
20 January/February 2009 Published by the IEEE Computer Society 0272-1716/09/$25.00 © 2009 IEEE

Tutorial

Generating 3D Building Models
from Architectural Drawings:
A Survey
Xuetao Yin, Peter Wonka, and Anshuman Razdan ■ Arizona State University

Using 3D building models is extremely help-
ful throughout the architecture engineer-
ing and construction (AEC) lifecycle. Such

models let designers and architects virtually walk
through a project to get a more intuitive perspec-
tive on their work. They can also check a design’s
validity by running computer simulations of en-
ergy, lighting, acoustics, fire, and other charac-

teristics and thereby modify or
adjust designs as needed before
construction begins. 3D building
models also have far-reaching
applications beyond AEC, such
as real estate, virtual city tours,
and video gaming. However,
manually creating a polygonal
3D model of a set of floor plans
is nontrivial and requires skill
and time.

Researchers and CAD develop-
ers have been trying to automate
and accelerate conversion of 2D
drawings into 3D models, but

doing so is difficult for several reasons. Foremost
among these is the input form, which greatly deter-
mines how complicated it will be to extrude a model
from architectural drawings. Some systems use digi-
tal copies of computer-drawn architectural draw-
ings; others scan paper floor plans as input. However,
because paper plans still dominate the architectural
workflow, any system that claims to be an end-to-
end solution must process raster images.

Although existing solutions share a common pipe-
line, they often choose different algorithms for various
process steps. In this survey, we review the research

on automatic generation of 3D building models from
both paper- and CAD-based architectural drawings.
Besides comparing the systems’ robustness and ef-
ficiency, we suggest improvements and offer a brief
review of industry products.

Architectural Floor Plans
Architectural drawings are essential to designing,
narrating, and executing a construction project.
Most drawings take the form of floor plans, which
portray an orthographic top-down projection of each
building level using standardized symbolic represen-
tations of the structure’s architectural elements.
Other kinds of drawings—such as longitudinal-
section drawings, elevation drawings, and reflec-
tive ceiling plans—work with floor plans to form a
complete building specification.

Floor plans have various levels of detail. The
most punctilious and intricate floor plans are de-
tailed workplans or construction structure drawings
(CSDs). CSDs are used exclusively by design engi-
neers and construction managers and often show
internal steel bars, the concrete structure for col-
umns, beams and walls, and pipe and ductwork
layouts. Recently, Tong Lu and his colleagues de-
signed a system that constructs a detailed building
model from computer-drawn CSDs.1 However, to
our knowledge, no research has aimed at inter-
preting raster images of CSDs.

The most widely distributed form of floor plans
lacks detailed construction information. Still, they
manage to cover the building’s complete layout,
which is sufficient to build a model for most appli-
cations. Whether these less-detailed floor plans are
hand drawn or computer produced, many systems

Automatically generating
3D building models from 2D
architectural drawings has
many useful applications in the
architecture engineering and
construction community. This
survey of model generation
from paper and CAD-based
architectural drawings covers
the common pipeline and
compares various algorithms
for each step of the process.

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 21

accept them as legitimate input. However, such
floor plans use varying graphic symbols, which is
a major drawback.

Figure 1 shows examples of common styles for
walls, windows, and doors. Instead of being con-
strained to a particular standard, a drawing’s purpose
(and the designer’s artistic motivation) determines
what components will be shown and how they’ll
look. This creates a major challenge in analyzing and
interpreting an image floor plan, and makes a cer-
tain amount of human intervention unavoidable.

General System Overview
Figure 2 shows an example input and the desired
output from an automated 3D building model sys-
tem. We categorize existing systems according to
the kind of input they use. CAD documents, such
as Data Exchange Format (DXF) and AutoCAD
Drawing (DWG) files, preserve drawing infor-
mation as 2D geometric primitives, grouping the
architectural components together by type and
giving them unique labels. This layered structure
of CAD files makes recognition trivial.

In contrast, when a system takes a raster image of
a floor plan as input, there’s no obvious distinction
between graphical symbols, wall lines, dimensions,
scales, textual content, and leading lines (that is,
the straight lines that lead to measurement or text).

So, to decipher the information needed for extru-
sion, the system must rely on image-processing and
pattern-recognition techniques.

Figure 3 (next page) shows the basic model extru-
sion steps, and Figure 4 (page 23) shows an ideal
solution’s two-phased operational pipeline. Most
actual systems differ slightly from this model.
However, by combining different system ideas, our
common framework can help developers structure
and compare existing solutions. As we discuss later,
systems generally differ in the choice of algorithms
or the task execution order.

Besides general characteristics, most systems
also share common shortcomings. The biggest
is the lack of generality. Pattern recognizers are
typically constrained to a small set of predefined
symbols. Also, current systems don’t exploit infor-
mation embedded in text strings, which could be a
valuable cue to the building’s spatial structure and
topology. Most systems also neglect the “finishing
touches.” To offer a better visual appearance, for
example, a system could either procedurally gener-
ate indoor and façade textures or automatically de-
rive them from photographs. In addition, systems
fail to appropriately orient the architectural ele-
ments’ placement in the 3D model. Finally, several
systems use imperfect algorithms, thus requiring
substantial user assistance in some steps. Systems

Figure 1. Different ways to draw a wall with a window and a door. The variable graphic symbols pose challenges for automatically
converting 2D drawings into 3D models.

(a) (b)

Figure 2. The (a) input and (b) output of a system that converts 2D architectural floor plans to 3D computer graphics models.
Systems that accept floor plans as input must rely on image-processing and pattern-recognition techniques to distinguish
between graphical symbols, wall lines, dimensions, and so on.

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

22 January/February 2009

Tutorial

need more accurate, efficient, and automated algo-
rithms, especially for the pipeline’s first phase.

Converting Floor Plan CAD files
Systems using CAD-based floor plans don’t have
the overhead or ambiguities related to image pro-
cessing and pattern recognition; they focus more
on 3D model extrusion. University of California,
Berkeley researchers Rick Lewis and Carlo Séquin
introduced a system that semiautomatically cre-
ates detailed 3D polygonal building models us-
ing floor plans created in AutoCAD.2 The system
groups architectural symbols into dedicated layers
in standard DXF files. Although this simplifies the
recognition algorithm’s task, the geometry typically
suffers from errors and ambiguities, especially at
the joint regions. The system deals with geometric
flaws by correcting disjoint and overlapping edges.
During the extrusion phase, it collects the topol-
ogy of spaces and portals and thereby guarantees
proper polygon orientation. After it has modeled
each floor, the system stacks the floors to form the
complete model. With embedded topology, design-
ers can use the resulting models for various ap-
plications, such as smoke propagation simulation.
The system is highly automated but requires user
assistance to correct geometry flaws.

Clifford So and his colleagues at the Hong Kong

University of Science and Technology (HKUST) view
the model conversion problem in the VR context.3
Architecture and urban design are a significant
market for VR techniques, so automating model
generation is extremely beneficial. After observ-
ing conventional manual model reconstruction,
the authors identified its three major tasks: wall
extrusion, object mapping, and ceiling and floor
construction. They then incorporated automated
approaches to each, including automatic wall poly-
gon extrusion, generating and placing customized
templates of random orientation and size, and ad-
vancing front triangulation. This greatly reduces
processing time.

However, this approach still requires considerable
manual effort: users must mark-up wall lines, spec-
ify architectural objects, and assign the objects to
individual transformation matrices. Consequently,
for the system to perform adequately, the input file
must contain fully established semantic informa-
tion and be error free.

With the Building Model Generation (BMG)
project (http://city.csail.mit.edu/bmg), Massachu-
setts Institute of Technology researchers set out
to fully automate construction of a realistic MIT
campus model. The project’s pipeline is similar to
that of the UC Berkeley system but attaches an
extra process to automatically position and orient
building models using a map for guidance.

Lu and his colleagues at China’s Nanjing Uni-
versity developed systems to construct models
from computer-drawn CSDs1 and vectorized floor
plans.4 Unlike a computer-produced drawing, a vec-
tor image contains geometric primitives without
labels to indicate their types, making symbol rec-
ognition much more difficult. As in the HKUST
project, this system also differentiates the walls
from other architectural components. It detects
parallel line-segment pairs as walls and removes
them from the drawing. It recognizes the remain-
ing primitives as different symbols by finding
feature matches with predefined patterns. Each
pattern contains a target symbol’s graphical primi-
tives and corresponding geometric constraints, as
well as integrated information about its context in
the drawing (environment). During recognition,
the system orders pattern constraints by their
priority level and checks them one at a time. It
removes corresponding primitives from the draw-
ing immediately after satisfying all of a pattern’s
constraints. The system pays significant attention
to a building model’s structural details. The pro-
cesses are highly automated once the user imports
all the patterns. However, the system’s robustness
is highly sensitive to input quality.

(a) (b) (c)

(d)

Figure 3. Critical steps in 3D model extrusion. The system takes as input
(a) an original floor plan. It then uses algorithms for (b) denoising and text
removal and (c) symbol recognition and 2D geometry creation. Finally, it
(d) extrudes a 3D model.

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 23

Converting Floor Plan Images
CAD tools are a relatively recent development in
architectural history. Many drawings are still done
on paper and saved as scanned images. Such im-
ages can’t be input in the systems we just described.
Before model extrusion, scanned images must be
converted to properly structured CAD documents
or something semantically equivalent. Doing this
manually is labor intensive and time consuming,
even with a moderate number of plans.

Philippe Dosch and his colleagues at France’s
Lorraine Laboratory of Research in Information
Technology and Its Applications (Loria) proposed a
complete solution for analyzing raster images and
generating 3D models.5 The system contains three
major steps.

During image processing and feature extraction, 1.
the system vectorizes input raster images as sets
of polylines and arcs. It supports large images
through integrated tiling and merging processes.
During 2D modeling, the system uses con-2.
straint networks6 to recognize vector elements
as architectural symbols and integrates them
into a description of the building layout.
During 3D modeling, the system separately ex-3.
trudes a 3D model of each floor and assembles
them to form the entire building.

This system addresses almost all pipeline issues.
It recognizes one of the largest symbol sets of all
the studied systems and demonstrates maturity
and robustness in steps such as image processing
and model extrusion. The system requires moder-
ate human assistance; some intervention remains
unavoidable for steps such as arc detection in vec-
torization and symbol recognition.

At the Chinese University of Hong Kong (CUHK),
Siu-Hang Or and his colleagues developed a system
to solve a slightly simplified problem that consid-
ers only walls, doors, and windows.7 The overall
execution flow is similar to the Loria system but
emphasizes 3D-model extrusion. CUHK’s system
distinguishes walls as inner structures from build-
ing outlines, which it uses to match neighboring
floors. (In contrast, the Loria system uses intru-
sion structures—such as elevator wells—to guide
matching.) During vectorization, the system ex-
tracts outlines of black pixels in the raster image
and matches them with walls of various shapes.
It identifies symbols by matching vector-primitive
groups to patterns consisting of sequences of geo-
metric characteristics (constraints).

Although using a simple symbol recognizer sim-
plifies the system, it limits its flexibility and appli-

cability. Recognition quality relies heavily on the
vectorization algorithm’s robustness. To improve
performance, the developers introduced a raster
image denoising process. Before extruding the 3D
model, the system identifies rooms as enclosed
spaces, which provides useful information for
downstream analysis and applications.

System Comparison
Table 1 (next page) summarizes the systems and
their processes and relates them to Figure 3’s pipe-
line. As the table shows, each system comprises a
unique set of processes. Combining them offers a
complete pipeline that covers all aspects of model
generation from floor plans.

Some processes, such as image denoising and to-
pology construction, are mature and effective; others
are ineffective or not robust enough for fully auto-
mated execution. For systems using raster images,
symbol recognition is a bottleneck. The graphical
symbols’ flexible nature and subtle shape differences
make achieving satisfactory precision difficult. For
both system categories, correcting geometry flaws

Scanned images

Image parsing

Tiling

Text extraction

Noise removal

Vectorization

Merging

Symbol recognitionSymbol recognition

Text layer

CAD �les

Re�ected
ceiling plans

Cleanup/correction3D extrusion

Architectural
components Walls

Portals/contours

Topology

Outline

Triangulation

Template generation

3D transform

Assemble

Models

Textures

Floors and ceilings

Figure 4. The
pipeline for
a complete
solution. This
idealized
pipeline
combines
ideas from
various systems
to create a
framework
that can help
developers
structure their
own solutions
or compare
existing
solutions.

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

24 January/February 2009

Tutorial

without human intervention also remains difficult.
An optimal approach would integrate complemen-
tary systems and employ more recent and advanced
algorithms in some of the key pipeline processes.

To build an ideal system, we must synthesize
various processes. To that end, we now introduce
the existing systems’ algorithms for the two main
pipeline phases—image parsing and 3D model ex-
trusion—and briefly explore other choices.

Image Parsing and Drawing Analysis
This phase aims to analyze an input raster floor
plan and extract the layout information it repre-
sents. In other words, the goal is to parse the floor
plan’s architectural semantics. As Table 2 shows,
this phase features several major challenges.

To analyze and parse image floor plans, systems
rely on graphical document analysis. This typically
involves two major steps: cleaning and graphical-
symbol recognition (also known as graphics recogni-
tion). Cleaning aims to remove noise and unnecessary
information from the image to improve graphics rec-
ognition quality. In graphical-symbol recognition,
the system groups neighboring pixels and interprets
them as instances of graphical symbols. The system

collects and organizes each recognized symbol’s loca-
tion, orientation, and scale information.

As an outcome of floor plan analysis, designers
expect an object-orientated geometrical description
of the floor’s architectural layout. Floor plans differ
from other graphical documents in several ways.
One is the presence of lines that represent walls;
such lines can be large spans, be straight or curved,
and have varied shapes. Another difference is the
presence of highly localized architectural symbols
composed mostly of simple geometric primitives.
Typically, graphics recognition would incorporate
vectorization to deal with this type of input. In all
the systems, the overall analysis process starts with
cleaning (including noise removal and text extrac-
tion), followed by vectorization and recognition.

Noise Removal
In scanned images, one of the most common types
of noise is sampling noise introduced by digital
scanning. This is a well-studied problem in image
processing, and researchers have proposed many
algorithms to solve it.

However, in floor plan analysis, noise has a
broader definition. In addition to scan noise, de-

Table 1. Comparing the systems on image parsing, 3D extrusion, and overall performance.

Process Univ. of California,
Berkeley

Hong Kong Univ. of
Science and Technology

Nanjing Univ. Loria Chinese Univ. of Hong Kong

Image parsing

Tiling/merging Automatic

Noise removal Not specified Semiautomatic with filtering
and manual intervention

Text extraction Pixel-based Statistical techniques

Vectorization Skeletonization
and polygon
approximation

Outline extraction

Symbol
recognition

Automatically
collected from Data
Exchange Format
(DXF) layers

Manually collected A sequence
of geometric
and other
constraints

A constraint
network

A sequence of geometric
constraints

3D extrusion

Cleanup Automatic Manual Manual

3D transformation Semiautomatic

Portals/contour/
topology

Automatic Manual Automatic Automatic

Outline Automatic Manual Automatic Automatic

Triangulation Polygon-based Advancing front

Assembly Can handle
different-size floors

Uses intrusion
structures to match
adjacent floors

Overall performance

Automation High Low High High High

Robustness High High Medium High Medium

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 25

signers consider all pixels that lack information
directly useful for model generation as noise. Ex-
amples include annotation leading lines; dimen-
sion lines; furniture and hardware symbols, such
as for tubs and chairs; and, in some cases, deco-
rative patterns in the background. Designers also
consider text strings as noise, although they typi-
cally use dedicated algorithms to deal with them.

Sometimes, there’s a fine line between noise and
useful pixels, and segmentation remains an un-
solved problem in floor plan image analysis. The
Loria system uses morphological filtering to seg-
ment an image into thick lines against thin lines.
This approach assumes that background patterns
and dimension leading lines differ from useful
lines in thickness and style. Other researchers also
make this assumption,7 putting a threshold on the
input that preserves only thick construction lines.
For all such systems, however, human interven-
tion in this step is unavoidable.

Text Extraction
The ideal algorithm should be not only efficient
but also independent of the text font, size, and
orientation and should require minimal human
intervention. Text intermingled with the geomet-
ric shapes poses additional challenges in terms of
separation and extraction. Researchers have studied
text separation in detail. Most of the resulting al-
gorithms fall into two families. Structure-based (or
curvature-based) algorithms focus on the structural
differences between graphical symbols and charac-
ters. These algorithms are inspired by the idea that a
character is always more structurally complex than
a graphical symbol. By separating all linear shapes—
using approaches such as directional morphological
filtering8 or distance transform9—these algorithms
separate graphics content from characters.

The second algorithm family is pixel based.10,11
For example, Lloyd Fletcher and Rangachar Kasturi
presented an algorithm10 that researchers have used
in various document analysis systems, either di-
rectly or by adjusting input characteristics. The al-
gorithm first collects black pixels (eight connected
pixels) and encloses their circumscribing rectangles
as a single connected component. Next, it filters
connected components through several metrics to
be either rejected or accepted as part of text strings.
(Attributes include size, black-pixel density, ratio of
dimension, area, and position within the image.)

For complex drawings, pixel-based algorithms
are more stable than structure-based algorithms.
Pixel-based algorithms work extremely well when
text and graphics don’t touch or overlap. However,
they will likely classify dashed lines as characters.

Because dashed lines often denote staircases and
hidden structures, postprocessing must reclaim
them as graphical symbols.

In their system, the Loria researchers imple-
mented the algorithm10 with a postprocessing step
for dashed lines. They later made the algorithm
more suitable for graphics-rich documents.11 Their
improvements included a postprocessing step that
uses local segmentation of the distance skeleton to
retrieve text components that touch graphics.

Systems typically fail to adequately exploit the text
layer because adding this functionality makes the
system more complex. However, text string size, lo-
cation, and orientation can provide important clues
about a building’s structure even when the semantic
meanings are unknown. For example, the label “pa-
tio” for a part could be very informative about the
space that part represents in the drawing.

Graphics Recognition
Once the system separates text from graphics, it
must extract the pixels’ embedded architectural
information and organize the pixels into a com-
plete object-based geometrical description of the
building layout.

A drawing contains two major kinds of infor-
mation:

structural information, represented by walls, ■

and
local architectural components (or accessories), ■

represented as parameterized instances of stan-
dard templates.

Architectural design is essentially a partition of
space, and walls define the building’s spatial struc-
ture. Walls are therefore better preserved as geometric

Table 2. The challenges of image parsing and drawing analysis.

Step Issues

Noise removal The leading lines of notations could be easily confused
with wall lines.

The background might contain a grid or decorative pattern.

Text
extraction

Text font, size, and orientation might vary.

Text and graphical symbols might share pixels
(overlapping or touching).

Many algorithms classify dashed lines (commonly used in
the staircase symbol) as text.

Vectorization Most algorithms recover only lines and arcs. Free-form
curves continue to be a challenge.

Noise greatly affects the result.

Vectorization might give bad results at junction points.

Symbol
recognition

The symbols might not comply with the standards.

There might be a large pool of symbols, and differences
between two symbols could be subtle.

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

26 January/February 2009

Tutorial

polylines for the extrusion step. This is one reason
all systems incorporate vectorization and work on
geometric primitives rather than perform symbol
recognition based directly on pixels.

Vectorization. This process, also called raster-to-
vector conversion, transforms image pixels to the
geometric primitives they represent. Theoretically
analyzing a vectorization algorithm is nontrivial.
Such an algorithm’s most important criteria are
efficiency, robustness, and accuracy.

Traditional line-drawing vectorization includes
two steps:12

The raster-to-chain step converts the raster 1.
bitmap to a set of pixel chains.
The chain-to-segment step transforms the set 2.
of pixel chains to polylines or arcs.

After each step, various postprocesses are needed
to fix joint errors. However, most vectorization al-
gorithms find only line segments and circular arcs.
Algorithms for more complex curves are rare.

For the first step, systems typically use three
groups of algorithms: parametric model fitting,
contour tracking, and skeletonization.12 Paramet-
ric model fitting uses a Hough transform to detect
lines in the image. This method’s disadvantage
is huge memory consumption and the lack of
generality.

Contour tracking works especially well for sim-
ple floor plans. Instead of dealing with black pix-
els, this algorithm searches the contour of white
pixels and identifies connected regions as rooms
on the basis of the assumption that, in floor plans,
white spaces are partitioned by black wall lines.
This method doesn’t work when the structure gets
complicated; it’s also sensitive to noise.

Skeletonization finds a curve’s bones, or skel-
eton, by thinning or by searching for its medial
axis.13 Thinning-based algorithms iteratively peel
off boundary pixels until only a one-pixel-wide
skeleton remains.14 However, these algorithms can
give bad results at intersections, especially when
distortions exist. Also, they aren’t very efficient be-
cause they visit each pixel multiple times. Typical
medial-axis-based algorithms include pixel track-
ing15 and run-graph-based algorithms.16 Medial-
axis-based algorithms treat a line with thickness
as a solid shape, with the medial axis as its skel-
eton. The medial axis of a 2D polygonal shape is
defined as the locus of the centers of all inscribed
spheres of maximal radius.

Vectorization’s second step segments point chains
into sets of lines, polylines, and circular arcs by us-

ing polygonal approximation or estimating the cur-
vature to find the critical points.

Loria’s system uses a skeletonization technique
for vectorization’s first step and polygonal approxi-
mation for the second step. Similarly to contour
tracking, the CUHK system tracks the contour
of black pixels and organizes them into blocks of
walls and symbols.

Symbol recognition. This process is at the core of
graphical document analysis. The ideal graphic sym-
bol recognizer (GSR) is efficient, robust, independent
of context, and immune to affine transformation.
Several existing methods work well in particular ar-
eas and offer a satisfactory performance overall.

Most GSRs are either vector based (oriented to-
ward structure) or pixel based (oriented toward
statistics). Vector-based GSRs work on vectorized
images composed of primitives such as points,
line segments, arcs, and circles. The GSR iden-
tifies a symbol by checking the structural char-
acteristic of a group of neighboring primitives.
Vector-based approaches include region adjacency
graphs,17 graphical-knowledge-guided reasoning,18
constraint networks,6 and deformable templates.19
Such approaches require good vectorization; their
advantage is that they’re affine invariant.

Pixel-based GSRs work directly on raster im-
ages, focusing on statistical features of a symbol’s
pixel formation. Pixel-based algorithms include
plain binary images,20 living projection, and shape
contexts.21 Because this approach doesn’t involve
vectorization, it has higher precision and accuracy
than vector-based approaches, but its performance
is vulnerable to scaling and rotation. Su Yang has
been working to merge the vector- and pixel-based
approaches.22

Because (as we discussed earlier) all existing
systems use vectors as GSR input, they implement
GSRs using structural approaches. The Loria project
uses constraint networks, which view a symbol as a
set of constraints that the vectorized image’s primi-
tives must fulfill. This approach uses a network to
model the features and constraints, and propa-
gates vectorized floor plan segments through the
network to search for terminal symbols. CUHK’s
system adopts a similar, but simpler, approach that
uses a sequence of geometric constraints as symbol
patterns. Systems could use both raster and vector
copies of a given floor plan and use both approaches
to increase recognition precision.

The International Association on Pattern Rec-
ognition’s Workshop on Graphics Recognition has
held several international symbol recognition con-
tests, the most recent occurring in 2005. Ernest

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 27

Valveny and Philippe Dosch describe the different
algorithms submitted to the workshop and how
they performed under various conditions.23

Tiling and Merging
A drawing’s size can also create issues. Some-
times, the image file might be prohibitively large.
Although users can overcome this obstacle by re-
ducing the image’s scale, such downsampling can
cause information loss. This is where tiling comes
in handy. Tiling tessellates the original input into
smaller parts, processes them individually, and
merges them back together.

Dosch and his colleagues, for example, split
the original image into partially overlapping tiles,
carefully selecting the width of overlapping zones
to achieve maximum performance.5 After vec-
torization, they merge the tiles by matching the
vector content in neighboring tiles. This highly
automated procedure requires minimal user inter-
action and reportedly has a low error rate.

3D Model Extrusion
The input to the pipeline’s model extrusion phase
can be either a geometric and component-wise
building layout description from the image-parsing
phase or a well-organized CAD document with a
dedicated layer for each symbol type. The goal is
to automatically create a 3D building model in the
form of a polygonal mesh.

Model extrusion entails six major challenges:

The extrusion should consistently orient facet ■

normals.
Creating details of architectural entities relies ■

heavily on empirical assumptions. Any template
library that tries to cover all styles and designs
will inevitably be huge and have potentially con-
flicting architectural styles.
Assembling multiple building levels to form a ■

complete building can be problematic because
individual floor plans might use different scales
and orientations.
The search for exterior outlines can be compli- ■

cated if the exterior walls have projecting objects
(such as balconies).
The selected approach must accommodate build- ■

ings with unconventional designs.
Extrusion can be complicated when buildings ■

have multiple stories. If two adjacent floors have
different footprints, one floor might be exposed.
To avoid gaps, the model must incorporate ad-
ditional polygons.

Figure 5 illustrates some of these challenges.

Error Cleanup
Both vectorized, hand-drawn images and com-
puter-sketched drawings suffer from disjointed
lines, overlapping vertices, and false intersections.

(a) (b) (c)

(e) (f) (g)

(d)

(h)

Figure 5. Models with inconsistent normals are unacceptable for many applications. (a) The rendering result
of a model with correct normals using the ambient-occlusion technique. (b) Ambient occlusion on a model
whose normals aren’t consistent. (c) A low-quality triangulation of a cross-shaped building outline with too
many slim triangles. A smarter tessellation would use a convex polygon with high edge count. (d) The same
shape tessellated by a constrained Delaunay triangulation. Polygons in (c) and (d) have the same number of
triangles; however, (d) has much better quality with respect to the triangles’ shape. Ambiguity is introduced
by (e) a projection object or (f) a penetrating structure, such as an atrium or lobby. Modern architectures
place higher demands on system flexibility and intelligence. Examples of unconventional designs include
(g) China Central Television’s new headquarters (under construction) and (h) the complex inner structure
of Beijing’s National Center for the Performing Arts. (Figure 5g courtesy of the Office for Metropolitan
Architecture; Figure 5h courtesy of the Artists Rights Society.)

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

28 January/February 2009

Tutorial

Before working with polygons, designers must
launch certain operations to clean up geometry
errors. They can do this cleanup manually or by
using algorithms such as coerce-to-grid,2 which
puts a uniform grid with optimized spacing over
the floor plan and snaps vertices to their nearest
grid points (see Figure 6).

Extrusion
A complete 3D building model has three major
assemblies: walls, architectural components, and
floors and ceilings. Extrusion should handle each
assembly differently according to its unique char-
acteristics and the specific application needs.

Walls form the building’s structural frame-
work. Generating a section of 3D wall from its
2D projection is fairly easy. However, figuring out
the normals isn’t trivial. There are several ways to
solve this problem. One way is contour searching,
which is a guided traversal of wall vertices with
sealed portals. This process is essentially the same
as determining facets in a 2D mesh represented
by a half-edge data structure. Contour searching
can not only help identify facet normals and the
building outline (that is, the mesh boundary) but
also provide an object-orientated building repre-
sentation in terms of rooms and open spaces. Such

knowledge can greatly accelerate propagation sim-
ulation and potentially visible sets. Figure 7 com-
pares a contour search operation with a simpler
solution that decomposes walls into segments and
extrudes them as separated wall blocks.

Designers generally view architectural compo-
nents—such as doors, windows, and staircases—as
model accessories. The most intuitive way to deal
with them is to define a standard template for each
entity class and provide parameters to specify and
customize instances. These include shape param-
eters, such as height and width, and a transfor-
mation matrix that transforms the object from
the object coordinate system to the world coor-
dinate system. If the application focuses solely on
the building’s structure and space arrangement, it
might ignore the architectural components.

Ceilings and floors are important model parts that
link different levels together. The first step in deal-
ing with them is to find each level’s exterior outline.
Typically, this outline consists of walls. However, ob-
jects such as balconies can create ambiguities.

Also, many buildings have concave polygon out-
lines. The modeler’s job is to deliver a tessellated
model comprising a set of convex shapes. Depend-
ing on the application’s requirements, designers
can use a sophisticated algorithm, such as con-
strained Delaunay triangulation, or a naive greedy
approach. However, for quality purposes, long,
thin triangles should always be avoided.

After tessellation, the floor and ceiling from
neighboring levels should fit each other. The pro-
cess gets complicated when they differ in scale or
orientation. In some cases, neighboring levels’ ex-
terior outlines don’t have the same shape, which
makes model assembly more difficult. In such
cases, users should be able to select several pivots
to perform registration. This will let them coher-
ently line up different levels into a whole model.

In the final step, users assign materials and at-

(a) (b)

Figure 6. Dealing with connectivity errors: (a) three common errors and
(b) the correct joints using the coerce-to-grid algorithm.

Seal portals
(a)

(b)

Figure 7. Two
wall extrusion
algorithms:
(a) outline and
contour search
and (b) block
modeling. Two
algorithms
produce
output models
of different
quality, and
users might
prefer one
style over the
other. Contour
search is more
topologically
sound; block
modeling is
straightforward
and runs
quickly.

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

 IEEE Computer Graphics and Applications 29

tach textures to make the interior and the facade
more persuasive and aesthetically appealing. The
system can generate materials and textures proce-
durally or extract them from image sources.

Commercial Software
Besides the research prototypes, there are many
commercial software packages for generating 3D
building models. In the AEC industry, software
packages fall into three families: full-fledged ar-
chitectural design packages, general-purpose CAD
tools, and plug-ins. None of them combine great
efficiency with high automation, so finding a com-
plete problem solution is an ongoing quest.

Product Overview
Instead of using geometric primitives—such as points,
vectors, and polygons—as building blocks, mod-
ern AEC software uses the building-information-
modeling (BIM) paradigm. BIM is a 3D, object-
oriented, AEC-specific CAD technique. It covers
geometry, spatial relationships, geographic infor-
mation, and building component quantities and
properties. BIM represents a building project as
a combination of its parts. To assemble a design,
BIM software users select a predefined component
template and place it in the drafting window.

BIM software systems include Autodesk’s Revit
Architectural, ArchiCAD, and Architectural Desk-
top (ADT; formerly Autodesk Architectural). Plan-
Tracer, an architectural desktop plug-in, claims to
be the first product to deal with raster image floor
plans. With user assistance, PlanTracer converts
2D floor plans into intelligent objects, such as
rooms, walls, and windows.

Almost all modern CAD software generates
3D models. Typically, such software stores archi-
tectural information—such as walls, windows,
doors, and staircases—as customized architectural
components. Because different software products
define standard templates or paradigms for archi-
tectural entities in unique ways, system compat-
ibility is fairly low.

Product Evaluation
We evaluated several commercial software pack-
ages for their strengths and weaknesses. We se-
lected products for evaluation on the basis of
completeness, usability, and product quality.

The PlanTracer plug-in runs with ADT and au-
tomatically converts vector drawings or raster
images to ADT projects. It can also work semi-
automatically, letting users select a region of inter-
est to guide symbol recognition. PlanTracer carries
out the pipeline’s first phase. Using PlanTracer’s

output, ADT employs BIM to extrude a 3D model.
Because PlanTracer requires in-depth knowledge of
ADT, its learning curve is steep. Also, PlanTracer’s
geospatial integration is cumbersome.

Google SketchUp is a simple, efficient 3D mod-
eling program with an intuitive, friendly interface
for 3D-model design. Users can draw outlines in
a 2D sketchpad and then use a push/pull tool to
extrude corresponding 3D volumes and geom-
etries. SketchUp can also export Keyhole Markup
Language files for Google Earth, and users can
place their building models in Google Earth with
accurate georeferencing. Although SketchUp can
quickly create a building’s outside shell, using it
to extrude a building model of a detailed interior
structure is manually intensive.

Autodesk Revit is a popular architectural-
design-and-modeling tool with full BIM support.
Revit lets users design projects using drag-and-
place tools with parametric components. Users can
create their own object templates or use the tool’s
well-designed architectural component families.
Revit is specifically for architectural purposes and
covers every aspect of AEC workflow. The tool’s
bidirectional associativity lets users freely change
their designs and then propagate such changes
throughout the model. Revit creates a 3D project
view and an exportable mesh model. However,
Revit can’t automatically create a 3D model from
a raster image floor plan.

Only a few systems fully address the problem
of generating 3D building models from 2D

architectural drawings, and even they aren’t com-
pletely automated. Vectorization and symbol rec-
ognition remain the open issues. Both tasks still
require significant manual intervention and will
continue to do so as long as architectural repre-
sentations contain ambiguities or inconsistencies.

For buildings with complex shapes, the conversion
is also complex; such shapes might include non-
planar and angled walls. Reconstruction therefore
requires elaborate help from regular users or expert
designers. However, we do foresee vertical solutions
developed to address the needs of specific applica-
tions, including homeland security, interactive Web,
commercial architecture, and real estate.

Acknowledgments
This work is being funded as a collaboration between
Arizona State University and Kutta Technologies
on Department of Homeland Security grant NB-
CHC070060.

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

30 January/February 2009

Tutorial

References
 1. T. Lu et al., “A New Recognition Model for Electronic

Architectural Drawings,” Computer-Aided Design,
vol. 37, no. 10, 2005, pp. 1053–1069.

 2. R. Lewis and C. Séquin, “Generation of 3D Building
Models from 2D Architectural Plans,” Computer-
Aided Design, vol. 30, no. 10, 1998, pp. 765–779.

 3. C. So, G. Baciu, and H. Sun, “Reconstruction of
3D Virtual Buildings from 2D Architectural Floor
Plans,” Proc. ACM Symp. Virtual Reality Software and
Technology (VRST 98), ACM Press, 1998, pp. 17–23.

 4. T. Lu et al., “Automatic Analysis and Integration of
Architectural Drawings,” Int’l J. Document Analysis
and Recognition, vol. 9, no. 1, 2007, pp. 31–47.

 5. P. Dosch et al., “A Complete System for the Analysis
of Architectural Drawings,” Int’l J. Document Analysis
and Recognition, vol. 3, no. 2, 2000, pp. 102–116.

 6. C. Ah-Soon and K. Tombre, “Architectural Symbol
Recognition Using a Network of Constraints,” Pattern
Recognition Letters, vol. 2, no. 2, 2001, pp. 231–248.

 7. S.-H. Or et al., “Highly Automatic Approach to
Architectural Floor Plan Image Understanding and Model
Generation,” Proc. Vision, Modeling, and Visualization,
IOS Press, 2005, pp. 25–32.

 8. H. Luo and R. Kasturi, “Improved Directional
Morphological Operations for Separation of Characters
from Maps/Graphics,” Proc. 2nd Int’l Workshop
Graphics Recognition, Algorithms and Systems (GREC
97), Springer, 1998, pp. 35–47.

 9. T. Kaneko, “Line Structure Extraction from Line-
Drawing Images,” Pattern Recognition, vol. 25, no. 9,
1992, pp. 963–973.

 10. L.A. Fletcher and R. Kasturi, “A Robust Algorithm
for Text String Separation from Mixed Text/Graphics
Images,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 10, no. 6, 1988, pp. 910–918.

 11. K. Tombre et al., “Text/Graphics Separation
Revisited,” Proc. 5th IAPR Int’l Workshop Document
Analysis Systems, Springer, 2002, pp. 200–211.

 12. X. Hilaire and K. Tombre, “Robust and Accurate
Vectorization of Line Drawings,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 28, no. 6, 2006,
pp. 890–904.

 13. W. Liu and D. Dori, “A Survey of Non-thinning
Based Vectorization Methods,” Proc. Joint IAPR Int’l
Workshops Advances in Pattern Recognition, Springer,
1998, pp. 230–241.

 14. L. Lam, S.-W. Lee, and C.Y. Suen, “Thinning
Methodologies—a Comprehensive Survey,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
14, no. 9, 1992, pp. 869–885.

 15. D. Dori and W. Liu, “Sparse Pixel Vectorization: An
Algorithm and Its Performance Evaluation,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
21, no. 3, 1999, pp. 202–215.

 16. J.B. Roseborough and H. Murase, “Partial Eigenvalue
Decomposition for Large Image Sets Using Run-
Length Encoding,” Pattern Recognition, vol. 28, no.
3, 1995, pp. 421–430.

 17. J. Lladoós, E. Martí, and J.J. Villanueva, “Symbol
Recognition by Error-Tolerant Subgraph Matching
between Region Adjacency Graphs,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no.
10, 2001, pp. 1137–1143.

 18. L. Yan and L. Wenyin, “Engineering Drawings Recog-
nition Using a Case-Based Approach,” Proc. 7th Int’l
Conf. Document Analysis and Recognition (ICDAR 03),
IEE CS Press, 2003, pp. 190–194.

 19. E. Valveny and E. Martí, “A Model for Image
Generation and Symbol Recognition through the
Deformation of Lineal Shapes,” Pattern Recognition
Letters, vol. 24, no. 15, 2003, pp. 2857–2867.

 20. J. Schürmann, “Pattern Classification: A Unified
View of Statistical and Neural Approaches,” John
Wiley & Sons, 1996.

 21. S. Belongie, J. Malik, and J. Puzicha, “Shape Matching
and Object Recognition Using Shape Contexts,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
24, no. 4, 2002, pp. 509–522.

 22. S. Yang, “Symbol Recognition via Statistical Inte-
gration of Pixel-Level Constraint Histograms: A New
Descriptor,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 2, 2005, pp. 278–281.

 23. E. Valveny and P. Dosch, “Symbol Recognition Contest:
A Synthesis,” Graphics Recognition: Recent Advances
and Perspectives, Springer, 2004, pp. 368–385.

Xuetao Yin is a PhD candidate in computer science
at Arizona State University. His research interests in-
clude computer graphics and geometry processing. Yin
received his BE in computer science from the Univer-
sity of Science and Technology of China. Contact him
at xuetao.yin@asu.edu.

Peter Wonka is an assistant professor at Arizona
State University. His research interests include com-
puter graphics, visualization, and image processing.
Wonka received his doctorate in computer science
from the Technical University of Vienna. Contact him
at peter.wonka@asu.edu.

Anshuman Razdan is an associate professor in
the Division of Computing Studies and the Director
of Advanced Technology Innovation Center and the
I3DEA Lab (i3dea.asu.edu) at Arizona State Univer-
sity at Polytechnic. His research interests include geo-
metric design, document exploitation, and geospatial
visualization and analysis. Razdan received his PhD
in computer science from Arizona State University.
Contact him at razdan@asu.edu.

Authorized licensed use limited to: Arizona State University. Downloaded on May 28, 2009 at 17:38 from IEEE Xplore. Restrictions apply.

