
Interactive Visual Editing of Grammars for Procedural Architecture

Markus Lipp∗ Peter Wonka† Michael Wimmer∗

∗Vienna University of Technology † Arizona State University

Figure 1: Screenshots from our real-time editor for grammar-based procedural architecture. Left: Visual editing of grammar rules. Middle
left: Direct dragging of the red ground-plan vertex and modifying the height with a slider creates the building on the middle right. While
dragging, the building is updated instantly. Right: Editing is possible at multiple levels, here the high-level shell of a building is modified.

Abstract

We introduce a real-time interactive visual editing paradigm for
shape grammars, allowing the creation of rulebases from scratch
without text file editing. In previous work, shape-grammar based
procedural techniques were successfully applied to the creation of
architectural models. However, those methods are text based, and
may therefore be difficult to use for artists with little computer sci-
ence background. Therefore the goal was to enable a visual work-
flow combining the power of shape grammars with traditional mod-
eling techniques. We extend previous shape grammar approaches
by providing direct and persistent local control over the generated
instances, avoiding the combinatorial explosion of grammar rules
for modifications that should not affect all instances. The resulting
visual editor is flexible: All elements of a complex state-of-the-art
grammar can be created and modified visually.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

Keywords: Procedural Modeling, Architectural Modeling, Us-
ability, Shape Grammars

1 Introduction

∗{lipp|wimmer}@cg.tuwien.ac.at, 1040 Vienna, Austria
†peter.wonka@asu.edu, Tempe, AZ 85287-0112

Content creation is one of the most important challenges in com-
puter graphics today. The current approach to 3D modeling is to
manually create 3D geometry using tools like Autodesk Maya or
3ds Max TM. This process is time consuming, tedious and repetitive,
but allows the artist full control over every aspect of the final 3D
model. Recently, grammar-based procedural modeling has shown
promising results, for example for architectural modeling [Wonka
et al. 2003; Müller et al. 2006]. However, these approaches al-
low only indirect control over the final model by changing the un-
derlying grammar, or global control by changing some parame-
ters. When more fine-grained control over individual buildings is
needed, a tedious change grammar-regenerate- ... cycle is required
until the desired output is achieved. Furthermore, current procedu-
ral modeling systems are mostly text based and therefore impracti-
cal for the intended users, i.e., artists and technical artists.

In this paper, we aim to take the next step in procedural modeling by
combining the full generative power of design grammars with the
ease of use and flexibility of 3D modeling systems. This is achieved
by introducing visual editing, with direct local control of all aspects
of the grammar.

Direct Visual Editing While text-based production systems are
very powerful, end users require a visual frontend to be able to use
them productively. It is important to provide both a visual rule ed-
itor to create and modify the individual rules of the grammar and
immediately see the consequences for the generated models, as well
as a visual model editor which allows modifying the instances gen-
erated by the rule derivation process.

Local Modifications Assume the artist wants to assign a differ-
ent texture, different window width or different ornamentation rule
to a specific window on a facade. In a current text-based procedural
modeling system, the artist would have to write several new rules
to identify the floor and column of the window and add the mod-
ification. In a visual editor, the desired workflow is that the artist
simply selects the desired window and chooses a new texture, rule
or window width. To make this happen, we need to solve the prob-
lem how to allow local modifications to variables, rule selection
and geometry, without having to change the underlying grammar.

Semantic and Geometric Selection Local modification should
often be applied to several elements, not just one. For example,
all windows in a specific floor or column should have a changed
appearance. We therefore need to provide mechanisms to select
elements based on semantic attributes like facade number, floor or
column, which are not limited by the derivation hierarchy. These
should be paired with standard tools known from 3D modeling like
selection rectangles etc.

Persistence Local modifications are in a sense more volatile than
actual grammar rules. Assume, for example, that a specific window
on a facade of a building is modified. If the next modification is to
change the height of the building, the whole instance has to be re-
generated from the grammar rules. In order not to lose the previous
modification, any modification has to be stored persistently – this is
especially difficult when the structure of the grammar changes.

Main Contribution The main contribution of this paper is to en-
able a visual editing workflow for grammar-based modeling by pro-
viding the aforementioned functionalities. In particular, we intro-
duce a set of visual operators for both rule and building editing,
and introduce the concept of exact and semantic locators, which
will be used to allow local modifications and semantic selections,
as well as to solve the persistence problem. Local modifications are
a true extension of the expressive power of design grammars, and
bring procedural modeling a step closer to a workflow acceptable
to artists.

The remainder of the paper is structured as follows: At first we
provide a description of our visual editing concepts in Section 2.
Section 3 gives details and discusses how we use exact and seman-
tic locators, while Section 4 discusses the visual building and rule
editors. In Section 5 the workflow and performance is evaluated,
and implementation details are provided. In Section 6 a discussion
is provided comparing our method to previous work.

2 Visual Editing Concepts

In this section we provide an overview of design grammars and the
problems that occur during visual editing, and our concepts to solve
them.

The main concept of a design grammar as used for example for ar-
chitecture is based on a shape grammar utilizing a rulebase (note
that in this paper, we do not introduce a formal grammar notation,
but loosely follow the notation of [Müller et al. 2006], while the
concepts work for other grammars as well): Starting from an initial
axiom shape (for example a ground plan), rules are applied, replac-
ing shapes with other shapes. A rule has a labeled shape on the
left hand side, called predecessor, and one or multiple shapes and
commands on the right hand side, called successor. Commands are
macros creating new shapes or commands. Three commands were
introduced in [Müller et al. 2006]: Split of the current shape into
multiple shapes, repeat of one shape multiple times and component
split creating new shapes on components (e.g. faces or edges) of
the current shape. Every rule application creates a new configura-
tion Ci of shapes. During a rule application, a hierarchy of shapes
is generated corresponding to a particular instance created by the
grammar, by inserting the successor shapes as children of the pre-
decessor shape. This production process is executed until only ter-
minal shapes are left. An example rulebase is visualized in Figure
2, from this rulebase the instance and associated shape hierarchy in
Figure 3 are automatically generated.

The power of design grammars lies in their capability to produce
variations. This means that each instance created by the grammar

Rulebase 1: Generated facade:

Necessary rulebase changes:

} Variations

(remain the same)

Legend:

Shape

Split X/Y

Terminal
shapes

Repeat X/Y

Commands:

a b
b c

d
e

c d
c e

b

a

g

b
g

c e b

b c d e

a b

Figure 2: The rulebase on the top has two possible windows, en-
abling variations during generation. An example output is shown
on the top right. If we want to specify the window type to be used for
the encircled window, we have to manually rewrite rules in order to
set the window. The necessary rulebase changes are shown at the
bottom, creating the new rendering. We found this rewriting to be
tedious and error prone, even when just one variation is controlled.

will look different. The following mechanisms are available to in-
troduce variation in design grammars:

1. multiple possible production rules for a shape (chosen
stochastically)

2. parameters (e.g., window width) chosen according to vari-
ables set by the user (in a text file)

3. random parameter assignments in rules

Note that all these mechanisms are global in nature, i.e., they are
typically only chosen once for a whole instance. If a shape that uses
a particular variable appears in several nodes in the shape hierarchy,
there is no way to assign different values to the different nodes.
Instead, for each node that should differ from the rest, a set of new
rules have to be introduced which expose the desired variability via
new variables, as shown in Figure 2. This is tedious and quickly
leads to an explosion of the rulebase.

Direct Control of Variation In this paper, we propose a new
paradigm for rule-based modeling: direct local control of the shape
hierarchy, shown in Figure 3.

...

drag and dropa

b b b b

c
d

c
d

c
d

c
d

≡
...

a

b b b b

c
d

c
e

c
d

c
d

Figure 3: On the left, the automatically generated shape hierarchy
corresponding to the facade in Figure 2 is shown. Only the sec-
ond floor is visualized, in order to increase readability. Utilizing
direct control, the user can drag and drop the desired window on
the rendered facade, automatically changing the underlying shape
hierarchy, as seen on the left. No manual rewriting is necessary for
the user.

At first, we provide tools to directly modify the shape hierarchy of
an instance via so-called locators, which are stored externally to the

grammar, thus decoupling local modifications from the grammar.
Direct changes are important to create an artist-controlled unique
look for a specific instance. In particular, we introduce the fol-
lowing operators which can act locally on any level of the shape
hierarchy:

1. modify the variables used in a particular node in the shape
hierarchy

2. select the production rule applied to a shape (selected from
multiple possibilities given by the grammar, or even arbitrary
rules)

3. pin random choices

4. directly set the geometry and textures used in a particular ter-
minal shape

Note that the items selected in 2 to 4 can be (automatically) ex-
pressed as variables and are therefore special cases of 1. While
these operators may seem to be straightforward to implement, ac-
tually they are not. Since these direct modifications need to be pro-
vided in a visual editor, we have identified two major problems:

Selection Problem Every variable is used in at least one, but typ-
ically in several nodes in the shape hierarchy. For example, the
window width is a variable that can be set once for a building and is
used in every window tile. Obvious ways to influence the window
width are to set one width for all windows (the default), or to set the
width of some windows individually. However, the most common
required action will be to change the variable for a certain subset
of nodes in which the variable is used. One solution is to provide
hierarchical assignments, i.e., a variable can be assigned a value
at any node in the hierarchy. However, that is often not sufficient.
We also require semantic assignments, for example, selection of all
windows in a floor, or all windows in a column. Both subset selec-
tion methods are shown in Figure 4.

Hierarchical
selection

Semantic selection, property „column“

... ...

a

b b b b

c
d

c
d

c
d

c
d

...

c
d

c
d

c
d

c
d

Figure 4: Using hierarchical selections, all shapes underlying a
specific shape in the shape hierarchy are selected. Semantic selec-
tions allow selecting multiple shapes that share common semantic
properties. Please note that it is impossible to select a whole col-
umn just by using one hierarchical selection in this shape hierarchy,
as there is no rule that directly represents a whole column.

Persistence Problem Most modifications mi, 1 ≤ i ≤ 4, re-
quire the instance along with its shape hierarchy to be regenerated
from the grammar rules. However, as shown in Figure 5, this will
obliterate any previous modification to the instance. Therefore, any
modification needs to be stored persistently. However, rebuilding
the shape hierarchy could lead to a different hierarchy, so an impor-
tant problem to solve is how to apply a modification to a different
shape hierarchy.

We solve both of these problems using semantic annotations which
can easily be specified in the visual editor, and provide some heuris-
tics how to set these annotations automatically. We define two types
of instance locators: exact instance locators and semantic instance
locators. An exact locator stores the exact location of a shape in

Rulebase

...

generate
Hierarchy Instance

Modified Hierarchy
a

b b b b
...

Direct Control
regenerate

Does not regenerate
modified version!

Regenerates
unmodified
version!

1

23

≡
a

b b b b
...

≡

a b
b c

Figure 5: A persistence problem occurs when we at first generate a
shape hierarchy from the rulebase, and then modify this hierarchy
utilizing direct control. When we need to perform a regeneration
(for example because the house height has changed) the unmodified
version is generated, thus all direct modifications are lost.

the shape hierarchy. This is essentially done by storing all informa-
tion occurring along the path from the shape to the axiom. Using
an exact instance locator we can unambiguously locate shapes, and
thus retain selections after a regeneration. However, this does not
allow semantic selections based for example on floor and column
numbers. We therefore introduce semantic tags that can be attached
to structural commands in the shape hierarchy (e.g., split and repeat
commands).

Visual Rule Editing Finally, we provide an intuitive user inter-
face for editing the grammar in a visual editor. We have identified
the following important operations, which will be further explored
in Section 4:

• graphical assignment of numeric values (i.e., dragging split
planes)

• multiple views on a rule: rendering, visualization of com-
mands and structural overview

• focus and context visualization of rules

3 Instance Locators for Local Control

Three problems emerge when we want to enable local control. At
first, we have to describe how we select shapes in the hierarchy.
Secondly, we must define how to apply modifications to those se-
lections. Thirdly, those modifications have to be persistent. We
will describe solutions to those problems in this section, which rely
mainly on the concept of instance locators.

3.1 Selections

There are three types of selections we want to provide: Selection
of a single shape in the hierarchy, hierarchical selections and se-
mantic selections. Essentially a selection works as follows: (1) The
user clicks on the 3D rendering. Using intersection tests, we cal-
culate which shape in the shape hierarchy the user has clicked on.
(2) For this shape an exact instance locator or a semantic instance
locator is calculated and stored in loc. (3) To actually highlight all
selections in the rendering, we use the locator loc by comparing it
to the (temporarily created) locator of each shape in the hierarchy,
and highlight all matches. Let us now define instance locators in
more detail:

Exact Instance Locator The selection of a single shape in the
shape hierarchy is specified the following way: For every shape
or command in the hierarchy graph, we sequentially number every
outgoing edge from left to right starting from 1. An example num-
bering is shown in Figure 6. In order to specify one shape s, the
unique path p from the axiom to s is determined. We walk along
this path, and write every shape, command and edge number we
encounter into an ordered tuple. We call this tuple exact instance
locator, as it allows us to uniquely specify a single shape instance.
The resulting exact instance locators for Figure 6 are shown in Ta-
ble 1. Note that it would theoretically suffice to use edge numbers
only, but we also include shapes in the locator to be able to check
whether the locator is valid after a hierarchy change.

a

b b

c

d d

e e

1 2

 2 3 2 3

1 1

1

1
14

4

2

2

1 3
1 1

1 2 1 1
1 2

1 1
1

2 3 1
2

3

1 2 1 2

1

Hierarchy 1:

Hierarchy 2:

Semantic tags for :C

Semantic tags for :
{1} {2,1} {2,2} {3}

{1} {2} {3} {4}

C

F

C

F
F

F

C

C

CC

=Scale

Figure 6: Hierarchy 1 corresponds to the rulebase in Figure 7, hi-
erarchy 2 is a more complex example. Red circles around shapes
represent corresponding selections. Edges are sequentially num-
bered. Over the bottom rendering, the semantic tags and corre-
sponding absolute values of columns are shown. Please note that
while the renderings are quite similar, the underlying graphs are
significantly different.

a
b b

bF C
Rulebase 1:

Figure 7: We introduce semantic tags attachable to commands,
represented here as F for floor and C for column.

A hierarchical selection is simply a selection of a single shape that
is an internal node of the shape hierarchy, and therefore can also be
expressed with an exact instance locator.

Semantic Instance Locator Using just the shape hierarchy and
exact locators, there are two problems:

1. We cannot select shapes based on semantic attributes, for ex-
ample 2nd column on the 3rd row.

2. We cannot perform semantic queries in the form select all
shapes in the 2nd column.

Those problems are caused by the lack of semantic information in
the shape hierarchy. We therefore introduce semantic tags that can
be attached to split or repeat commands. For example, in Figure
7 the semantic tags floor and column are attached to rules. The
tag facade can be used to differentiate facades. Actually defining
semantic tags is very easy for the user: In our rule editor, a simple
drag and drop operation of a tag on a command applies the tag.
This has to be performed only once when defining rules, everything

else is done automatically. Please note that in Figure 6 (bottom) not
every vertical (X)-split has the tag column applied, in this way the
user can specify what is considered a unique column and what not.

Automated semantic tagging is possible by using the following
heuristic: The user specifies threshold fm for the height of multiple
floors and fs for the height of one floor. Y-Splits/Repeats where
the scope height is above fm are automatically tagged as floor, di-
rectly succeeding shapes or commands having a scope height below
fs are excluded from this tagging. Analogously X-Splits/Repeats
are tagged as column using the width as threshold. All component
splits having a height above a threshold are tagged as facade.

A semantic instance locator for shape s can now be constructed
from a hierarchy graph the following way: At first, we construct
the unique path p from the axiom to s. We walk along this
path, and when we encounter a tagged command, the assignment
tag = edgenumber is added to the locator. edgenumber is the
sequential numbering of the edge to the next shape already intro-
duced for exact instance locators. It is important to note that tags
can occur multiple times in the locator. By using the sequential edge
number, we exploit the spatial ordering split and repeat rules pro-
vide. Example semantic instance locators for the encircled shapes
in Figure 6 are shown in Table 1. We can improve the granularity
of semantic locators by additionally saving the symbol of shape s.

Marked S. Exact Instance Locator
Hierarchy 1 {a, 1, Sy, 2, b, 1, Sx, 3}
Hierarchy 2 {c, 1, Sx, 2, Scale, 1, Sy, 2, e, 1, Sx, 2, Sx, 2}

Marked S. Semantic Instance Locator
Hierarchy 1 (F = 2, C = 3)
Hierarchy 2 (C = 2, F = 2, C = 2)

Table 1: Exact and semantic instance locators for the encircled
shapes in Figure 6 are shown here. Sx, Sy represent a Split X/Y
command, Scale a scale command.

Using semantic instance locators it is easy to solve the previously
mentioned problems:

1. We can perform selections based on semantic attributes sim-
ply by specifying a semantic locator, and searching for shapes
with matching locators.

2. Selections of whole columns are done by ignoring the floor
tags during selection searching. For entire floor selection this
works analogously.

Semantic assignments are assignments applied to shapes having a
specific semantic tag. Please note that semantic assignments can
be flexibly combined with hierarchical assignments, by attaching
semantic assignments to internal nodes of the hierarchy graph.

Exact instance locators are used by the rule editor to specify selec-
tions in the GUI. Both exact and semantic locators can be used in
the building editor.

Anchor Points We can construct locators relative to an anchor
point. Possible Anchor points are either left, right, or center in
horizontal direction and bottom, top, or center in vertical direction.
Per default the closest anchor point is chosen (with priority on the
borders for equal distance to the center), because that proved to be
most intuitive in our experience. Additionally, the user has the op-
tion to modify an anchor point. The actual generation of anchored
locators is straightforward: Instead of tag = edgenumber we use
tag = numEdges − edgenumber for locators anchored to right

or top, and tag = numEdges/2 − edgenumber for locators an-
chored to the center. For example, using anchored locators it is very
easy to specify a selection that should always contain the center col-
umn.

3.2 Direct Modifications and Persistence

Using a selection specified in an instance locator, we can specify
where a modification should be performed. The next step is to de-
fine what should actually be modified. As we already mentioned in
Section 2, all local modifications (node variables, rule to use, ran-
dom choices, geometry and textures) can be expressed as variable
assignments, thus a variable assignment describes what to modify.

Using both a locator locm and a variable assignment vm, a modi-
fication is exactly specified. In order to allow hierarchical assign-
ments, all variable assignments have the following properties: The
assignment extends its scope to the underlying subtree, thereby
modifying the value of variables used in any rule application of
this subtree. Subsequent assignment on lower levels override as-
signments on higher levels, thus providing local control for every
shape. An example assignment is shown in Figure 8.

The key to persistence is that instead of applying vm to the current
hierarchy, we save locm and vm externally. Of course we can save
multiple modifications externally, thus preserving previous modifi-
cations.

The actual application of vm is carried out in the following way:
First we delete the current shape hierarchy, and start the production
process from the axiom (configuration C0). Now, every time we in-
sert a shape s into a configuration Cn, we create an instance locator
locs for s. When locm = locs, we attach the variable assignment
vm to s. Note that in a longer editing session, some variables can be
assigned different values using the same locator. In this case later
assignments override previous ones.

awindowWidth=2 (Default value)
windowWidth=3

windowWidth=4
4 3 3 2 2 2

Figure 8: On every shape we can assign values to variables. As-
signments extend their scope to all underlying shapes. Assignments
on lower levels override assignments on higher levels. Numbers
below windows show the values of windowWidth.

Transformations between Hierarchies Semantic locators are
normally quite robust with respect to modifications in the visual
editor, like changes of the floor plan, modifications of variables etc.
However, sometimes the hierarchy changes in a way that a semantic
locator does not fit the hierarchy anymore. This can happen when
the rulebase is edited in the rule editor, or when substantial changes
are made to the choices of productions in higher levels in the shape
hierarchy. Still, we want to give the user the possibility to recover
modifications and apply them to the new hierarchy by transforming
the locator. Please note that such an algorithm can also be used to
transfer modifications from one building to another.

We classify semantic locators into three categories: (a) valid, (b)
structurally invalid and (c) semantically invalid. Valid locators cor-
respond to a path in the current shape hierarchy. A locator locm

is structurally invalid when a prefix of locm matches the locator
locs of some shape s in the shape hierarchy, but the edgenumber
following the prefix is greater than the number of outgoing edges
of s. This usually happens when resizing scopes, causing subtrees

attached to repeat commands to disappear. Finally, semantically in-
valid locators are those that are not valid or structurally invalid, i.e.,
they do not fit the current shape hierarchy at all.

In general, artists prefer direct control over heuristics that run auto-
matically. Therefore, in order to deal with invalid locators, we of-
fer the user a command to transform semantically invalid locators
to the current hierarchy. In our implementation a list of locators
is offered, color coded according to their category. By selecting
a semantically invalid locator from this list and confirming with a
button, this locator can be automatically transformed to the new hi-
erarchy using the algorithm described in the following. Note that it
does not make sense to transform structurally invalid locators since
they often become valid again due to further operations (resizing,
...).

In the following we describe how to transform a semantically in-
valid locator using so-called sequential orderings for semantic tags.
Optionally, all calculations can be restricted to the subtree of the
shape hierarchy that does not include a possibly matching prefix in
order to preserve the maximum semantic context. The idea is to
assign one ordering value per tag to every shape, regardless of how
often the tag appears in the semantic locator. The ordering value
depends on the spatial directions of the tags encountered along the
way, since we typically have tags “split” by other tags. When ex-
ternally saving semantic locators, we also save the corresponding
ordering values.

Example sequential ordering directions are shown in Figure 9 (top).
Using this sequential ordering, a transformation of a semantic loca-
tor loc is done the following way: We compare the ordering values
(instead of the edge numbers) of this locator with the ordering val-
ues of the other hierarchy. When a match is found at shape s, the
transformed semantic locator is locs.

C

F
F

C C

F

Legend:
Visit node: save
value (line 17)
Reset value (line 11)
Set to max value
of subtrees (line 16)
Increase ordering
value (line 09)

0 0

1 2 3 1 2

4 4

(0,1)

(0,0)

(1,1)(2,1)

(1,0)(2,0)(3,0)

(4,1)

(4,0)

C , F

+

+

+ +
+ +

+

+

C
F

Sequential
ordering directions

maxmax
max

max

R R
R

R

Start End

Figure 9: Example for ordering value calculation. The rendering
corresponds to the hierarchy graph. To increase readability, we
only show elements having a tag attached in the graph, as other
elements do not influence the algorithm. Using a blue line we il-
lustrate the traversal of the algorithm during calculation of tag C,
while orange circles highlight important events occurring during
the traversal. The resulting sequential numbering is overlaid in the
rendering. Line numbers correspond to Figure 10.

The algorithm to calculate ordering values for a tag currentTag
and each node in the shape hierarchy is illustrated as pseudo code
in Figure 10 and works as follows: A modified post-order traversal
of all nodes is performed, and after each visited subtree it is decided
if the ordering value seqValue should be increased. Basically a
node node associated with currentTag increases seqValue
by one if currentTag does not occur in the last visited subtree.
There are two possibilities if a different tag otherTag is asso-

ciated with node: (1) That tag is ignored for the calculation of
seqValue. (2) The tag is defined to be a “semantic splitter”, i.e.,
seqValue is calculated in each of the subtrees of the tag indepen-
dently. The overall increase of seqValue is determined by the
maximum increase in any of the subtrees. For example, floors and
columns are mutual semantic splitters, thus preventing a column
tag to be counted on multiple floors. Semantic splitters for arbi-
trary tags can be defined in a table, but usually correspond to tags
associated to splits/repeats in alternating coordinate axes.

currentTag = ...; ordValue=0; //Init values
01:CalcAbs(node) {
02: isSplitter = Is tag attached to node semantic
 splitter of currentTag?
02: hasCurrentTag = Is tag attached to node equal currentTag?
03: previousOrd= ordValue; //Save current ordering value
04: int maximum= 0;
05: for all children of node {
06: Postorder traversal: recurse into CalcAbs(child)
07: //After subtree was visited:
08: if (hasCurrentTag&(currentTag not found in subtree))
09: ordValue++; //Increase ordering count!
10: if (isSplitter) { //Special handling of splitters
11: ordValue= previousOrd; //Restore previous ordValue
12: maximum= max(ordValue, maximum);
13: }
14: }
15: if (isSplitter)
16: ordValue= maximum; //Set to maximum subtree count
17: node.tag.ordValue= ordValue; //VISIT node: save value
18:}

Figure 10: Pseudocode for ordering value calculation. Essentially
this is a modified postorder traversal with special measures to in-
crease the count of the ordering value after each subtree was vis-
ited. Lines that handle arbitrary nesting of tags are marked orange,
lines that actually increase the ordering value are yellow.

Please note that this algorithm exploits structural information cre-
ated by split/repeat commands, not actual world-space positions
of shapes. Therefore, when scope translation commands occur in
lower-level shapes, it may produce incorrect sequential orderings—
in the worst case this can lead to modifications being transferred to
shifted positions. To prevent this, world-space positions would have
to be considered for shapes with translation commands, for exam-
ple by casting a ray along the ordering direction to determine the
world-space ordering.

4 Interactive Visual Editor for Grammars

We will now explore how the introduced concepts fit together cre-
ating a new visual editing paradigm for grammars. Inspired by the
observation of direct versus indirect control, we have separate win-
dows for a building editor and a rule editor in our GUI, seen in
Figure 11. The rule editor provides indirect control, allowing the
creation of rulebases from scratch, and the building editor provides
direct variation control to the artist. All windows can run concur-
rently, and are linked in several ways: It is possible to edit a rule,
and show the effects of this edit on a building. Further drag and
drop functionality is provided between the windows, allowing for
example direct application of textures.

4.1 Building Editor

In our building editor shown in Figure 12, we want to allow direct
variation control to configurations, without changing the rulebase.
In order to specify the position of a variation, we need to enable se-
lections of shapes at first. This is done using picking in the 3D ren-
dering: A user can click on a shape, we internally create an instance
locator for this shape. In order to specify hierarchical selections
we provide a button to move the selection up one level in the hi-
erarchy. Semantic selections can be specified by using checkboxes

(a)

(b)
(c)

Figure 11: Three windows make up our GUI: (a) A building editor
enables direct variation control on buildings (b) Rulebases can be
visually created from scratch in the rule editor, providing indirect
control (c) Textures and meshes are stored in the library editor.

for "On Whole Row", "On Whole Column" or "On All Facades" in
the menu.

(a)

(b)

(c)

(d)

Figure 12: Interactive building editor providing direct variation
control. (a) Menu with various rendering and derivation controls
(b) Real-Time rendering of result. Currently a floor is selected. (c)
List of all building instances (d) All parameters occurring in the
currently selected shape.

To actually perform modifications on selections, we expose controls
for variable aspects: Sliders are automatically created for every pa-
rameter occurring in the current selection. The user can now locally
adjust those parameters, implicitly creating a variable assignment
attached to the current selection. In order to specify a production
rule to be used, the user can drag and drop a specific production
from a rule library on the selection. Modifications of textures and
meshes are performed by drag and drop from a texture or mesh li-
brary. Persistence is maintained as previously described: We store
the instance locator together with the modification to be performed
externally.

An example showing hierarchical selections and modifications is
shown in Figure 13. Hierarchical selections allow artists to specify
the granularity of their direct modifications.

(1) (2)

(3)

Figure 13: Sequence showing hierarchical modifications. (1)
A shape representing a floor is selected. (2) The parameter
windowHeight is modified - all shapes on lower levels are auto-
matically modified (3) Selecting a specific shape allows overriding
the parameter on a lower level.

4.2 Rule Editor

We implemented a rule editor based on the language elements of
CGA shape [Müller et al. 2006], all of which are visually editable,
and we can create rulebases from scratch. Three views on the cur-
rently edited rule make this possible:

First, a 3D rendering of the derivation overlaid with a visualiza-
tion of shapes and commands provides direct visual feedback, seen
in Figure 14(b). Second, a treeview displaying all rules occurring
in the current derivation allows easy navigation and provides an
overview, as seen in Figure 14(c). Finally, all parameters of the
currently selected shape or command are automatically mapped to
standard GUI elements like sliders and checkboxes, seen in Figure
14(d). This way, all elements that are not visualized can be edited.
An example workflow using this editor is shown in Section 5. Let
us now describe those concepts in greater detail:

(a)

(b)
(c)

(d)

Split
Commands

Repeat
Commands
Component Split

Snap Lines
Geometry

Shape
Interm. Shape Help

Extrusion Help
Variable Assignment

Scope
Commands

{
{

{

Figure 14: Interactive Rule Editor. (a) Tool palette allows creation
of new commands and rules (button descriptions were added to the
screen shot) (b) Real-time rendering of result and visualization (c)
Linked tree-view. Yellow puzzle icons represent predecessor shapes,
blue/green puzzle icons represent shapes occurring in a successor.
(d) Parameters are automatically mapped to GUI elements.

3D Visualization In order to edit rules and commands in a ren-
dering, they have to be visualized. Split and repeat commands are
visualized by rendering their dividing planes. We use a plane with a
rounded rectangular hole in the middle (achieved with alpha tests)
to reduce occlusion issues. Depth cues by reducing brightness for
distant objects are employed to make distinctions of different visu-
alized commands easier. Currently selected shapes or commands

are highlighted with a surrounding transparent box. An example
visualization can be seen in Figure 14 (b). We also experimented
with visualizations of other aspects, like relationships and nesting
of rules. However, we felt that a linked tree-view, as explained later,
is more suitable for those aspects.

Visual 3D Editing Utilizing the visualization we allow direct
editing: The user can pick a visualized element (for example a di-
viding plane), and drag the element around. When multiple choices
are possible, a context menu allows specific selections. Internally,
this works as follows: When a dividing plane is picked, we con-
struct a perpendicular helper polygon going through the intersec-
tion location of the picking ray, as seen in Figure 15. We need this
polygon to restrict the possible mouse positions and to fix the depth
z of the intersection – without this polygon we experienced oscil-
lations of the dividing plane during editing. The helper polygon is
stored until a new plane is picked.

Figure 15: Geometry during picking and direct dividing plane
movements.

When the user moves the mouse cursor, we intersect the picking
ray with the helper polygon, yielding an intersection point pi. Now
we have to recalculate the parameters of the command containing
the picked plane, meeting the following condition: After regenera-
tion of the edited rule, the dividing plane has to intersect the helper
polygon on the intersection point pi.

For repeat commands, this calculation is trivial: A dot product of
(pi − po) with the repeat axis vector v, divided by the number of
the modified plane, yields the new value for the repeat with. Split
commands are more difficult, because split sizes can be defined rel-
ative or absolute [Müller et al. 2006]. We recalculate the parame-
ters as follows: At first, the desired sizes di are calculated, this is
trivially done using dot products and subtractions. Then we need
to calculate split size parameters si that generate sizes di. Abso-
lute sizes sabsi are simply set to di. Relative sizes sreli are set to
di · (

∑
srelold)/(scopesize −

∑
sabs) with srelold being the

relative sizes before the mouse movement.

When variables are involved in the parameters, we simply add an
offset to this variable (e.g. var gets var + 0.3), so no variables are
lost during visual editing.

Linked Views Additionally to the visualization we created a tree-
view displaying all rules, shapes and commands occurring in the
current derivation, as seen in Figure 14 (c). This treeview is linked
with the visual representations: Selections in the treeview automat-
ically select an element in the derivation and the other way round.
It is important to note that we have a (1 : n) mapping here: One
element in the treeview may correspond to n elements in the deriva-
tion, because multiple instances are possible. Therefore, when se-
lecting an element in the treeview, just the first occurring element

in the derivation is selected. Additional features of the tree-view in-
clude searching for shapes, and support for drag and drop to copy or
move shapes. During evaluation, we found the treeview to be better
suitable in representing relationships of rules, while the rendered
result is more aimed at adjusting specific commands.

Focus and Context When editing high-level rules, for exam-
ple to model building shells, visualization and rendering of lower
level rules may be distracting. Therefore we implemented focus-
ing based on the amount of levels between the edited shape ue and
other shapes u: We can set the amount of displayed levels i with
a slider. Only shapes where the path between ue and u contains at
most i shapes are displayed. For other shapes, either a proxy ge-
ometry (to represent the context) or nothing at all is rendered. An
example for focusing is seen in Figure 1 on the right. Focusing can
be separately controlled for rule rendering and visualization.

Parameter View Not all parameters of commands or shapes are
mapped to visualizations. In order to enable visual editing of those
parameters, they are automatically mapped to standard GUI ele-
ments, as seen in Figure 14(d). When variables occur in numerical
parameters, slider adjustments simply add an offset to the variable.

UV Mapping Control An element missing from previous design
grammars is direct control for UV texture coordinate mapping –
this is very important for artists. Therefore, we introduce a new UV
mapping command: It can be inserted into any rule, and defines a
parameterized UV mapping, for example a box UV mapping with
parameters tiling and offset. All shapes underlying this command
in the shape hierarchy can automatically use this mapping.

Completeness of Editing Utilizing the described methods, all
CGA shape concepts are visually editable: Snap lines can be in-
serted into a rule utilizing the tool bar buttons seen in Figure 14(a).
They are visualized in the 3D rendering. The properties of the
snap line are editable with standard GUI widgets in the parame-
ter view. Scope modifications (translation, rotation, scale, push,
pop) are also inserted using tool bar buttons, and can then either
be modified using standard 3D manipulators (e.g. Arc rotate) in
the 3D view or by modifying sliders. When a rule is selected, a
text field in the parameter view allows entering arbitrary conditions
using variables and Boolean operators. As occlusions are also de-
fined as conditions (using automatically initialized variables like
isShapeOccluded), they can be defined analogously.

5 Implementation and Results

Modeling Workflow As our main contributions enable complete
visual editing of building grammars, we will now show a case study
creating a building grammar from scratch. In Figure 16 the neces-
sary steps to create a simple building in 3.5 minutes are laid out
(please refer to the video for a real-time capture of the entire ses-
sion). (1) A few empty rules are created and named. (2) Selecting a
rule and clicking on the split icons allows easy splitting of shapes.
(3) Drag and drop allows easy definitions of shapes to be used as
in the split command. (4) Adding terminal shapes allows geometry
addition. Textures are dragged from a texture library. Cut and paste
of shapes allows fast setting of the wall tiles. (5) Direct dragging of
split planes is possible in the 3D view. When CTRL is pressed dur-
ing dragging, the planes are distributed symmetrically. Extrusion
of the window can be done with one mouse click. (6) Selecting
the high-level rule house, adding a component split with a sim-
ple click and adding a repeat command creates the building shell.
Please note that both top-down and bottom-up modeling approaches

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 16: Example workflow using our rule editor. Creating this
simple building required 3.5 minutes. These are screenshots from
the video accompanying the paper. The screenshots were cropped
to magnify important details. A description of the individual screen-
shots is provided in Section 5. In approximately additional 10 min-
utes we were able to create the building seen in Figure 12 which
has many ornamentation details.

can be easily combined with our method. (7) Repeat commands are
added to distribute windows. (8) The winwall rule is dragged
into the repeat command. (9) Simple (but automatically adapting)
roofs can be added as a terminal shape.

Starting from this simple building, we were able to create the more
complex building seen in Figure 12, which has many ornamentation
details, in an additional 10 minutes.

Usability Our method allows visual editing without resorting to
text files. The only necessary textual entries are naming of new
rules and parameters. Drag and drop is used in many places, sim-
plifying rule creation. For example the simple building in Figure 16
corresponds to around 55 lines of CGA shape code. We therefore
feel that this method substantially simplifies modeling of grammar-
based architecture.

In order to actually evaluate the usability, we introduced artists from
our industry partner to our tool. After a short introduction we asked
them to create a building, and document the difficulties arising dur-
ing modeling. As an advantage of our method, they found visual
editing of split rules to be much more intuitive than textual edit-
ing. Especially the feature to mirror split sizes during editing by
pressing a specific key was considered to be very useful.

Two identified shortcomings stem directly from the rule-based na-
ture of CGA shape: First, the dependency between rules is not
clearly visible. This can make it hard to understand the rules cre-
ated by a different artist. The artists proposed to use a node-based
display of rules in order to alleviate this. We will incorporate this
in future work. Second, artists commented that they would be very
exited about alternatives to rule editing by editing buildings using a

0 200000 400000
0

20
40
60
80

100
120

Creation
Rendering
Creation +
Rendering

Triangles

m
s

pe
r I

te
ra

tio
n

Figure 17: Milliseconds per iteration versus triangles for various
modes.

philosophy of modeling by example.

A number of suggestions was related to software engineering is-
sues and the best way on how to incorporate the software in the
existing modeling pipeline. Concerning the expressivity of CGA
shape, the artists suggested to add more control to the high-level
building shape, mainly by allowing arbitrary ground-plans unique
to every floor.

Performance One important aspect of a visual editing system
that was not mentioned so far is response time. Our visual editor
frequently needs to regenerate a whole instance from the rulebase,
for example whenever a variable is changed or a constraint like the
floorplan is modified through continuous dragging. Thus the per-
formance of the grammar system is as important as the rendering
performance itself. Previous work has reported building genera-
tions times in the order of a few seconds, which is far too low for
interactive (i.e., > 20 updates per second) manipulation. In our im-
plementation, we used several optimizations to ensure interactive
generation and rendering times, including custom memory man-
ager, lists, sorting algorithm and random number generator. For the
occlusion test required in [Müller et al. 2006] to prevent intersec-
tions of shapes, we employed the hardware-accelerated algorithm
proposed in [Knott 2003]. This is a combination of stencil buffer-
ing and hardware occlusion queries, where a building is interpreted
as a shadow volume, and the z-Pass algorithm is used to search for
shapes intersecting this volume. This is significantly faster than the
octree-based method originally proposed.

In Figure 17 we can see that interactive performance for rendering
is achieved for all tested buildings even on a relatively slow PC with
Athlon XP 2600 CPU, 1024 MB RAM, and Geforce 6600 graphics
card. In combination, creation and rendering is still interactive for a
building with about 200,000 triangles. Figure 17 also shows that the
performance scales linearly with the building complexity. This is
beneficial, as a linear scaling provides a cushion for more complex
buildings. For this test, the building in Figure 1 on the middle right
was varied using a global height parameter.

Limitations We tried to experiment with tree modeling with rea-
sonable success. We believe that our current implementation is
mainly suitable for buildings, but we intend to experiment with a
larger class of objects in future work. We expect that we would
have to extend the rule set, but we believe that many fundamental
principles of visual editing of grammars could be reused. Some re-
strictions in our current implementation stem from choosing CGA
shape as underlying production system: CGA shape has no direct
support for curved surfaces, making bridges or complex mechanical
shapes hard to generate. However, when CGA shape is extended to
support these concepts, our approach should be able to handle them
seamlessly.

6 Related Work

Recent grammar-based procedural methods are based on the shape-
grammar formalism that was pioneered in architecture [Stiny and
Gips 1972; Stiny 1980], later simplified to set grammars [Stiny
1982]. Specific computer implementations of shape grammars were
proposed [Chase 1989; Piazzalunga and Fitzhorn 1998]. It is im-
portant to note that those implementations were not targeted at the
creation of visually convincing models, instead accurate ground
plans were produced.

In the field of computer graphics, L-Systems were applied to gener-
ate buildings [Parish and Müller 2001]. The first method to actually
generate visually convincing models with high geometric façade
detail was Instant Architecture [Wonka et al. 2003]. This method
introduced split grammars. A split was defined as the decomposi-
tion of a basic shapes into other shapes. Finally, CGA shape was
introduced [Müller et al. 2006], extending split grammars in the
following ways: They were the first to actually define the syntax
of split commands. They introduced the component split, which
allows reducing the dimensionality of the current scope. Addition-
ally, mass modeling was introduced to create more complex build-
ings shells. Our approach applies to shape grammars in general,
but has been implemented using CGA shape [Müller et al. 2006]
and greatly enhances its usability, but also its (practical) expressive
power through the possibility of local modifications.

Several extensions were proposed to L-Systems, mainly applica-
ble to plants: [Prusinkiewicz et al. 1994] shows how to restrict the
growth process of plants by introducing pruning. Later, positional
information was used by querying functions depending on the cur-
rent turtle position [Prusinkiewicz et al. 2001]. This allows deter-
mining high-level shapes of plants. Currently such functionality
is not present in CGA shape, although it would be interesting to
explore how this could be applicable to control high-level façade
structures in future work. Also, methods to graphically model
plants were introduced: In [Lintermann and Deussen 1999] com-
ponents specifically targeted at plant modeling are connected in a
graph. As those components are very specific to plants, this system
can not be directly used for architecture. In [Boudon et al. 2003] a
multiscale representation of plants is used in order to minimize the
total number of parameters needed in order to specify a plant.

The persistence problem for parametric modeling was described in
[Shapiro 2002; Hoffmann and Joan-Arinyo 2002; Havemann 2005],
and it was pointed out that there is no general solution known at
this time [Shapiro 2002]. Our solution to the persistence problem
is specifically targeted at production systems, not parametric mod-
eling in general. We achieve this by exploiting the production hier-
archy and semantic informations.

Two methods were proposed that allow creation of procedural ar-
chitecture without text editing: First, an image-based approach to
create CGA shape grammars [Müller et al. 2007], which allows
creating rules from building images. Our approach could be well
employed to visually enhance or correct the deduced rulebase. Fur-
ther, a framework for procedural modeling using a visual language
was introduced [Ganster and Klein 2007]. Essentially, a mapping
of programming constructs to visual symbols is performed. Those
symbols can be combined visually. In contrast to our approach, no
grammar or rulebase is used. Therefore we think this approach is
orthogonal to ours and could be combined: The visual language
could create some building parts, while our method could visually
handle everything rule and grammar related.

A similar argument holds for other techniques not based on gram-
mars: [Havemann 2005] introduces modeling using a stack-based
programming language. [Birch et al. 2001] was shown to be appli-

cable to building parts. Persistent building interior generation was
discussed in [Hahn et al. 2006]. The following areas are adjacent to
CGA shape, and are important when whole cities need to be gen-
erated: Landscape generation [Fournier et al. 1982], building lot
generation [da Silveira and Musse 2006; Laycock and Day 2003],
combined street and lot generation [Flack et al. 2001; Parish and
Müller 2001].

7 Conclusion and Future Work

We present the first real-time visual editing system that allows an
artist to visually create a rulebase for shape grammars from scratch.
Furthermore, we extend previous shape grammar approaches by
providing direct local artist control over the generated instances,
avoiding combinatorial explosion of grammar rules for modifica-
tions that should not affect all instances. This effectively combines
the power of procedural modeling techniques and standard 3D mod-
eling tools. We have described the selection and persistence prob-
lem, and provided a solution using so-called instance locators.

While our framework enables real-time editing of individual build-
ings, there are still some open problems if those buildings should be
used in a real-time game. These include: (1) Automatic LOD gen-
eration: In order to render large scale scenes, low-detail versions of
the building should be created automatically, assisted by the gram-
mar structure. (2) Mesh cleanup: At the moment, the mesh may
contain T-Vertices and coplanar polygons, which needs to be re-
solved for real-time rendering applications. For our visual editor,
the next logical step is to extend the concept to whole cities, not
just individual building instances. This would include creation of
roads, landscapes and distribution of zones in the city.

8 Acknowledgements

We thank Stefan Kubicek and Johannes Graf from our industry
partner Sproing for helpful suggestions on the user interface. This
research was supported by the Austrian FIT-IT Visual Computing
initiative, project GAMEWORLD (no. 813387), and by the NSF,
contract nos. IIS 0612269, CCF 0643822, and IIS 0757623.

References

BIRCH, P., BROWNE, S., JENNINGS, V., DAY, A., AND ARNOLD,
D. 2001. Rapid procedural-modelling of architectural structures.
In VAST ’01: Proc. of the conference on Virtual reality, archeol-
ogy, and cultural heritage, ACM Press, NY, USA, 187–196.

BOUDON, F., PRUSINKIEWICZ, P., FEDERL, P., GODIN, C., AND
KARWOWSKI, R. 2003. Interactive design of bonsai tree mod-
els. In CG Forum: Proc. of Eurographics, EG, vol. 22, 591–599.

CHASE, S. 1989. Shapes and shape grammars: from mathematical
model to computer implementation. Environment and Planning
B: Planning and Design 16, 2, 215–242.

DA SILVEIRA, L. G., AND MUSSE, S. 2006. Real-time generation
of populated virtual cities. In VRST ’06: Proc. of the ACM sym-
posium on Virtual reality software and technology, ACM Press,
NY, USA, 155–164.

FLACK, P., WILLMOTT, J., BROWNE, S., ARNOLD, D., AND
DAY, A. 2001. Scene assembly for large scale urban recon-
structions. In VAST ’01: Proc. of the conference on Virtual re-
ality, archeology, and cultural heritage, ACM Press, NY, USA,
227–234.

FOURNIER, A., FUSSELL, D., AND CARPENTER, L. 1982. Com-
puter rendering of stochastic models. Commun. ACM 25, 6, 371–
384.

GANSTER, B., AND KLEIN, R. 2007. An integrated framework
for procedural modeling. In SCCG ’07, Comenius University,
Bratislava, M. Sbert, Ed., 150–157.

HAHN, E., BOSE, P., AND WHITEHEAD, A. 2006. Persistent re-
altime building interior generation. In sandbox ’06: Proc. of the
ACM SIGGRAPH symposium on Videogames, ACM, NY, USA,
179–186.

HAVEMANN, S. 2005. Generative Mesh Modeling. PhD thesis. TU
Braunschweig.

HOFFMANN, C., AND JOAN-ARINYO, R. 2002. Handbook of
Computer Aided Geometric Design. Elsevier, ch. 21: Parametric
modeling, 519–541.

KNOTT, D. 2003. CInDeR Collision and Interference detection in
real time using graphics hardware. Master’s thesis, UBC.

LAYCOCK, R. G., AND DAY, A. M. 2003. Automatically gen-
erating large urban environments based on the footprint data of
buildings. In SM ’03: Proc. of the ACM symposium on Solid
modeling and applications, ACM Press, NY, USA, 346–351.

LINTERMANN, B., AND DEUSSEN, O. 1999. Interactive modeling
of plants. IEEE CG Appl. 19, 1, 56–65.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
GOOL, L. V. 2006. Procedural modeling of buildings. ACM
Trans. Graph. 25, 3, 614–623.

MÜLLER, P., ZENG, G., WONKA, P., AND GOOL, L. V. 2007.
Image-based procedural modeling of facades. ACM Trans.
Graph. 26, 3, 85, 1–9.

PARISH, Y., AND MÜLLER, P. 2001. Procedural modeling of
cities. In SIGGRAPH ’01: Proc. of the 28th annual conference
on CG and interactive techniques, ACM Press, NY, USA, 301–
308.

PIAZZALUNGA, U., AND FITZHORN, P. 1998. Note on a three-
dimensional shape grammar interpreter. Environment and Plan-
ning B: Planning and Design 25, 1, 11–30.

PRUSINKIEWICZ, P., M.J., AND MÊCH, R. 1994. Synthetic topi-
ary. In SIGGRAPH ’94: Proc. of the 21st annual conference on
CG and interactive techniques, ACM Press, NY, USA, 351–358.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND
LANE, B. 2001. The use of positional information in the mod-
eling of plants. In SIGGRAPH ’01: Proc. of the 28th annual
conference on CG and interactive techniques, ACM Press, NY,
USA, 289–300.

SHAPIRO, V. 2002. Handbook of Computer Aided Geometric De-
sign. Elsevier, ch. 20: Solid modeling, 473–518.

STINY, G., AND GIPS, J. 1972. Shape grammars and the generative
specification of painting and sculpture. Inf. Proc. 71, 1460–1465.

STINY, G. 1980. Introduction to shape and shape grammars. Envi-
ronment and Planning B: Planning and Design 7, 3, 343–351.

STINY, G. 1982. Spatial relations and grammars. Environment and
Planning B: Planning and Design 9, 1, 113–114.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. ACM Trans. Graph. 22, 3, 669–677.

