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Figure 1: Real-time diffusion curve renderings. (Left) The inlay ornaments on the vase and bowl show the sharp detail available with diffusion
curve textures. (Right) The crisp displacement boundaries on the stone plate and obelisk result from our dynamic feature embedding.

Abstract

Diffusion curve images (DCI) provide a powerful tool for efficient
2D image generation, storage and manipulation. A DCI consist of
curves with colors defined on either side. By diffusing these col-
ors over the image, the final result includes sharp boundaries along
the curves with smoothly shaded regions between them. This paper
extends the application of diffusion curves to render high quality
surface details on 3D objects. The first extension is a view depen-
dent warping technique that dynamically reallocates texture space
so that object parts that appear large on screen get more texture for
increased detail. The second extension is a dynamic feature embed-
ding technique that retains crisp, anti-aliased curve details even in
extreme closeups. The third extension is the application of dynamic
feature embedding to displacement mapping and geometry images.
Our results show high quality renderings of diffusion curve textures,
displacements, and geometry images, all rendered interactively.
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1 Introduction

Vector graphics, as alternatives to raster graphics, have the advan-
tage of easy shape manipulations and compact representation that
provide high quality even when rendered at very high resolution.
The recently introduced diffusion curve images [Orzan et al. 2008]
(DCIs) complement existing vector graphics with a great new repre-
sentation. While diffusion curves and vector graphics share the idea
that image boundaries are defined by curves, the rendering process
is fundamentally different, since in the case of diffusion curves,
the underlying operation is solving a diffusion equation. Diffusion
curves provide an intuitive and efficient image representation which
is at the same time general in the sense that a wide variety of images
can be generated.

This paper maps diffusion curves to surfaces as textures, displace-
ment maps and geometry images. The fundamental challenge in
this context is that the diffusion process is tied to a regular grid.
One could simply use a diffusion curve image with a specific res-
olution as a texture or displacement map, but this approach elimi-
nates many of the advantages of the diffusion curve representation,
in particular crisp curve boundaries, as illustrated in figures 2 and
6. To take advantage of the DCI representation when mapping dif-
fusion curves to surfaces, we need algorithms that can reconstruct
sharp curve boundaries at high zoom levels.

Contributions. The contributions of this paper are three algo-
rithms that enable real-time DCI rendering on surfaces while re-
taining the vector character that is the hallmark of the diffusion
curve style. The first contribution is a view dependent texture space
warping function that dynamically allocates more texture resolu-
tion for parts of the object that are close to the viewer. This alone
may not be sufficient and in closeups, curve edges can still become
blurry, destroying the vector character of the rendering. Our sec-
ond contribution remedies this problem by providing dynamic local
feature embedding and reconstruction, which allows the solution on
the regular grid to be magnified while retaining sharp, anti-aliased
curve boundaries. In combination with the warping feature embed-
ding automatically retains curve details at very high zoom levels.



Figure 2: Texture warping and feature reconstruction. (a) A vase rendered with diffusion curves as color decals (inspired by the African
artist ONA). (b) Common texture mapping with an 8002 texture shows very blurry edges in a closeup view. (c) Texture warping gives a
virtual resolution of 39000 × 42000 for the same closeup. The edges are still not crisp. (d) Even a warped 40962 texture (virtual resolution
159000 × 176000) does not provide sharp edges for extreme closeups. In addition, memory usage raises 25 times and the frame rate drops
more than 15 times. (e) Dynamic feature embedding guarantees crisp edges even for infinite closeups, here only using an 8002 texture.

The case of diffusion curves used as displacements is even more dif-
ficult, since a naive tessellation creates errors in normals on curve
boundaries no matter how high the base resolution (see figure 6).
Our third contribution is a feature sensitive meshing technique for
displacement maps and geometry images that fixes these artifacts
by shifting vertices on the surface to follow the curve boundaries.
We demonstrate the visual quality and speed of our techniques with
examples of diffusion curve textures, displacement mapped diffu-
sion curves, and diffusion curve geometry images, all rendered at
interactive frame rates, typically between 20 and 115 fps.

2 Background

Diffusion Curve Images. Representing an image by its edges
was motivated by Elder et al. [2001], who showed that edges are
a near complete image representation. Orzan et al. [2008] take
Elder’s representation a step further by vectorizing edges (calling
them diffusion curves) and sampling curve attributes such as col-
ors and blur values. The DCI approach uses only a single curve
primitive, while the diffusion process brings the curve information
together and forms the final image. Current work [Jeschke et al.
2009] provides a fast and robust DCI rendering algorithm based on
rendering the Voronoi diagram of the curves, and performing the
diffusion with a variable stencil size diffusion solver. We adopt this
DCI rendering method in this paper.

Vector Graphics Mapped onto Objects. When applying vector
graphics onto objects it is essential to have a random-access data
structure to locally evaluate the current color, typically in a pixel
shader [Nehab and Hoppe 2008]. Previous work mainly varies by
the type and amount of local information that is provided. Such
local information can be line segments [Sen et al. 2003; Sen 2004;
Tumblin and Choudhury 2008; Lefebvre and Hoppe 2006], bilinear
curves [Tarini and Cignoni 2005], a cubic curve [Ray et al. 2005],
two quadratic segments [Parilov and Zorin 2008] or a fixed num-
ber of corner features [Qin et al. 2006]. Some approaches enhance
raster images with sharp embedded features [Sen et al. 2003; Sen
2004; Tumblin and Choudhury 2008; Lefebvre and Hoppe 2006]
while others use more general vector graphics primitives that are
registered to a discrete grid [Qin et al. 2006; Nehab and Hoppe
2008]. If only a fixed number of primitives are stored per cell,
some places with high local complexity can dramatically raise the
required resolution of the whole grid. This is avoided if cells can
have variable complexity [Ramanarayanan et al. 2004; Nehab and

Hoppe 2008] at the expense of required texture indirections, a more
complicated registration for dynamic layout changes, and replicated
data for neighboring cells [Nehab and Hoppe 2008].

Our work tries to combine the simplicity of methods that have fixed
storage cost per texel with the flexibility of methods that provide
variable memory size according to local image complexity. On the
one hand, we locally store a small, fixed amount of feature infor-
mation per texel (a single point on a curve). At the same time we
allocate more texture space for visible regions close to the observer
and embed features, all dynamically per frame which adapts the
amount of detail in a view dependent fashion. This overcomes the
limited resolution problem of simpler feature embedding schemes
while preserving the convenience of locally having a fixed number
of features to evaluate.

Dynamic Texture Space Allocation. Reallocating texture space
to locally provide more detail has been presented in several differ-
ent contexts. Sloan et al. [1998] and Sander et al. [2002] change
object parametrization according to the amount of local detail in a
texture. Kraus and Ertl [2002] and Carr and Hart [2004] use texture
atlases. Perspective shadow maps [Stamminger and Drettakis 2002]
and its further developments [Lloyd 2007] reallocate texture space
depending on the current viewpoint to provide higher shadow map
resolution near the camera. Dachsbacher et al. [2004] warp geom-
etry images in a view dependent fashion for terrain rendering. We
present a view dependent texture warp approach that dynamically
reparametrizes an object. To do this, we determine the texture space
needs of each polygon and reallocate the texture accordingly.

3 Diffusion Curves on Surfaces

Given an object with appropriate parametrization and a set of diffu-
sion curves defined in parameter space, we want to use the diffusion
curve as a texture. Simply rendering the DCI at some resolution and
using the resulting image as a texture does not retain sharp features,
however. The extent of this problem is not really intuitive and is
easily underestimated. This is because the vector character of diffu-
sion curves leads to sharp boundaries at all zoom levels. Figure 2(b)
is a case in point. At the zoom level shown, an image texture would
need a resolution of about 500002 to faithfully reproduce the crisp
curve boundaries. Even if this much texture memory were avail-
able, the diffusion would take more than a full minute at current
GPU render rates. The resolution situation becomes even worse
when diffusion curves are used as displacements. For example, the
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Figure 3: Overview of our rendering approach: given a parameterized input model and curves defined in texture space, we (optionally) apply
curve warping to locally increase texture resolution (by a factor of about 4.5 in this case). The curves are diffused and the resulting image is
rendered as a texture on the object. Finally, local feature reconstruction is used to maintain sharp curve boundaries at all resolutions.

top middle image in figure 6 shows a displacement rendered with
a (virtual) resolution of 11000 × 11000. A naive triangulation of
the displacements along the curve boundaries leads to gross errors
in surface normals no matter what resolution is used.

3.1 Overview

In this section we present two methods to tackle the resolution prob-
lems related to diffusion curve textures. First, prior to diffusing the
image we optionally warp the curves to locally increase the tex-
ture resolution for visible curves near an observer, at the expense
of invisible and more distant ones. Second, during rendering we
locally reconstruct curve features using the distance map generated
by the diffusion solver. This combination allows us to render de-
tailed, anti-aliased diffusion curves on surfaces at very high quality
with a modest base resolution. Figure 3 gives an overview of our
approach, which can be summarized as follows:

• Starting with a polygon model, the current viewpoint, and a
piecewise linear approximation of the curves defined in tex-
ture space, we compute a texture space warping function. The
curve segments are then warped according to this function
(Section 3.2).

• The diffusion is carried out by the variable stencil diffusion
solver described in [Jeschke et al. 2009].

• We render the object, applying feature reconstruction to re-
tain sharp anti-aliased features (Section 3.3). Local feature
reconstruction can also be used for displacement mapping as
discussed in Section 3.5.

3.2 Curve Warping and Diffusion

In order to provide higher texture resolution for visible scene parts
close to the observer, we employ a parameter space warping func-
tion that can be evaluated in real time and is easily invertible. The
function is computed per triangle and resizes texture space accord-
ing to triangle visibility in the view frustum, whether a triangle is
back facing, proximity to the observer, and curve containment (i.e.,
only triangles containing curves can get more texture space, similar
to Sloan et al. [1998] and Lloyd [2007]). Rather than optimizing the
individual texture coordinates of all triangles in the mesh, we per-
form a global optimization separately for each texture coordinate
axis, similar to Dachsbacher and Stamminger [2004]. The resulting
function is easily invertible.

Given a warping function for each texture coordinate axis, we use
the mesh as a “cage” to warp the curves: during rendering we
first warp the texture coordinates of the mesh vertices and use the

barycentric coordinates of the curve vertices within each mesh tri-
angle to warp the curves. To do this, each linear curve segment has
to be registered to the triangle it is placed in. Segments that span
multiple triangles are cut and the subsegments are registered sepa-
rately. The registration process should be fast to allow for animated
curves. We accelerate registration with a regular grid structure de-
fined in texture space where each grid cell stores all triangles that
at least partly overlap it. This way, during registration of a curve
we do not have to check each curve segment against each triangle.
With this acceleration structure the curve registration process runs
fast enough to allow for interactive updates, even when rendering
hundreds of curves.

The texture warping distorts the color gradients in a diffused im-
age, but surprisingly, we have found that it introduces virtually no
noticeable artifacts in animations, as can be seen in the video. We
believe that this is the result of the fact that the human visual system
is not sensitive to smooth color changes.

For the diffusion curve rendering itself we use the variable sten-
cil size diffusion solver presented in [Jeschke et al. 2009]. As a
byproduct, the solver outputs a map containing (for each pixel) the
closest point on a curve, the color of the opposite side of the curve
for the same point and a corresponding distance map. These will
become important for the feature reconstruction described below.

The diffusion curve definition allows “curve reblurring” in a post-
processing step to support unsharp features. We apply the fast sepa-
rable approximation presented in [Jeschke et al. 2009], but with the
blur kernel size being warped in the same manner as the texture.
Fortunately, the separable nature of the texture warping function
makes this step straightforward.

In our current implementation the whole curve registration process
runs entirely on the CPU. If curves are animated, this has to be
performed in every frame, otherwise only once as a preprocess.
The CPU also computes the warping function and warps the tex-
ture coordinates of the mesh vertices as well as the piecewise lin-
ear curve segments in every frame. Afterwards, the 3D object and
2D curve segments are transferred from the CPU to the GPU. For
higher rendering performance, some of these computations might
be performed on the GPU. The curve segment rasterization, dif-
fusion, post processing and final 3D object rendering with feature
reconstruction (Section 3.3) is entirely performed in the GPU with
the required textures remaining in graphics memory.

3.3 Feature Reconstruction

When sharp features should be provided also for closeup views,
simply creating the texture at a larger size is not a viable option be-
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Figure 4: Top: Local curve reconstruction based on per sample
information. The hollow blue dots show the closest curve points
for nine samples (black points). The curve is reconstructed by con-
necting the curve points in order by parameter value. (a): A hard
reconstruction case. (b): Extended Voronoi regions of two line seg-
ments. (c): Per sample regions for the segment from S5P to S4P .

cause of the required memory and time for diffusion, as shown in
figure 2. Here, locally reconstructing curves is the key for crisp,
anti-aliased curve rendering while maintaining a modest texture
size. For our curve reconstruction algorithm we use per texel infor-
mation (from now on called a sample S) (see figure 4, top). Aside
from the texel center SC we need the following data which is cre-
ated during curve rasterization [Jeschke et al. 2009]:

• the closest curve point SP to the sample (shown as hollow
blue dots in figure 4),

• the curve parametrization value St at point SP ,

• the current side texel color (after diffusion) and the opposite
side color (stored during rasterization),

• a side tag Sside = {left, right, end} indicating if the texel
is on the left side, right side, or near an endpoint of the curve.

Reconstructed curves are defined as line segments that connect
curve points. We classify samples as valid and invalid. A sam-
ple S is valid if its curve point SP lies in the box enclosing the 8
adjacent texel centers SC (i.e. Sp is within one texel width of Sc

in both x and y). For example, valid samples are S4 to S9 in fig-
ure 4(a)-(c). A linear curve segment is defined between consecutive
valid curve points. That is, SiP and SjP form a segment if there is
no other sample with a parameter value between Sit and Sjt.

When rendering a fragment at texture coordinates T we first de-
termine if we are far enough away from a curve so that no feature
reconstruction needs to be done. To do this we simply test if any of
the four samples closest to T is invalid. If so, we can safely apply
bilinear color interpolation as no curve can exist between the sam-
ples. If T is too close to a curve, we locally reconstruct the line seg-
ments from a 5 × 5 neighborhood around T . To do this we sort the
25 samples according to parameter value St and construct up to 24
consecutive line segments from them. From this set, we determine
the segment that is closest to T . It may happen that two segments
are equally close to T, when the closest point Sp is a shared vertex

(a) (b) (c)

Figure 5: (a): Standard bilinear interpolation for a 60 × 60 texel
image. (b): The same image with reconstructed features. (c):
Closeup in which all texels with valid samples are outlined.

of two segments. Figure 4(b) shows this situation with S4p being
the closest point. To resolve the tie, we construct two points P1 and
P2 by walking a fixed distance away from SP along each segment.
The distances to these two new points are then used to break the
tie, thus forming a sort of extended Voronoi region as shown in the
figure. Qin et al. [2006] present a different solution with the same
result to break this tie. Having found the closest line segment, we
must determine on which side of the curve T lies (left or right). The
side with respect to the segment can easily be computed because it
follows the direction of the original curve (see figure 4(top)).

The algorithm above always computes the correct side because the
5× 5 neighborhood by definition contains all valid samples needed
to locally reconstruct a curve. However, it is rather slow due to
comparing and sorting 25 samples. We developed an alternate al-
gorithm that uses only a 3 × 3 neighborhood and is about 3 times
faster. The main problem with this smaller neighborhood is that
some important curve segments might be missed. Figure 4(a) and
(c) show a particular case (a cusp) where S7 lies not in the 3 × 3
neighborhood around T so that the segment from S4P to S7P is
missing. However, the closest segment from S5P to S4P indicates
the wrong side: the red region in sample S1 is falsely classified
as being “left” of that segment (assuming counter clockwise curve
parametrization in the example). Interestingly, S4side = right
provides the correct side, which also seems more reliable in this
case since it is closer to T than the segment. Obviously, between
S4C and S4P , S4side can safely “overrule” the wrong informa-
tion. We take this idea and refine the side computation: given a line
segment defined by samples SiP and SjP (S5P and S4P in fig-
ure 4(c)), construct two line segments from SiC to SiP and from
SjC to SjP in addition to our current segment. Now compute the
closest one of these three segments to T , again using the extended
distance definition as described above. This in principle adds “per
sample Voronoi regions” as figure 4(c) shows. Finally, the closest
of the three segments determines the current side of T . Intuitively
this always gives preference to the side information closest to T .
While no formal proof can be given here, this faster algorithm al-
ways worked correctly during extensive practical tests.

Having the correct curve side, we can apply a color. Colors are bi-
linearly interpolated between the four samples closest to T in order
to keep connectivity to texels further away from a curve. At the
same time, the interpolation has to respect the curve boundary. We
solve this in the following way: if a sample is on the opposite side
from T (i.e., Sside 6= Tside), the opposite side color (stored when
the texture was created) is substituted for it during interpolation.
Finally, anti-aliasing can be applied as in Section 3.4. The color
for the opposite curve side is computed by inverting the color side
decisions made for all four texels and interpolating them.

Endpoints: The handling of endpoints is simple: if any sample
defining the current line segment is an endpoint Sside = end, we
apply bilinear color interpolation of all current colors, since near



Figure 6: (Left) The straightforward application of an 800 × 800
diffusion curve displacement map on the surface of a torus only pro-
vides a resolution of 382 displacement values for the decal. Mid-
dle: view dependent texture warping raises this resolution to about
5302, but the illumination still shows stair-step artifacts on sharp
boundaries. (Right) Adding local feature reconstruction leads to a
high quality rendering, even in extreme closeups.

endpoints colors diffuse from both sides of a curve.

Multiple curves: Line segments must not be formed between dif-
ferent curves. We exclude them by adding a number for each pa-
rameter St that enumerates the curves (2, 4, 6, .., 2n for n curves).
This way, a parameter difference larger than 1 tells us that two sam-
ples point to different curves. Similarly, during color interpolation,
we always take the current color of a sample if it points to a differ-
ent curve than the one closest to T .

Figure 5 shows an example for curve reconstruction on an image
of only about 60 × 60 pixels. Notice the sharp and accurate color
boundaries despite the low image resolution and bilinear interpola-
tion artifacts near the corners.

3.4 Filtering and Anti-aliasing

Filtering and anti-aliasing are essential for high quality minified and
magnified viewing. For minified viewing we resort to mip-mapping
the final image. Anti-aliasing is performed using the distance map
and the current pixel footprint size provided by the graphics hard-
ware: if the distance d is smaller than half a pixel (0 ≤ d < 1

2
),

a curve passes through the current pixel, which needs to be anti-
aliased. In this case we blend the color at the current pixel cpixel

with the color on the other side of the curve cother (as was stored
during curve rasterization). The final color cfinal is computed as

cfinal = (1 − 2 ∗ d) ∗ (
cpixel + cother

2
) + 2 ∗ d ∗ cpixel (1)

One can see that if d = 0 (i.e. the pixel is exactly on a curve), the
average of the two colors is taken, and at d = 1

2
the current pixel

color is retained.

3.5 Diffusion Curve Displacement Mapping

Because of their sharp features, diffusion curves have a major ad-
vantage over raster images for representing certain types of dis-
placement maps [Cook 1984]. Figure 6 brings this advantage to
light. In a surface displaced by a raster image, if sharp features
do not align with pixel boundaries, jagged artifacts appear in the

Figure 7: A wavy spiral defined as a DCI geometry image.

geometry. This is only partially remedied by increasing the resolu-
tion. Using a diffusion curve to define the displacement offers the
chance to get rid of the artifacts through feature embedding.

There are two general approaches to render a displaced surface: ray
casting or displacing vertices of a fine mesh. We opt for the sec-
ond approach since accounting for the distorted texture space and
finding local features seem very costly for GPU ray casting meth-
ods [Policarpo et al. 2005]. To render displacement mapped diffu-
sion curves, we reuse all steps introduced in Section 3, but we must
add an additional step to make sure that curve boundaries remain
sharp in the reconstruction. We first sample a geometry image [Gu
et al. 2002] from the object that should be displaced. This is done
by rasterizing each object polygon into a texture of the same size as
the DCI using its (warped) parametrization. Every texel stores the
corresponding 3D position and normal, both transformed to camera
space. Next, we render a fine mesh that uses texels of the geometry
image as vertices. The stored position, normal, and displacement
value (stored in the DCI) define the 3D position of every such ver-
tex. The result is a displaced object with higher mesh resolution in
visible areas close to the observer, thanks to the warping method
presented in Section 3.2.

To retain sharp features, we move vertices placed at valid samples
(the ones defining the curve, see Section 3.3) to the respective posi-
tion SC directly on the curve and reread the position and normal at
those coordinates. This simple method retains sharp feature bound-
aries in most cases. However, we have to note that this method
does not work for thin features like sharp long cusps as the number
of vertices is not sufficient to reconstruct all curves. In practice this
means that one side of the cusp might not appear perfectly smooth.
Another issue is that the texture warping function only takes the
base surface into account, but not the actual displacement, like
methods specifically designed for displacement mapping [Moule
and McCool 2002; Doggett and Hirche 2000; Gumhold and Huet-
tner 1999]. Because of this, artifacts are sometimes introduced at
sharp object corners and large displacements when the displaced
surfaces should be visible, but the base surface is not.

3.6 Diffusion Curve Geometry Images

We have tried a number of experiments with representing geometry
images [Gu et al. 2002] directly as diffusion curves. In this repre-
sentation, a 3D object is defined by a set of curves in space with
minimal surfaces between them. The diffusion process remains the
same as in the image and displacement cases. Figure 7 gives one
example of a diffusion curve geometry image. One appealing char-
acteristic of this representation is that the curves can be moved in
texture space without changing the shape of the object. This points
to the possibility of editing tools that open up parts of texture space
where more detail is needed, for example. One area for future work
would be to define a set of GUI tools for creating and editing diffu-



Figure 8: A failure case for curve reconstruction. Top left: high
resolution image. Top right: Curve reconstruction inaccuracies due
to multiple curves crossing single texels. Lower left: the pixel grid
used for reconstruction. Lower right: bilinear interpolation at the
same resolution.

sion curve geometry images efficiently.

3.7 Discussion

One might ask why we do not store the algebraic curve descriptions
for the feature reconstruction to provide theoretically infinite curve
resolution [Qin et al. 2008; Nehab and Hoppe 2008]. One reason
is that any practical diffusion process works on sampled data, so it
seems natural to provide approximately the same amount of detail
along the curves. Another reason is consistency: since the piece-
wise linear curve approximations used during rasterization do not
exactly match the algebraic curves, some texels would lie on oppo-
site curve sides, resulting in false colors during feature reconstruc-
tion.

The very high local resolution provided by the texture warping,
combined with the feature reconstruction, produced smooth curves
in all our examples even at very close inspection. Of course, de-
tails can only be correctly reconstructed if enough information has
been stored in the texture, but even with texture warping the reso-
lution may locally not be high enough in some situations. Figure 8
shows such a case where we chose an extremely low resolution. In
the top right, the undersampled details do not provide a consistent
reconstruction. For comparison, the lower right shows the same im-
age bilinearly interpolated. In this case, feature reconstruction still
seems preferable to bilinear filtering as it retains more structural
information. Our representation cannot correctly handle curve in-
tersections, as is the case for all approaches based on real-time per-
pixel feature reconstruction [Parilov and Zorin 2008]. Fortunately,
as texture resolution is typically high due to the warping, such ar-
tifacts are small on screen which makes them less noticeable. In
addition, since we use a small neighborhood around the curves to
gather curve information, we achieve slightly higher curve resolu-
tion compared to previous methods based on individual pixels.

In many practical applications, textures are tiled or used for multi-
ple objects. Computing the warping and diffusion for each instance
provides high quality but is potentially costly. The warping and
diffusion can also be computed for the closest instance and the re-
sulting DCI reused for more distant ones, for example, if a texture is
tiled along a wall. In general, studying efficient strategies for such
cases is an interesting avenue for future work.

Figure 9: A vase rendered with different diffusion curve textures.

4 Results

4.1 Diffusion Curve Textures

Figure 1 (left) shows the image quality possible with DCI textures,
highlighting the sharp curve boundaries provided by our texture
warping and feature embedding. Note the sharp and anti-aliased
curves on the vase and bowl, and in particular, the closeup view of
the bowl with detailed inlays. This quality is achieved with a base
texture of only 8002 texels, which keeps memory requirements and
the computational effort for the diffusion fairly low. Unless other-
wise indicated, all examples have been created with this DCI res-
olution. In the closeup view the image warping provides a virtual
resolution of 2300×6600, with even sharper feature reconstruction.

Figure 9 shows two other examples of diffusion curves used as tex-
ture maps. Note the expressive gradients on the vase tops that would
be difficult to obtain with standard vector graphics techniques. As
demonstrated by the environment map reflections, we are using dif-
fusion curves exactly as we would common surface textures.

The video shows the quality that our renderer can achieve for real-
time viewing. We are able to reproduce crisp anti-aliased curve
edges at high zoom scales, and the texture appearance is completely
stable, despite warping that occurs in the underlying texture.

Table 1 gives frame rates for different DCI resolutions. (All 3D
renderings in this paper have been created at a resolution of 8002.)
Note that even with a DCI resolution of 10242, the renderer con-
sistently maintains almost 40 fps. Paradoxically, the render speed
is lower for a 1282 DCI texture than for a 2562 texture. This is
because the lower resolution causes more pixels to perform feature
reconstruction, invoking a slower path in the pixel shader.

Table 2 varies the number of curve segments, adding multiple
copies of the “Ona” decal from figure 2. As the table shows, there is
a fairly linear drop off in performance as more curve segments are
added, with each new segment increasing the render time by about
0.04 ms. We believe this value to be rather consistent since after the
first few curves are rasterized, the distance map rendering for new
curves will mostly be culled by hierarchical Z culling.

Table 3 toggles texture warping, feature reconstruction and reblur-
ring, while keeping the other two effects on. Similar to lowering the
DCI resolution, turning off texture warping increases the number of
pixels that must perform feature reconstruction, and the frame rate
actually decreases when we turn off the warping. Feature recon-
struction itself is fairly time intensive, as shown in the table, but it
is essential for zoomed views. On the other hand, reblurring takes
so little time that it does not even register in our test.



4.2 Displacement Mapping

Figure 1 (right) shows displaced hieroglyphs on an obelisk and a
stone tablet. Note how precise the displacements are, even in the
zoomed inset. It is practically impossible to achieve this quality
with raster displacements, as demonstrated in figure 6. Despite the
large number of polygons, the rendering still runs at about 20 fps for
the stone tablet and obelisk, thanks to the high polygon throughput
of current graphics hardware.

The variety of displacement map applications achievable by our
framework ranges from small scale features like the hieroglyphs
to medium sized features such as the picture frame shown in fig-
ure 10(top) to more global features like the golf course relief in
figure 10(bottom), in the spirit of Bruneton and Neyret [2008]. The
representation of these examples is remarkably simple: the picture
frame only consists of 4 curves while the golf course requires only
12.

Table 4 compares render times for different sized DCI displacement
maps. The results shown in the paper were all rendered with 8002

displacement maps. Table 5 gives the performance of our displace-
ment map renderer for different numbers of curve segments, with
a DCI resolution of 8002. The frame rate achieved here is about
half that of the texture renderer, but is still quite interactive for up
to a thousand curve segments. In table 6 we can see the cost of
animating the curves. The minimal extra overhead (∼ 15%) oc-
curs because the renderer must re-register all of the curve segments
against the triangles of the input mesh for each frame.

4.3 Geometry Images

DCI geometry images achieve similar performance to displace-
ments, with similar dependencies on the DCI resolution and the
number of curves rasterized, as shown in tables 7 and 8. The in-
triguing aspect of the diffusion curve geometry images is that we
have a completely new curve-based object representation. Figure 7
shows an example of a DCI geometry image, and another is shown
in the video. Notice how precisely the curve contours are captured
by our feature embedding. This would not be possible by just sam-
pling the surface at higher resolution on a rectangular grid.

5 Conclusions and Future Work

This paper makes several contributions to enable high quality dif-
fusion curve rendering on surfaces. The combination of a view de-
pendent texture space warping and dynamic feature reconstruction
allows sharp, high quality renderings of diffusion curve textures
with a low base resolution. The amount of displayed curve detail
is automatically adapted to the viewing distance. We also demon-
strate the application of dynamic feature reconstruction to displace-
ment mapping. These contributions enable several applications as
demonstrated in the paper: diffusion curves on surfaces, displace-
ment mapped diffusion curves, and diffusion curve geometry im-
ages. These applications all run interactively, and allow interactive
creation, editing and curve manipulation.

We believe that our rendering solutions provide several opportuni-
ties for future work. While we demonstrated our approach for the
specific case of diffusion curves, it seems interesting to study its
applicability to conventional vector graphics. Another idea is to
use diffusion curves to model general three-dimensional surfaces.
Our initial experiments with geometry images have offered some
encouraging results, but we would like to develop efficient tools to
create and edit diffusion curve geometry images.

Figure 10: Top: A picture frame, modeled with only four curves
that are colored red in the displacement map image at the top left.
Bottom: The relief of a golf course modeled using only 12 curves.
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