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Abstract
This paper proposes to use relief-mapped conical frusta (cones cut by planes) to skin skeletal objects. Based on this
representation, current programmable graphics hardware can perform the rendering with only minimal communi-
cation between the CPU and GPU. A consistent definition of conical frusta including texture parametrization and
a continuous surface normal is provided. Rendering is performed by analytical ray casting of the relief-mapped
frusta directly on the GPU. We demonstrate both static and animated objects rendered using our technique and
compare to polygonal renderings of similar quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms
I.3.7 [Three Dimensional Graphics and Realism]: Color, shading, shadowing and texture

1. Introduction

Today the data bandwidth between CPU and GPU is often
a bottleneck for hardware rendering performance. Addition-
ally, despite rapid increases in capacity, GPU memory us-
age remains a concern for complex scenes. One solution
to the bandwidth problem is to generate low level graphi-
cal primitives (triangles, points and lines) on the GPU in a
geometry shader or tessellator. Thus, the CPU can process
and send some high-level object description to the graphics
board where the GPU does the bulk of the modeling and ren-
dering work.

Another approach to rendering once again defines high
level primitives to allow fast data transfer between the CPU
and GPU. However, instead of approximating the primitives
with a large number of triangles, the GPU directly renders
these high level primitives by ray casting. The contribution
of this paper is to present such a representation that allows
for interactive high quality renderings of complex objects
while keeping CPU workload and CPU to GPU communica-
tion very low. We restrict our representation to objects that
are described as skeletons, consisting of line segments con-
nected by joints. Objects falling into this category include
trees, snakes, columns, and other objects composed of rota-
tionally symmetric segments. The surface around each seg-
ment is algebraically defined as a conical frustum, similar
to the cone spheres of Max [Max90]. The CPU sends this
“lightweight” data structure to the GPU and the geometry
shader generates some bounding geometry around each seg-

ment that is rasterized. Finally, the pixel shader computes the
intersection between the algebraic surfaces and the current
viewing ray, and shades the pixel accordingly. The method
also provides consistent surface parametrization for textur-
ing, as well as surface normals for plausible shadings.

We extend the conical frustum-based representation to in-
clude relief mapping to add fine-scale surface details. At the
same time, the output-sensitive nature of ray casting largely
decouples the rendering speed from object complexity, of-
ten resulting in higher frame rates compared to polygonal
renderings of the same quality. We show examples of the
technique applied to static and animated objects.

1.1. Related work

Several methods for rendering algebraic surfaces using GPU
based ray casting have been published recently, among
them piecewise polynomial surfaces using Bezier tetra-
hedra [LB06], radial basis functions defined over point
sets [CBC∗01] and implicit surfaces defined over discrete
voxel grids [HSS∗05]. Sigg et al. [SWBG06] present a GPU
ray casting framework for rendering quadratic surfaces that
is similar to our work; they consider spheres, ellipsoids and
cylinders, whereas we consider conical frusta. However, un-
like Sigg et al., we define a parametrization and map textures
and relief maps onto our surfaces.

Mapping height fields (relief maps) onto objects for in-
creased geometric detail has a long tradition in computer
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graphics. In early work, Cook [Coo84] displaced the ver-
tices of microtriangles. Later, Meyer and Neyret [MN98]
achieved real time rendering of complex surface offsets
with a slicing-based method. Lee et al. [LMH00] present
a geometry-based framework that represents displaced sur-
faces as offsets from subdivision meshes.

In recent years, relief mapping has became more prac-
tical because of the advent of GPU ray casting [Tat06,
BD06, POC05]. A fast but approximate method (i.e., object
silhouettes remain without details) was presented by Poli-
carpo [POC05] in 2005. This method calculates an entry and
exit point in texture space and marches the ray until its height
is smaller than the one stored in the relief map at that posi-
tion. This work was later improved by locally approximating
the object shape using quadrics [PO06, OP05]. A more ac-
curate technique is to extrude a given object mesh along the
normals, thus forming a prism for each triangle. All prisms
together form an object shell [HEGD04,PBFJ05]. Typically,
each prism is split into three tetrahedra that are rendered sep-
arately. This allows for better silhouette representations at
the cost of increased overdraw. While simple, the tetrahe-
dral mapping of the prisms leads to unwanted distortion in
the displacements. Jeschke et al. [JMW07] present a high
quality method that does not rely on tetrahedra, but the ray
casting step is more complex, making the method slower.

This paper brings the ideas of ray casting algebraic sur-
faces and relief maps together. By defining a consistent
parametrization for objects consisting of implicitly defined
conical segments we can provide geometric details for al-
gebraic surfaces. At the same time, common problems for
relief mapped polygonal models are avoided. Because the
conical segments are implicitly represented, we can provide
high quality relief mapped surfaces (including object silhou-
ettes) while avoiding the high overdraw of previous shell-
based methods.

2. Skinning a Skeleton with Conical Frusta

This section describes our skinning procedure, which pro-
duces a set of conical frusta suitable for GPU ray casting.
We assume as input a list of line segments that are con-
nected with joints, along with a desired radius to define the
thickness of the object at each joint. We begin by defining a
conical frustum representation for object segments and pro-
vide definitions for their parametrization and surface nor-
mals. Then we describe a ray-frustum intersection routine
and a tight bounding volume definition needed for an effi-
cient GPU implementation. In Section 3 we extend our ray
casting model to include relief mapping, which allows the
algorithm to render complex surface details in real time.

2.1. Conical Frusta

A right circular cone centered around the y axis, as shown in
Figure 1, can be defined as follows:

Figure 1: Basic cone definition.

(h′)2(x2 + z2) = r2
1(y−h′)2 (1)

where h′ is the cone height and r1 is the radius at y = 0. A
conical frustum is defined by cutting off the cone at y = 0 and
y = h. Given the height of a conical frustum, h, and the radii
at the two ends, r1 and r2, the height of the corresponding
cone h′ can be computed as

h′ =
r1h

‖r1 − r2‖ . (2)

2.2. Connecting Conical Frusta

To skin a complete skeleton using conical frusta, we need to
seamlessly fit adjacent conical segments together. Our ren-
derer handles this by defining a unique cutting plane for ev-
ery joint, as shown in Figure 2. We start by defining a me-
dial plane, which is formed by taking the cross product of
the medial axes of the two participating segments:

−→Nm =
−→M1 ×−→M2

‖−→M1 ×−→M2‖
(3)

where −→Nm is the normal of the medial plane, and −→M1 and−→M2 are the normalized medial axis directions of the frusta
(If the medial axes are colinear, we substitute one of the co-
ordinate axes for −→M2). Within the medial plane, the left and

Figure 2: A cutting plane is computed in the plane defined
by the two segment’s medial axes.
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right cone boundaries (shown in Figure 2, middle) intersect
at two points A and B. The point A is the intersection of the
lines that connect points L1 to L2 and L3 to L4, defined as
offsets from the medial axes of the two frusta. For example,
L1 is given by

L1 = C1 − r1(
−→M1 ×−→Nm) (4)

where C1 is the base point of the bottom frustum. We per-
form the calculation to find A directly in the medial plane
rather than in 3D. B is found similarly. Given A and B, we
can construct the cutting plane between the two frusta to be
perpendicular to the medial plane and include A and B:

−→Nc = (A−B)×−→Nm

−→Nc · (P−A) = 0 (5)
−→Nc is the normal of the cutting plane, −→Nm is the normal of
the medial plane and P is a point that may lie on the cutting
plane.

Cutting a cone using the medial plane construction above
results to an elliptical cross section on each of the cones. By
construction, the major axes of the two elliptical cuts lie on
the medial plane, and are identically defined by the segment
AB. In general, however, the minor axes of these ellipses do
not meet seamlessly. We propose the following iterative so-
lution to this problem: if a new segment is connected to an
existing one, we compute a cutting plane as described above
and measure the misalignment for the minor axes of the el-
lipses formed by the cut. The base radius r1 of the new cone
is then adjusted accordingly and the cutting plane is recom-
puted. This is repeated until the minor axes match to within
some tolerance. Once the major and minor axes coincide the
elliptical caps will match perfectly since they have precisely
the same major and minor axes. Note that this operation does
not change the overall shape of the object since the bottom
radius of the conical frusta remain constant. In practice we
found this extra fitting step to be unnecessary since the seams
between segments are generally not visible (for example, see
Figure 4).

2.3. Frustum Parametrization

A (u,v) parametrization for a segment surface is required
for texture mapping, normal mapping and relief mapping.
We define u over the angle around the segment medial axis
as shown in Figure 3. For a given point P = (xp,yp,zp), u is
calculated by

u =
1
2π

tan−1
(

xp

zp

)
. (6)

Depending on their local coordinate systems, the u coordi-
nates between two joined frusta may not match. In this case,
we rotate the texture frame of the top frustum to bring the
u parameters in line at the cutting plane. First, we calculate
the u = 0 point on the cutting plane for the bottom frustum.
Next, we calculate the u parameter for this same point as

Figure 3: Conical frustum parametrization: u is defined
around the medial axis y, and v spans from the lower to the
upper cutting plane.

measured from the top frustum, ut . During rendering, we
subtract ut from the u coordinate of the top frustum to align
the u axes of the frusta.

The v coordinate spans along the cone between the two
cutting planes. To solve for v, we compute two points Pl and
Pu on the two cutting planes at the same u coordinate as P
(see Figure 3). These points can be computed as the inter-
section of the two cutting planes and the line through P and
the cone apex (0,h′,0). v is computed from the distance ratio
between P, Pl and Pu:

v =
‖P−Pl‖
‖Pu −Pl‖

. (7)

Although we define the parametrization from 0 to 1, it can be
rescaled if a texture should span multiple segments. A twist
in the parametrization can be handled by adding vθ to the u
coordinate, where θ is the twist angle along the segment.

2.4. Surface Normals

Segment surface normals are needed for shading calcula-
tions and relief mapping. However, the normals defined by
the conical frustum surface are not continuous across adja-
cent segments, which is desirable for smooth shading. To
remedy this problem we define new surface normals that are
C0 continuous across segments as follows: Normals on the
cutting planes between segments are defined to face away
from the base and top point of the medial axis. Normals
in the middle of a segment are interpolated using the v pa-
rameter (Equation 7). Referring to Figure 3, after computing
Pl and Pu as described in Section 2.3, the lower and upper
normal directions are computed as −→Nl = Pl − (0,0,0) and−→Nu = Pu − (0,h,0), respectively. After normalizing −→Nl and−→Nu we compute the final normal −→N by blending between the
two based on v:

−→N = (1− v)−→Nl + v−→Nu. (8)
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Figure 4: Renderings with actual surface normals (left) and
our interpolated normals (right).

Even though normals defined in this way deviate quite a bit
from the actual surface normals, they tend to work well for
shading as well as relief mapping purposes. Figure 4 com-
pares glossy renderings made with the actual surface nor-
mals to our interpolation scheme. Note that our normals pro-
vide a visually smooth surface.

2.5. Ray Casting Conical Frusta

The goal of the ray casting step is to find the intersections of
a given viewing ray and a conical frustum. First, the viewing
ray is transformed into the local xyz coordinate system of the
segment as defined in Section 2.1. Let the viewing ray V be
defined in the segment coordinate system as:

V (t) = E + t−→D (9)

with E being the eye point and D being the viewing direc-
tion. Inserting 9 in 1 and solving for t results to

t =
−b±√

b2 −4ac
2a

(10)

where

a = −→D 2
x +−→D 2

z −−→D 2
y(

r1

h′
)2

b = 2Ex
−→D x +2Ez

−→D z −2−→D y(Ey −h′)( r1

h′
)2

c = E2
x +E2

z − (Ey −h′)2(
r1

h′
)2.

If b2 − 4ac falls below 0 or a becomes 0, the viewing ray
does not hit the cone and the respective pixel can be dis-
carded. Back substituting t into 9 provides two intersection
points. We pick the one with the smallest t, i.e. the nearest to
the eye point. The point is tested to see if it lies between the
two cutting planes of the segment using a simple dot product.
If the test fails the pixel is discarded. Otherwise we compute
the respective texture coordinates and normals and render
the point.

2.6. Bounding Primitives

To initiate ray casting, the renderer rasterizes a low polygon
count bounding primitive for each conical frustum, in our
case a pyramidal frustum. The side planes of the pyramid
are defined by the points (±r1,0,±r1) and (±r2,h,±r2).

Each of the four points at y = 0 forms a line with its coun-
terpart at y = h. These lines are intersected with the oblique
cutting planes (see Section 2), which results in an obliquely
cut pyramidal frustum that tightly covers the conical frus-
tum as is shown in Figure 2, right. The renderer rasterizes
this structure as 12 triangles, providing the pixel shader with
all required fragments for ray casting.

3. Relief Mapping Conical Frusta

While the conical frusta define basic object shapes, the need
for more detailed object surfaces calls for extending the pro-
posed representation. Recently, relief mapping using GPU
ray casting was presented for triangle meshes (see Sec-
tion 1.1) and this technique fits nicely into the framework
presented so far.

The first step is to define a shell-like volume around the
cone where the height field is mapped to. The idea is to ex-
tend the representation by an additional conical frustum per
segment, thus giving two concentric conics. Assuming the
inner frustum is given, we add the desired shell thickness
to the two radii r1 and r2 (see Section 2) to form the outer
frustum. The relief texture is mapped onto each frustum us-
ing the parametrization described in Section 2.3. Note that
in this way, any (u,v) coordinates are also exactly mapped
along the normals as defined in Section 2.4, thus defining a
class of concentric cones with equal parametrization. The re-
lief height w is defined as w = 0 at the inner cone and being
w = 1 at the outer one.

The principle of relief mapping is to march the viewing
ray through this shell and calculate the closest intersection
with the relief map. In each step the current ray height is
compared against the respective relief height stored in a tex-
ture. First we compute the ray entry and exit points as the
viewing ray intersections with the outer conical frustum (see
Section 2.5). This provides the ray interval of interest. It is
clipped against the cutting planes that bound the segment.

Ray intervals form curves in parameter space, similar to
the triangle case [JMW07]. Consequently, to be accurate the
(u,v) parametrization has to be computed separately for each
sample point along the ray. First we have to compute the cur-
rent ray height w which is the distance ratio from the current
point P to the inner and outer cone. Fortunately, since only
the ratio is of interest and both cone surfaces are parallel, the
computation can be done in the plane y = Py. The distance
d between P and the medial axis is then d =

√
P2

x +P2
z . The

radius of the inner and outer cone at Py are computed given
the base radius r1 and height h′ for each as:

r =
r1(h′−Py)

h′
. (11)

The current height w is then computed as

w =
d − ri

ro − ri
(12)
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Figure 5: Comparison between simple texture mapping (left)
and relief mapping.

where ri and ro are the radii of the inner and outer cones
at height Py. Comparing w against the height stored in the
relief map requires texture coordinates for P. We compute
these by constructing a new cone with P lying exactly on
its surface by using the computed w value and calculating
the (u,v) parametrization for that cone as described in Sec-
tion 2.3. Finally, the height value is fetched from the relief
map at position (u,v) and compared against w. If the latter
is smaller, we have found an intersection and can shade the
point. If no such w can be found, the pixel is discarded.

Note that ri and ro can be linearly interpolated between
ray entry and exit point, which speeds up the computation.
On the other hand, computing (u,v) as described above is
exact but computationally expensive. Fortunately, since u is
the angle around the y axis it can be computed quickly in the
xz plane of the current sampling point. We approximate v
by linear interpolation between the ray entry and exit point.
This approximation provides exact results if the two cutting
planes are parallel. If the angle between successive segments
is less than 45 degrees, artifacts (relief "swimming") hardly
become noticeable. Segments can be subdivided for larger
angles. Figure 5 shows an example for a relief mapped ob-
ject.

It is interesting to note that ray marching acceleration
techniques like sphere or cone tracing were not efficient for
the proposed relief mapped cones. We attribute this fact to
the required dependent texture reads that only pay off if
many uniform sampling steps can be omitted as in terrain
rendering. Instead, we successfully used uniform sampling
followed by a bisectional search for accuracy improvement,
similar to Policarpo et al. [POC05].

4. Implementation and Results

We have implemented relief mapped conical frusta using
C++ and GLSL. Our program computes the frustum bound-
ing geometry (12 triangles per segment) on the CPU. During
rasterization the fragment shader computes the ray conic in-

Figure 6: Close-ups of the scene in Figure 5 with increasing
number of triangles: Upper left 16k, upper right 64k, lower
left 256k. The lower right shows a similar viewpoint of the
same scene rendered with ray casting.

tersection for each pixel, optionally with relief mapping. Il-
lumination can then be computed using standard techniques.

To get an initial quality assessment between our algorithm
and polygon rendering, we rendered several relief-mapped
scenes with our ray caster and different amounts of polygo-
nal subdivision. Figure 6 shows an example from our exper-
iments. Notice that in this example, at least 256k polygons
are necessary to achieve similar quality to ray casting.

We also modeled a number of plants and other objects to
demonstrate the range of possible shapes that can be mod-
eled with conical frusta. Figures 7 through 11 show several
scenes that we composed. The conical frusta proved to be
a flexible modeling tool. For example, complex structures
such as the well in Figure 10 and palm tree leaves in Fig-
ure 11 were easy to create.

Table 1 shows model statistics and rendering performance
for these scenes on an Intel Xeon running with 2.66GHz and
an NVidia 8800 GTX graphics card. We measured the frame
rate at 1024x768 pixel resolution with each model spanning
most of the viewport. Frame rates for geometry subdivision
are based on subdividing the model until similar quality to
the ray casting results is achieved. As shown in the table,
a few polygon subdivisions usually suffice to attain similar
quality in the non-displaced case, but more subdivisions are
required to equal the quality of ray casting for relief-mapped
objects. (The leaves of the coconut and the pine trees are
not relief mapped nor are all objects in the well scene. Also,
the last four scenes in the table were rendered with shadow
maps.)
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Figure 8: Scene with 100 dancing cacti.

Since the ray caster is fill limited and polygon rendering is
transformation limited, the trade-off between polygons and
ray tracing depends highly on the number of rendered pix-
els. However, the frame rate is not always exactly correlated
with the number of pixels rendered. For example, we have
obsered that for full screen close-up views the frame rate
may actually be higher than for overviews since ray casting
texture reads become more local and therefore more cache
friendly. In general, we only see a performance benefit in the
case of relief mapping, since the GPU is optimized for very
high polygon loads. Polygon rendering could be improved
by employing LOD techniques, but the ray caster can main-
tain high quality at interactive frame rates without the need
to resort to LOD algorithms that require more memory and
programming effort.

The conical frustum representation is also quite compact.
The bulk of the memory overhead lies in the relief map,
which can be reasonably stored as 8 bit values, whereas the
vertices for polygons at the same sampling density will take
twelve times as much space without considering connectiv-
ity. Furthermore, a relief map is more amenable to reuse
within a scene than a list of vertices, so the actual memory
savings may be even higher in some cases.

For animated objects, the splitting planes between seg-
ments have to be recomputed in each time step. This can be
done efficiently even for large scenes because of the sparse
representation. Figure 8 shows 100 individually animated
cacti that are rendered interactively. We maintain interac-
tivity even though the splitting planes are computed on the
CPU. This operation could be moved to the vertex shader for
added speed.

4.1. Limitations

Our representation has a number of limitations. First, objects
are by definition composed of piece-wise linear segments.
This makes the representation of models that are smooth

in the medial-axis direction inefficient. While the presented
lighting model and the relief mapping can alleviate this prob-
lem, an interesting direction of future research is to provide
C1 continuity between adjacent segments. If the angle be-
tween two segments is too large, the top and bottom caps
may intersect. Currently we do not handle this situation.
Branching structures are another issue, since they cannot be
represented seamlessly. It would be interesting to explore us-
ing the relief map to provide continuity in these cases. An-
other limitation is that the cones defining our objects must be
round. Nevertheless, the relief map can be used to increase
the shape variety. Allowing other implicit surfaces like ellip-
soids may further widen the range of representable objects.

5. Conclusion

We have presented an approach to skin skeletal objects us-
ing C0 continuous conical frusta and render them directly
on the GPU using ray casting. This provides minimal work-
load for the CPU and reduces communication between CPU
and GPU as well as low memory requirements. We devel-
oped a parametrization for the frusta needed for texture map-
ping and defined consistent surface normals. The represen-
tation was extended to include relief maps. Here the implicit
surface definition allows efficient high quality renderings of
static and animated objects. In the future we want to develop
techniques that increase the range of objects that can be rep-
resented using conical frusta.
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Figure 9: Left: Saguaro cactus defined by 30 segments. Middle: Aloe vera modeled using 229 segments. Right: Elm tree
modeled as 1833 segments.

Figure 10: Left: Well scene modeled with only 8 conical segments. The well, the columns and roof are relief mapped. Right: a
second view.

Figure 11: Left: Oasis scene consisting of 18557 segments, most of them modeling the leaves. Right: Desert scene consisting
of 799 conical segments.
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