
Volume 0 (1981), Number 0 pp. 1–6

A Comparison of Tabular PDF Inversion Methods

David Cline Anshuman Razdan Peter Wonka

Arizona State University

Abstract

The most common form of tabular inversion used in computer graphics is to compute the cumulative distribution

table of a pdf and then search within it to transform points, using an O(logn) binary search. Besides the standard

inversion method, however, several other discrete inversion algorithms exist that can perform the same transfor-

mation in O(1) time per point. In this paper, we examine the performance of three of these alternate methods, two

of which are new.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General

1. Introduction

A number of applications in computer graphics require the
generation of sample points that are distributed according to
some specified distribution. For example, importance sam-
pling reduces the variance of a Monte Carlo integral estimate
by distributing sample points as closely as possible accord-
ing to the function being integrated. Stippling applications
also require points that are distribued according to a spec-
ified density to guide the placement of stipples. In fact, a
number of object placement algorithms rely on point sets
that are both well distributed and conforming to a particular
density (e.g. [DMS06, KCODL06]).

The classic manner of achieving a specific sample den-
sity is to start with uniformly distributed points and then
transform them to the desired density by some form of nu-
merical inversion. If the underlying probability distribution
(pdf) is defined in closed form, it may be possible to symbol-
ically invert the corresponding cumulative distribution func-
tion (cdf). This is commonly done, for example, with analyt-
ical BRDFs.

On the other hand, if the desired distribution is defined by
a discrete probability table, the usual inversion method is to
compute the cdf of the table and then perform an O(logn) bi-
nary search within the cdf to transform each point, where n is
the size of the table. Some work has been done to compress
the cdf table while retaining the important features [LRR05],
but in this work we are primarily concerned with methods

that speed up point transformation rather than with methods
that save space.

There are a number of problem contexts in which many
points must be transformed very quickly. For example,
bidirectional and resampled importance sampling [BGH05,
TCE05] require the generation of a large number of tenta-
tive samples for each ray cast in a Monte Carlo rendering
setting. In these techniques, the vast majority of the tenta-
tive samples are discarded, making quick sample genera-
tion paramount. Compounding this issue, ray casting itself
has become cheaper with the development of packet and
frustum-based ray tracing techniques [RSH05,WSBW01] so
that sample generation is now becoming as much of a per-
fomance bottleneck as ray casting itself. Another motivation
for simplifying the point transformation routine is to make
it more amenable to GPU implementation. If the transfor-
mation code will be mapped to graphics hardware, it may
be beneficial to use a simpler routine that does not waste
valuable shader ops on loops and other branching structures.
Based on these observations, it makes sense to revisit the
topic of sample generation from tabular pdfs.

1.1. Overview

This paper compares a number of alternate tabular inversion
algorithms to the standard binary search method for trans-
forming points based on a tabular pdf. The algorithms that
we will compare against the standard method are the alias

method, integer cdf inversion followed by linear search, and

c© The Eurographics Association and Blackwell Publishing 2008. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

D. Cline & A. Razdan & P. Wonka / A Comparison of Tabular PDF Inversion Methods

approximate tabular cdf inversion. To our knowledge, the
latter two of these methods have not been presented previ-
ously. By our comparisons we will show that each of the
alternative inversion methods, and in particular the latter
two, possess significant advantages over the binary search
method, both in terms of speed and code parsimony, while
sharing similar startup and memory costs.

2. Existing Inversion Methods for Tabular PDFs

2.1. The Binary Search Method (Standard Method)

A tabular probability distribution function is an array of val-
ues that defines a probability function. For example, figure 1
shows a tabular pdf with 8 elements.

3

32

7

32

5

32

1

8

1

16

1

4
PDF: f =

1

32

1

16

0 1 2 3 4 5 6 7table index

Figure 1: Tabular probability distribution function.

The pdf table may represent a discrete or continuous prob-
ability distribution in one or more dimensions. When repre-
senting a continuous distribution, the pdf is usually consid-
ered to be piecewise constant, with each table entry defining
the probability for a small area of the function domain.

Given a 1D pdf table, f , the corrseponding cumula-
tive distribution function, F , is defined by the equation
Fi = ∑

i
j=0 f j . Using the observation that Fi = Fi−1 + fi, the

cdf can be initialized from f in linear time by simply looping
over the values of F , computing each one in turn. Figure 2
gives the cdf table corresponding to the pdf in figure 1.

1CDF: F =
1

32

3

32

11

32

13

32

17

32

11

16

29

32

0 1 2 3 4 5 6 7

Figure 2: Tabular cumulative distribution function.

In 2D, a cdf table can be constructed by making a separate
cdf for each row and an additional cdf for the y marginal (the
table of the row sums). Once F has been computed, it can
be used to transform uniform points in [0,1)2 to the desired
distribution by performing two binary searches within F , one
for each dimension. Each of these searches takes O(logn)
steps to complete.

2.2. The Alias Method

An alternative to binary searching within the cdf table is
to use the alias method [Vos91, Wal77]. Introduced to the
graphics community by Burke [Bur04], the alias method
works by setting up an alias table whereby sample locations
with excess probability can point to locations with insuffi-
cient probability. Each entry in the alias table consists of
an alias location along with a probability of reassigning the
point to that location.

While slightly more complex to initialize than a cdf, an
alias table can be initialized in linear time as well. The algo-
rithm to create the table starts by partitioning the elements
of the pdf into two groups, those with insufficient probabil-
ity, and those with excess probability. An element from each
group is then chosen, and the element with excess proba-
bility P assigns its excess to the element with insufficient
probability Q. In other words, P is set to point to Q. P is then
removed from the list, and Q is checked to see if it now has
too much probability. If Q does have too much, it is moved
to the “excess probability” list. Otherwise it is left in the
“insufficient probability” list. This process repeats until both
lists are empty. Burke [Bur04] describes this process in de-
tail, and provides sample code for the initialization process.
Figure 3 shows an alias table created for the example pdf in
figure 1. An alias table can be built for a 2D pdf by ignor-
ing the fact that it is 2D, allowing table entries to point to
each-other without restriction.

2 5 2 6 6 2 5 6

3/4 1/2 0 1/2 0 1/4 0 1/4

alias index:

alias prob:

0 1 2 3 4 5 6 7

Figure 3: Alias table.

To transform points from a uniform distribution to the de-
sired distribution, the sampling routine looks up the location
of the input point in the alias table and then either returns
that point unmodified, with probability 1− p, or returns the
aliased location, with probability p, where p is the probabil-
ity stored in the alias table. The 2D coordinate of a trans-
formed point can be calculated based on the array index of
the aliased location.

Since no searching is involved, transforming points with
the alias method is quite fast compared to the standard
method. The transformation code only requires a single ta-
ble lookup, and one if statement. Despite its speed, however,
the alias method has a critical flaw that makes it unsuitable
for many applications–it tends to disrupt the stratification or
disrepancy-reduction efforts that went into creating the input
point set. This effect can be seen in figures 8 and 9. The ex-
planation for the loss of good sample spacing can be found
in the manner in which the alias method redistributes sam-
ples. Instead of warping sample space to take on the desired
distribution, the alias method steals points from low density
regions and stuffs them into high density regions randomly,
resulting in poor stratification. Another, less critical issue
with the alias method is that the alias table cannot be directly
queried to determine f for a given point in the domain. Con-
sequently, applications may need to retain an extra copy of
the probability table.

3. Methods Based On Approximate CDF Inversion

The reason that applications do not simply invert the cdf ta-
ble is that it cannot be done exactly given the constraints

c© The Eurographics Association and Blackwell Publishing 2008.

D. Cline & A. Razdan & P. Wonka / A Comparison of Tabular PDF Inversion Methods

of the table. Nevertheless, approximate inversions are pos-
sible. In this section we describe two new approximate cdf
inversion methods that allow points to be transformed to a
desired distribution in O(1) time per point, providing sub-
stantial time savings over the binary search method.

3.1. Integer CDF Inversion with Linear Search

The most expensive part of the standard method for search-
ing within a cdf is the binary search, which must be per-
formed for each sample point. One way to optimize the
search would be to create some kind of oracle to tell the
search routine where to start. If the oracle can provide ini-
tial guesses that are sufficiently close to the correct value,
we can replace the binary search with a simpler linear search
that runs in O(1) time on average. In fact, a discrete version
of the inverse cdf, F̂−1, meets the criteria just described (see
appendix A for a proof). The elements of F̂−1 are defined as
follows:

F̂
−1
i = j : Fj−1 ≤

i

w
< Fj. (1)

That is, the ith element of F̂−1 contains the smallest index j

such that Fj is greater than i/w, where w is the size of F̂−1

(8 in our example): Note that since the values of F̂−1 are
monotonically non-decreasing, the table can be initialized
in linear time. Figure 4 shows F̂−1

i for the example pdf in
figure 1.

F
_

1 = 0 2 2 3 4 5 6 6

0 1 2 3 4 5 6 7
^

Figure 4: Integer-based inverse cdf table.

As is the case with the cdf, F̂−1 can be initialized in 2D
by inverting each of the table rows and the y axis marginal
separately. Transforming a point (x,y) to (x′,y′) using F̂−1

table can be performed as follows:

1. Using y, look up (in the y marginal of F̂−1) the starting
point for searching for y′ in F .

2. Search in the marginal of F to find y′.
3. Using y′, determine the row in which to search for x′.
4. Using x, look up the starting point for searching for x′.
5. Search in F to determine the value of x′.

Note that the above algorithm is essentially a form of
hashing in which the inverted cdf table acts as the hash func-
tion, and the cdf table resolves hash collisions. The benefit
of integer cdf inversion is that it is faster than the standard
method while producing exactly the same result. Thus, in-
teger cdf inversion tends to preserve sample spacing better
than the alias method. The code is somewhat simpler than
the standard method as well, but a loop construct is still
needed to perform the search. While the memory require-
ments are about double the standard method, this is still

likely to be less than the memory used by the pdf itself if
it contains spectral values (BRDFs and environment maps,
for example).

3.2. Approximate CDF Inversion

In the methods presented so far, the tabular pdf has been
treated as an absolute ideal when in fact most of the time it is
a sampled approximation. For many applications, it may be
acceptable to use an approximate inverted cdf table. Code for
the resulting inversion algorithm would not require any con-
trol structures, and would be able to transform points with a
single table lookup in 1D, and two lookups in 2D.

The approximate inverted cdf table. We define an ap-
proximate inverted cdf table, F−1, that stores real-valued
coordinates instead of integer table indices. To start with, let
F(x) be the linearly interpolated value of F at point x. That
is, given that j = bxc,

F(x) = Fj−1 +(x− j)(Fj −Fj−1).

F−1
i is defined as the coordinate x such that F(x) equals i/w,

where once again w is the table width:

F
−1
i = x : F(x) =

i

w
. (2)

The value of F−1
i can be calculated by interpolating based

on values in F :

F
−1
i = j +(

i

w
−Fj−1)/(Fj −Fj−1), (3)

where j = F̂−1
i . Figure 5 shows the approximate inverse cdf

table created from the pdf in figure 1.

F
_

1 = 0 2 4 5 6

0 1 2 3 4 5 6 7

1

8

3

4

3

5

6

7
2

5

8
3

1

2
6

2

7

Figure 5: Approximate inverse cdf table.

As with several of the other methods discussed so far, F−1

can be created for a 2D pdf by inverting the table rows and y
axis marginal separately.

Figure 6 shows the kinds of approximation error that can
occur because of the tabular encoding of F−1. The proba-
bility function in the figure represents a fairly difficult case
because it has sharp features. Even in this case, however, the
overall error quickly diminishes as the table size increases,
and the 642 table is almost indistinguishable from the origi-
nal.

In 2D, an input point (x,y) can be transformed to an output
point, (x′,y′) based on two table lookups as follows:

1. Look up y′ in the marginal of F−1 using y.
2. Using y′, calculate the row in which to look up x′.
3. Look up x′ in the specified row of F−1 using x.

c© The Eurographics Association and Blackwell Publishing 2008.

D. Cline & A. Razdan & P. Wonka / A Comparison of Tabular PDF Inversion Methods

Figure 6: Approximation error of F−1 for different table

sizes. The top row shows tabular pdfs with resolution 162,

322 and 642. The bottom row shows the approximations

achieved by approximate inversion with the same table size.

The probability of the output point, p(x′,y′), can also be cal-
culated during the transformation:

p(x′,y′) = 1 / (Ma+1 −Ma)(Rc,b+1 −Rc,b), (4)

where a = byhc, b = bxwc, c = by′hc, M is the marginal of
F−1, Rc is row c of F−1, and w and h are the width and
height of F−1.

The main strength of using an approximate inverted cdf
table is that points can be transformed very quickly using
a few table lookups. The transformation code itself is also
quite simple, requiring no loop structures or “if” statements.
Furthermore, point sets transformed using F−1 tend to main-
tain their good spacing properties as well as the cdf search-
ing algorithms. The F−1 table also has the same memory
overhead as the cdf table. The main drawback of using ap-
proximate cdf inversion is that it does not exactly reproduce
the probability table. One consequence of the approximation
is that the probability of an output point cannot easily be cal-
culated without having its corresponding input point as well.
Thus, the algorithm may be unsuitable for multiple impor-
tance sampling.

4. Comparison

Memory consumption. Table 1 gives the memory usage
for the different inversion methods described in the paper,
assuming that both integers and real values are 4 bytes in
size. The alternate methods all use one or two times as much
memory as the standard method, so memory consumption is
not likely to be more of a concern than it is with the stan-
dard method. However, the numbers given only apply to in-
version tables with the same number of entries. If we want
to represent a continuous probability function, the approxi-
mate cdf inversion method may be more accurate than the
other methods since it concentrates effort in high probability

regions. This is similar to the environment map compression
technique described by Lawrence et al. [LRR05].

Binary search method 4 bytes
The alias method 8 bytes
Integer cdf inversion 8 bytes
Approximate cdf inversion 4 bytes

Table 1: Memory consumption per table entry for different

tabular inversion methods.

Timing. Figure 7 shows timing results for each of the
four inversion methods described in the paper. As demon-
strated in the figure, the performance of the standard binary
search method is strongly dependent on the pdf table size.
On the other hand, the other three methods are only slightly
dependent on table size due to their constant time complex-
ity. The standard method is fairly fast, transforming between
4.7 and 11.8 million points per second. However, even this
rate may be a bottleneck for some applications. For exam-
ple, MLRTA [RSH05] has been shown to achieve ray cast-
ing rates in the tens of millions per second. This fact under-
scores the need for extremely fast inversion routines to meet
the demands of high performance ray tracers. All of the al-
ternate methods achieve sampling rates that are between two
and three and half times faster than the standard method, but
once again, the alias method tends to de-stratify an input se-
quence, leaving the approximate cdf inversion techniques as
the candidates of choice among the alternates.

0

5

10

15

20

25

0 500 1000 1500

PDF table size

T
im

e
 (

s
e
c
o

n
d

s
)

Binary search method

The alias method

Integer cdf inversion

Approximate cdf inversion

2 2 2

Figure 7: Time to transform 107 million points for different

pdf table sizes and inversion methods.

Point set quality. Figure 8 shows point sets generated
by the four methods described in the paper, using the same
Poisson-disk input sequence. One drawback with all the
cdf-based methods is that samples may squeeze together
when the sample domain is warped anisotropically. This
is still preferable to the randomization that occurs in the
alias method for most applications, however. Direct meth-
ods [KCODL06,Ost07] can generate non-uniform point sets

c© The Eurographics Association and Blackwell Publishing 2008.

D. Cline & A. Razdan & P. Wonka / A Comparison of Tabular PDF Inversion Methods

of higher quality, but will likely be an order of magnitude
slower.

A standard tool for judging the quality of a 2D point set
is to view its Fourier transform. For a uniform point set, the
Fourier transform should be radially symmetric and have a
low energy ring around the origin, called the “blue noise”
property. [LD06] surveys algorithms to generate blue noise
point sets. Figure 9 shows point sets generated by the meth-
ods described in the paper along with their Fourier trans-
forms. Note that the Fourier transforms of both the cdf
search methods and approximate cdf inversion have a low
energy anulus around the origin (excluding a cross of low
frequencies). This reflects the fact that the good spacing
qualities of the input point set are retained by these methods.
On the other hand, the Fourier transform of the alias method
has much more energy near the origin. In many ways, this
Fourier transform looks like a blend between that of the in-
put point set and a random point set. This should not be sur-
prising, given the sample clumping that occurs in the spatial
domain.

In figures 10 and 11, we show the effect of the different
inversion routines on rendering convergence. Figure 10 pro-
vides renderings of a scene lit by an environment map, using
the different inversion methods to choose sampling direc-
tions. With 16 samples per pixel, the cdf search methods do
fairly well. As one might expect, the disruption of the sample
spacing caused by the alias method results in a noisier image.
Approximate inversion results in a few bright samples, but
the overall quality is better than with the alias method. These
results are mirrored in figure 11, which plots the RMSE for
the methods in the paper using different numbers of samples.

5. Conclusion

In this paper we compared three alternate methods for trans-
forming points according to a tabular pdf to the standard
method based on binary search within the cdf table. The al-
ternate methods included the alias method, integer cdf in-
version with linear search, and approximate cdf inversion.
We demonstrated that the new methods can transform points
several times faster than the binary search method, while
having comparable memory overhead. Based on our results
we believe the alternate methods, and particularly the two
based on approximate cdf inversion, to be well suited to a
number of sampling applications. A possible direction for
future work would be to speed up the point transformation
process by processing multiple points at once to take advan-
tage of cache coherence.

References

[BGH05] BURKE D., GHOSH A., HEIDRICH W.: Bidi-
rectional importance sampling for direct illumination. In
Eurographics Symposium on Rendering (2005), Euro-
graphics Association, pp. 139–146.

Pdf table Input point set

Binary search method and integer cdf inversion

Approximate cdf inversion

The alias method

Figure 8: Transformed point sets for different tabular inver-

sion methods.

[Bur04] BURKE D.: Bidirectional importance sampling
for illumination from environment maps. Master’s Thesis,

University of British Columbia (2004).

[DMS06] DIETRICH A., MARMITT G., SLUSALLEK P.:
Terrain guided multi-level instancing of highly complex
plant populations. In Proceedings of the 2006 IEEE Sym-

posium on Interactive Ray Tracing (September 2006),
pp. 169–176.

[KCODL06] KOPF J., COHEN-OR D., DEUSSEN O.,
LISCHINSKI D.: Recursive wang tiles for real-time blue
noise. ACM Transactions on Graphics (Proceedings of

c© The Eurographics Association and Blackwell Publishing 2008.

D. Cline & A. Razdan & P. Wonka / A Comparison of Tabular PDF Inversion Methods

(a) (b) (c) (d)

Figure 9: Transformed point sets and their Fourier trans-

forms. (a) pdf and input point set, (b) the alias method, (c)

approximate cdf inversion, (d) binary and linear search in

the cdf.

Accepted image The alias method

Approximate cdf inversion cdf search

Figure 10: Environment map lighting with 16 samples per

pixel using the different inversion techniques. All renderings

transform a Hammersley point set to the environment map

distribution.

SIGGRAPH 2006) 25, 3 (2006), 509–518.

[LD06] LAGAE A., DUTRÉ P.: A Comparison of Meth-

ods for Generating Poisson Disk Distributions. Report
CW 459, Department of Computer Science, K.U.Leuven,
Leuven, Belgium, August 2006.

[LRR05] LAWRENCE J., RUSINKIEWICZ S., RA-
MAMOORTHI R.: Adaptive numerical cumulative
distribution functions for efficient importance sampling.
In Eurographics Symposium on Rendering (June 2005).

[Ost07] OSTROMOUKHOV V.: Sampling with polyomi-
noes. ACM Transactions on Graphics (Proceedings of

SIGGRAPH 2007) 26, 3 (2007), 78.

0.01

0.1

1

0 50 100 150 200 250 300

Samples Per Pixel

Random
Alias
Approximate Inversion
Standard Inversion

R
M

S
E

Figure 11: Root mean squared error (RMSE) for the scene

in figure 10, rendered with different inversion techniques and

samples per pixel. “Random” shows the results of standard

inversion using a random point set as input to the trans-

formation routine. The other renderings use a Hammersley

point set as input.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.:
Multi-level ray tracing algorithm. In ACM Transactions

on Graphics (Proceedings of SIGGRAPH 2005) (2005),
ACM Press, pp. 1176–1185.

[TCE05] TALBOT J. F., CLINE D., EGBERT P. K.: Impor-
tance resampling for global illumination. In Eurographics

Symposium on Rendering (2005), Eurographics Associa-
tion, pp. 139–146.

[Vos91] VOSE M.: A linear algorithm for generating
random numbers with a given distribution. In IEEE

Transactions on Software Engineering (September 1991),
vol. 17(9), pp. 972–975.

[Wal77] WALKER A.: An efficient method for generating
discrete random variables with general distributions. In
ACM Transactions on Mathematical Software (September
1977), vol. 3(3), pp. 253–256.

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C.,
WAGNER M.: Interactive rendering with coherent ray
tracing. In Proceedings of Eurographics 2001, vol. 20(3).
Blackwell Publishing, 2001, pp. 153–164.

Appendix A: Integer cdf inversion with linear search.

Here we sketch a proof that the linear search in section 3.1
runs in constant time on average:

Given that F and F̂−1 are the same size, the average dif-
ference between consecutive entries in F̂−1 must be no more
than 1. Furthermore, a search within F must range between
consecutive entries in F̂−1, inclusively. Therefore, assum-
ing uniform input points, the average number of checks per-
formed during a search must be no more than 2, and the
search runs in constant time on average.

c© The Eurographics Association and Blackwell Publishing 2008.

