Moffett02 53.9 30.6 12.4 48.5 77.2
Moffett03 25.5 30.5 9.7 44.7 75.9

LunarLake01 50.9 5.6 10.9 52.5 85.3
LunarLake02 59.8 7.3 15.6 43.8 80.1

Cuprite01 52.1 4.8 10.9 48.4 80.7
Cuprite02 73.0 7.7 13.9 53.2 81.5

computation of the pairwise distances. That means only 4%
of the pixels are used.

The values of SBS are not competitive and we did not
include them in the table. Since ISOMAP preserves geodesic
distances rather than Euclidean distances it is not meaningful
to apply the correlation metric to ISOMAP results.

The comparison of γ values reveals that PCA 2% and PCA
HE strongly exaggerate features and therefore have a low
correlation score. CMF produces solid results, but our method
and PCA are generally better than CMF. Even though our
method is better than PCA in some cases, we consider PCA
to be the most stable according to γ and therefore the best
method to preserve the distances. We consider our method the
second best.

However, the comparison of δ shows the significant draw-
back of PCA. The separability of features is low and this
results in dark images that are not useful for visualization. The
δ values are a factor of 3− 5 times lower than our method.
The δ values of CMF are comparable to our method for the
first three datasets, but other datasets exhibit δ values that are
up to ten times lower. As expected, PCA 2% is comparable
to our method and PCE HE has the best δ values. However,
note that these two algorithms did not perform well according
to our metric γ and are generally not distance preserving.

We conclude that our method is the best trade-off and
achieves both goals of preserving spectral distances and sep-
arating features in the visualization.

C. Parameter Selection for Our Algorithm

We evaluated the parameter for the number of clusters M
and the two implemented clustering algorithms k-means and
median cut. We use two data sets Moffett01 and LunarLake01
for the evaluation and for each of the two data sets we
additionally create a 25% and 50% downsampled version (in
spatial dimensions only) giving a total of 6 data sets. The
original size of both the datasets is 512×614×219.
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TABLE III
COMPARING RUNNING TIME IN SECONDS OF DIFFERENT NUMBER OF

CLUSTERS AND CLUSTERING METHODS FOR OUR METHOD (UNITS ARE IN

SECONDS)

K-means Median cut
Number of clusters (M): 25 50 100 25 50 100

Mof01 25%
Cluster 2.9 7.2 11.8 0.3 0.2 0.2
Optimize 0.4 5.7 82.6 0.4 6.3 70
Total 3.3 12.9 94 0.7 6.5 70

Mof01 50%
Cluster 17.4 47.8 86.6 0.9 1.0 1.1
Optimize 0.4 5.9 84 0.4 7.2 77
Total 17.8 54 171 1.3 8.2 78

Mof01 100%
Cluster 115 427 917 5.2 4.8 5.4
Optimize 0.4 6 87 0.6 5.9 66
Total 115 433 1000 5.8 10.7 71.4

Lak01 25%
Cluster 3.6 8.2 14.2 0.2 0.2 0.2
Optimize 0.5 5.8 79 0.5 6.3 92
Total 4.1 14 94 0.7 6.5 92

Lak01 50%
Cluster 23.4 59.2 125 1.0 0.9 0.9
Optimize 0.4 5.6 79.9 0.6 7.9 75.6
Total 23.8 60 205 1.6 8.8 77

Lak01 100%
Cluster 126 523 1037 4.6 4.8 4.5
Optimize 0.4 6.2 86.8 0.5 7.4 89.6
Total 126 529 1124 5.1 12.2 94

TABLE IV
COMPARING CORRELATION γ AND AVERAGE DISTANCE δ OF DIFFERENT

NUMBER OF CLUSTERS AND CLUSTERING METHODS FOR OUR METHOD

K-means Kd-tree
Number of clusters (M): 25 50 100 25 50 100

Mof01 25%
Correlation 0.83 0.90 0.92 0.86 0.92 0.92
Avg Dist 56.6 58.9 51.7 62.8 54.5 54.6

Mof01 50%
Correlation 0.94 0.94 0.95 0.93 0.97 0.97
Avg Dist 36.9 34.7 31.4 35.8 39.8 39.7

Mof01 100%
Correlation 0.96 0.95 0.93 0.96 0.96 0.97
Avg Dist 37.3 37.4 33.9 39.4 38.2 38.8

Lak01 25%
Correlation 0.87 0.87 0.92 0.88 0.88 0.87
Avg Dist 83.9 84.1 84.1 83.9 84.0 83.9

Lak01 50%
Correlation 23.4 59.2 125 1.0 0.9 0.9
Avg Dist 0.4 5.6 79.9 0.6 7.9 75.6

Lak01 100%
Correlation 0.93 0.93 0.96 0.95 0.95 0.95
Avg Dist 49.7 50.5 49.9 50.1 50.9 50.7

In table III we compare the running time of different settings
for number of clusters, clustering algorithm, and input image
size. The two most time consuming steps in our algorithm are
clustering and convex optimization on representative points
(Interactive visualization tools, such as the rotation of the color
wheel and the spatial lens on a small subset of the data have
response times of less than 0.1 seconds). The table shows that
k-means clustering is much slower than median cut. Note that
our recommended setting of M = 50 results in visualization
times of about 10 seconds which is reasonable for interactive
software. We also see that increasing the image size has less
impact on the running time than increasing the number of
clusters.

In table IV we present a quantitative evaluation of the
parameter setting. We can observe that the quality for using
50 clusters is only slightly worse than using 100 clusters.

D. Visual Comparison

In figure 9 and figure 10, we show the comparison between
our algorithm and the CMF algorithm. While CMF tries to
preserve the influence of the visible spectral bands we can see
that several features are lost in the visualization.

In figure 11 we see the results of different algorithms on
dataset Moffettfiled02. In the top left image, which is our
result, the urban area looks very clear, with several details
non-observable in other methods. The lake is relatively dark,
but can be made clearer with a spatial or spectral lens. Please
also note how the PCA without any enhancement produces a
visualization that is too dark as indicated by low values of δ
in our quantitative comparison. In figure 12 we show a visual
comparison of selected algorithms on the Lunarlake02 data set.
see that in our result, features are again easily distinguishable.
For this data set we use PCA with histogram equalization
(PCA HE). Note that histogram equalization can provide
colorful results but that the interpretation is difficult because
the distances in original spectral space are not preserved
resulting in low values of γ .

In figure 13 we see three more examples of the application
of a spatial lens. For each example we compare our method
to CMF, PCA, and PCA HE. A few remarks about the results.
Example one: the curved strip in the left middle part of the
image is very clear, while CMF fails to show this. The straight
strip does not show up in the PCA without enhancement. In
PCA with enhancement, the body of two parts in the lake
has too much perceptual difference: one part is pink and the
other part is green. From the original data we know they
should not be that dissimilar to each other. Example two: both
our method and CMF appear to do a good job, but in PCA
without enhancement the features are less clear. In PCA HE,
the two different kinds of materials are mapped to blue and
red respectively, which is not desirable. In example three CMF
cannot distinguish the features very well, while our method
and PCA without enhancement get similar result.

VI. DISCUSSION

Advantages: This new framework provides a good vi-
sualization result for hyperspectral images while avoiding
distortion of significant features. It also provides real-time
interaction to further facilitate exploration. Based on the visual
and quantitative comparison we argue that we outperform the
state-of-the-art techniques.

Limitations and Future Work: There are several aspects
of our algorithm that we want to improve in future work. One
limitation of the current algorithm is that it does not try to map
high dimensional pixel signatures to natural colors. Although
we can partially meet this requirement by rotating the color
wheel to make a particular part of the image look natural, we
do not have a systematic way to guarantee that all features
satisfy this criterion at the same time. We also would like to
experiment with using ICA instead of PCA for projecting the
colors to the 2D plane.

It is also worth mentioning that the two goals we set up
at the beginning, namely, preserving spectral distance and
obtaining high feature separability may be two contradictory
goals. In the current algorithm, these two goals are unified in
the optimization process by explicitly setting the preservation
of spectral distances as the objective function and casting
feature separability as a set of constraints. We would like
to explore the possibility to put both goals in the objective
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Fig. 9. Left: CMF result, γ = 0.82, δ = 5.6; Middle: Our result with Kd-tree, γ = 0.95, δ = 50.9; Right: Our result with K-means, γ = 0.95, δ = 50.5.

Fig. 10. Left: CMF result, γ = 0.88, δ = 7.7; Middle: Our result with Kd-tree, γ = 0.91, δ = 73.0; Right: Our result with K-means, γ = 0.90, δ = 76.2.

Fig. 11. Top Left: Result using our method; Top Middle: Result using our spectral lens; Top right: Result using ISOMAP; Bottom Left: Stretched Color
Matching Functions [7]; Bottom Middle: PCA without enhancement; Bottom Right: Result using 3 bands directly chosen from original data. The data set is
scene 2 from Moffettfield.

function with a parameter to balance their relative weights in
the future.

VII. CONCLUSION

In this paper we propose a new framework for hyperspectral
image visualization. We are the first to consider the final color
space in our computation and therefore we are able to derive
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Fig. 12. Top Left: Result using our method; Top Middle: Result using our spectral lens; Top right: Result using ISOMAP; Bottom Left: Stretched Color
Matching Functions [7]; Bottom Middle: PCA using histogram equalization; Bottom Right: Result using 3 bands directly chosen from original data. The data
set is scene 2 from Lunarlake.

Fig. 13. The figure shows the application of the spatial lens on three examples. Each of the three examples compares four methods: our algorithm in the
top left, CMF in the top right, PCA in the bottom left and PCA HE in the bottom right. Left: The spatial lens is applied to the yellow rectangle shown in
the left image of figure 11. Middle: red rectangle in top left image of figure 11. Right: red rectangle in the top left image of figure 12. For each example the
layout is the same as figure 8.

a higher quality mapping than previous work. Experiments
show the visual quality of the final mapping improves over
state-of-the-art approaches. The framework also provides some
interaction abilities which are important for a human analyst
to explore the data.
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