
Visual Comput (2005)
DOI 10.1007/s00371-005-0355-6 O R I G I N A L A R T I C L E

Justin Jang
Peter Wonka
William Ribarsky
Christopher D. Shaw

Punctuated simplification of man-made
objects

Published online: 22 November 2005
© Springer-Verlag 2005

J. Jang (�)
Georgia Institute of Technology, GVU
Center and College of Computing, Atlanta,
GA 30332, USA
jang@cc.gatech.edu

P. Wonka
Arizona State University, PRISM and
Dept. of Computer Science and
Engineering, Tempe, AZ 85287, USA
peter.wonka@asu.edu

W. Ribarsky
UNC Charlotte, CS Dept. and Charlotte
Visualization Center, Charlotte, NC 28223,
USA
ribarsky@uncc.edu

C.D. Shaw
Simon Fraser University Surrey, School of
Interactive Arts and Technology, 14-660
Central City Tower, 13450 102 Ave,
Surrey, BC, Canada V3T 5X3
shaw@sfu.ca

Abstract We present a simplification
algorithm for manifold polygonal
meshes of plane-dominant models.
Models of this type are likely to
appear in man-made environments.
While traditional simplification
algorithms focus on generality
and smooth meshes, the approach
presented here considers a specific
class of man-made models. By
detecting and classifying edge loops
on the mesh and providing a guided
series of binary mesh partitions,
our approach generates a series of
simplified models, each of which
better respects the semantics of these
kinds of models than conventional
approaches do. A guiding principle
is to eliminate simplifications that
do not make sense in constructed
environments. This, coupled with
the concept of “punctuated simpli-
fication”, leads to an approach that

is both efficient and delivers high
visual quality. Comparative results
are given.

Keywords Mesh simplification ·
Feature detection · Level-of-detail

1 Introduction

A great deal of current modeling and visualization effort
is directed towards triangle meshes with high geometric
detail. To maintain high frame rates during interactive vi-
sualization, a common strategy is to create different levels
of simplification for one object and switch between these
representations during runtime. The levels of simplifica-
tions are also called levels of detail (or LODs) of the
model.

Simplification algorithms are often demonstrated on
models from the Stanford scanning repository [31], which

includes the well-known models of a bunny, a Buddha
statue and Michelangelo’s David. These models can be
iteratively simplified, where each new level of simplifica-
tion has one vertex less than the previous one [9, 12].

Although impressive results can be achieved for these
models, there is still the lingering problem that current
automatic simplification algorithms perform poorly on
a large class of man-made objects. Often designers must
create simplified versions along with the original versions
for these models.

In contrast to the previously mentioned models, which
are dominated by smooth differential surfaces, man-made
objects are usually dominated by features. These models

J. Jang et al.

contain many sharp edges and for large parts of the
model the triangular mesh is not an approximation of
a smooth differential surface. Instead, the mesh represents
the actual piece-wise linear surface. Examples include fur-
niture, machine parts, electronic devices and buildings
(see Fig. 1).

Fig. 1. Models with differential (left) and non-differential (right)
surfaces

If we apply current smooth simplification methods to
man-made models, resulting simplifications may deviate
from the ideal. The following are weaknesses of per-vertex
simplification schemes:

– Small features are merged into new larger ones. This
is illustrated in Fig. 2a. Here, the larger features have
characteristics not present in the smaller features. In
this case, new face orientations are introduced.

– Many intermediate steps of the calculated simplifica-
tions are not correct (see Fig. 2b). The simplification

Fig. 2a–c. Problems with successive vertex merging. Small features
merge into larger ones (a). In the window with frame (b) and the
circle (c)some intermediate steps are intuitively not correct

Fig. 3. A model of a wheel (left). The simplification on the right has
low visual quality

of a wheel in Fig. 3 illustrates this problem. The sim-
plification shown on the right has a low visual qual-
ity (in this case due to violation of symmetry (see
also Fig. 2c) and is not very useful for most applica-
tions.

– It is not clear which intermediate simplification steps
are meaningful.

In this paper, we take a different approach to the sim-
plification of man-made objects. Our approach seeks to
identify features in a model and removes them in a con-
sistent manner. Note that our approach to handle features
is different than previous approaches [16, 27]. In previous
work, the main goal was to mark certain important parts
of the model (features) and try to retain them as long as
possible during simplification. However, the actual sim-
plification of these features is again a triangle-by-triangle
simplification. In contrast, our approach tries to identify
features as clusters of triangles and removes a whole clus-
ter at once in a consistent manner.

Our algorithm draws from ideas of the computer-aided
manufacturing community, where designs have to be de-
composed into meaningful semantic parts before they can
be manufactured. We employ a loop-based feature detec-
tion algorithm to create a hierarchical tree that structures
the model. To obtain different levels of detail, we remove
several features of similar or correlated geometric impor-
tance together, rather than in a more continuous LOD fash-
ion. We call this approach punctuated simplification. In
this paper, we show that punctuated simplification typic-
ally leads to relatively few steps between the full and the
simplest model. Further, the intermediate models have bet-
ter visual quality than per-vertex intermediate models of
similar complexity. The simplification tree can be used to
extract a large number of possibly view-dependent levels
of detail. These LODs can be precalculated or generated
during runtime.

We believe that the idea of punctuated simplification is
a new contribution to the world of simplification and will
help to extend the applicability of automatic simplification
algorithms to applications like CAD, computer games, ur-
ban [8, 15, 26] and architectural [33] simulation.

Punctuated simplification of man-made objects

2 Related work

2.1 Simplification

There is an extensive literature on the simplification of
polygonal models. We will not try to cover this broad lit-
erature but will rather focus on representative work most
relevant to our approach. We refer the reader to recent
surveys for a comprehensive discussion of simplification
methods [23].

A variety of per-vertex algorithms have been de-
veloped for mesh simplification. These include algorithms
that perform vertex merges [9], edge collapses [12], or
vertex removals [18]. Some algorithms require manifold
topology [12], while others are “topologically-tolerant”
[9], but all work one vertex at a time. In addition, there
are per-vertex algorithms that attempt to preserve appear-
ance by considering not only errors in surface position
caused by the simplification, but also errors due to changes
in surface color and curvature [2, 10]. Although in prin-
ciple a simplification algorithm could be constructed that
considers all these aspects of appearance, in practice this
is hard to do in an efficient and balanced way [14]. In
practice, either geometric or color/texture aspects domi-
nate.

There are also more general vertex merge algorithms
based on various multi-vertex clustering mechanisms [20,
30]. These are rather insensitive to topology and in the
most general case do not require mesh connectivity at all.
The algorithms are fast, work well on large out-of-core
meshes, and can produce drastic simplifications. How-
ever, it is difficult to specify the output in terms of num-
ber of polygons for the algorithm, and the results are
not usually as visually pleasing as with per-vertex algo-
rithms.

In general, the vertex merge, removal or clustering op-
erations in all these approaches can be encoded in a tree,
which can then be traversed in any order. This gives rise
to view-dependent approaches where on-the-fly simplifi-
cation occurs based on the current user viewpoint [13, 18].
Perspective and distance are taken into account, so that
nearby geometry facing the viewer will have more detail
than distant or oblique geometry.

Several extensions to the quadric-error approach [3,
9, 16, 27] allow the user to specify important parts of
the model. In these extensions, the simplification pro-
cess simultaneously considers the quadric error and the
user specified importance to select candidates for simpli-
fication. However, these approaches do not address the
problem of how to identify and consistently remove fea-
tures, but rather determine the simplification order and
thereby answer the question of when to remove fea-
tures.

El-Sana and Varshney [6] present a topology-simpli-
fying approach based on the concept of alpha-hulls.
The approach is able to eliminate small holes and pro-

tuberances that can hinder and restrict extreme sim-
plification. However, the approach can only deal with
relatively small holes and protuberances with small
gaps and ignores the size of the protuberances them-
selves.

Our approach provides a set of simplifications and an
order to follow them through, but it does not do this as
a sequence of per-vertex simplifications. Alternatively, we
do not follow a clustering approach that uses some dis-
tance criterion for determining which vertices to merge.
Rather, our punctuated simplification approach preserves
planes, edges, and orientations until they are deemed can-
didates for removal, at which point they are removed all at
once.

2.2 Feature detection

Feature detection starts with defining what is meant by
the word “feature”. The definition usually depends on
the context of the application and is given only very
broadly, as for example “a region of interest on the sur-
face of a part” [28] (see Fig. 4). For the actual implemen-
tation of a feature detector, a more precise definition is
necessary. A common solution is to give an enumerative
list of features. As a consequence, most feature detec-
tors are rule-based and each rule is able to detect a cer-
tain type of feature. For a survey of feature detection
see [35].

Fig. 4a–c. Three cases of mesh features. a Smooth surfaces: nor-
mals per vertex; the mesh is only seen as an approximation to the
actual (smooth) surface; differential geometry applies. b Smooth
surfaces with features: these are smooth surfaces that have sharp
edges and corners. The edges and corners are called features.
c Plane-dominant objects: the mesh is the actual geometry; normals
are per polygon and not per vertex. A feature is a larger connected
part of the mesh

Feature detectors can be based on convex decompos-
ition [17, 34], topology of a dual face-edge graph [5], top-
ology of a face-edge graph in combination with geometric
tests [11, 24, 29], or loop detection on the geometry of the
model [21, 22].

Our approach is most closely related to loop-based fea-
ture detection [21, 22]. The idea is to couple the detection
of edge loops that potentially contain a feature together
with geometric tests to verify its existence. (Note that what
we call the feature here is not the edges in the loop, but the
mesh partition bounded by the loop.) We use an adaptation
of these loop-based feature detectors in our implementa-
tion.

J. Jang et al.

3 Overview

As input to our algorithm we consider triangle meshes that
represent a topological 2-manifold with boundary. Given
a model that contains non-triangular polygonal faces, the
model can be triangulated first and then processed by our
algorithm.

Our algorithm accepts models with holes and multiple
non-connected parts, but we do not alter the topology of
the model during simplification, so the simplification pro-
cedure preserves holes and keeps unconnected parts sepa-
rate. Our algorithm accepts models with self-intersections,
but our goal is not to repair erroneous input models. Self-
intersections and other errors in the input model can result
in unwanted results during simplification.

We do not attempt here to deal with large models.
While a lot of simplification research has been devoted
to handling large meshes, applications such as games and
urban visualization often call for a large number of sim-
ple meshes as opposed to a few complex ones. In cer-
tain situations, it may be necessary to display drastically
simplified meshes with visible approximation error. Thus,
it is important to ensure the quality of the coarser ap-
proximations. Furthermore, man-made objects, especially
constructed objects like buildings and furniture, gener-
ally contain more planar or near planar surfaces than or-
ganic forms. In approximating a shape, flat regions require
much fewer linear facets than curved regions. Therefore,
plane-dominant models normally contain fewer polygons
than those with an abundance of smooth or curvy re-
gions.

3.1 Algorithm overview

The algorithm has three major parts. We will briefly de-
scribe these parts and then give more details about these
parts in the next section.
1. Feature extraction – we employ a rule-based loop-

finding method to detect the boundaries of a feature on
the surface of the model. This feature induces a parti-
tion of the mesh in two parts.

2. Hierarchical partitioning – using the feature extraction
method, we organize the features (mesh partitions) hi-
erarchically.

Fig. 5. A simple model (left) and two detected loops on the surface
of the model shown in yellow (right). Not all possible loops are
shown

Fig. 6. The partitioning of the model from the previous figure in
a hierarchical tree

Fig. 7. Two possible simplifications extracted from the tree

3. Simplification – we use the hierarchy to simplify the
model.

These three steps are demonstrated on a simple ex-
ample in Fig. 5, Fig. 6, and Fig. 7.

4 Feature extraction

Our approach can be considered a general framework for
simplification. This framework incorporates explicit fea-
ture identification and treatment into a system for gener-
ating simplified meshes. A feature is any subset of the
mesh that can be detected by a set of rules or proced-
ures. (The loop-finding method described here is just one
procedure that could be used.) Thus, a feature can be ar-
bitrarily complex. For each feature, there is a correspond-
ing simplification operation. This operation can be fairly
general in behavior, so we prefer to call it a simplifica-
tion treatment. Thus, both the identification and treatment
of features are defined procedurally in the framework.
The framework is flexible, since it can fall back on a tra-
ditional simplification algorithm where features are not
present.

Loop-based feature detection is based on finding
closed polylines on the surface of a model (a loop).
The segments of the polyline are typically edges of
the triangulation. In this section, we propose a tax-

Punctuated simplification of man-made objects

onomy for loop detectors. We classify detectors ac-
cording to a) the type of edges they detect, b) how
many planes are involved in defining the feature, c)
the tolerance to noise, and d) the number of loops
specifying a feature (ability to detect topological fea-
tures).

Edge type. Edges can be concave, convex, planar, or vir-
tual. A concave edge is an edge of the triangulation where
the adjacent faces form an angle of less than 180 degrees.
A convex edge is an edge of the triangulation where the
adjacent faces form an angle of more than 180 degrees.
A planar edge is an edge of the triangulation where the
two adjacent faces are coplanar. A virtual edge is a line
segment that crosses a face of the triangulation. Virtual
edges are helpful to make the loop finder more indepen-
dent of the actual triangulation. Fig. 8 illustrates the first
three cases.

Fig. 8. Three edge types, highlighted in yellow. Left – concave.
Middle – convex. Right – planar

Number of planes. The number of planes involved in
defining a feature greatly contributes to the complex-
ity of the detector. Typically, one plane means that the
feature is contained in a plane of the model. For two
planes, the feature is located at an edge. For three planes
the feature is typically located at a corner. However,
other configurations are possible for features of three
or more planes. Fig. 9 illustrates two of these possibili-
ties.

Fig. 9. A feature on a plane (left) and a feature on an edge (right)

Noise tolerance. The tolerance to noise defines the robust-
ness of the detector. Typically some tolerance is required
for all detectors to compensate for numerical imprecision,
but scanned data often has a significant level of noise that
requires different approaches.

Number of loops. Some feature detection algorithms are
also able to detect topological features, such as holes in
the model. To be able to detect these features, a single loop
is no longer sufficient. To classify these features we can
use the number of loops that are necessary to specify the
feature.

5 Algorithm details

5.1 Loop finding

We have implemented a greedy, recursive loop finder that
is able to detect planar loops. Although faster or more ro-
bust algorithms might be found, the focus of the current
work was not to improve existing feature detectors.

The loop finder recursively traverses halfedges un-
til a loop is found. A halfedge is a directional edge with
a head and a tail vertex. (For details about the halfedge
data structure, see [1].) We start by selecting a seed
halfedge. To add a halfedge to the loop, the next halfedge
emanates from the tail of the last halfedge. We use the
following restrictions:
1. The first halfedge h1, cannot be a planar edge or al-

ready belong to a loop.
2. The second halfedge h2 cannot be collinear with the

first halfedge.
3. A halfedge hi (i > 2) has to lie in the plane formed by

h1 and h2. This plane is called the loop plane.
4. A halfedge hi (i > 2) cannot have two adjacent faces

that are both coplanar with the loop plane.
5. A halfedge hi (i > 2) can only extend or close the loop.

It is not allowed to touch or cross the loop.
We still need some geometric tests to verify the loop. For
example, we discard loops that bound a flat polygon. In
the end, it turns out that the branching factor for this con-
strained search is pretty small and the loop detection only
takes a few seconds for the models we used for our tests.

5.2 Hierarchical partitioning

In support of the subsequent simplification phase, our al-
gorithm generates a hierarchy of feature partitions. Given
a triangular mesh M as a set of triangles, any given loop L
induces a partitioning of M into two subsets, M1 and M2.
This binary partition forms the basis of the hierarchy,
which emerges as a binary tree of mesh partitions.

We need to answer the following questions to build the
tree:

1) Given two mesh partitions M1 and M2 we must decide
which mesh is considered to be the feature. This is im-
portant, because the feature and the rest of the mesh are
treated differently during the simplification phase. We
employ a simple heuristic H for the decision. We com-
pute the extent, H(M) = max(d(p1, p2)), where d is the

J. Jang et al.

Euclidian distance metric and p1, p2 are vertices of the
mesh. The mesh partition with the smallest non-zero
extent is considered the feature. We call this the inte-
rior partition. Note that the other partition, called the
exterior partition, might be an empty mesh.

2) To build the tree we always select the partitioning with
the largest interior partition where the exterior partition
is not empty. We choose to use the extent of the mesh
as a heuristic. This heuristic ensures that the features
are properly nested.

We then construct the tree with a recursive proced-
ure (see Fig. 10.) For the sake of discussion, we choose
to position the interior partition as the left child and the
exterior partition as the right child. An example tree is
given in Fig. 6. For models with many nested features,
the tree may contain long runs of branching from the left
child node (the internal partition node). For models with
many identical features, the tree may contain long runs of
branching from the right child node (the external partition
node).

Fig. 10. Simplified pseudocode of the recursive procedure for con-
structing the hierarchy

5.3 Simplification

The submesh tree can be used in more than one way to
guide simplification. For example, the tree can guide the
construction of a sequence of static level-of-detail (LOD)
representations.

We need the following three procedures to implement
the simplification:

1) Simplify(M, L): For a feature mesh M that is bound
by a loop L, we need a simplification treatment that
generates a simplified version of the mesh M. We call
this Simplify(M, L). The simplification treatment for
a planar feature is typically hole-filling [4] (that is tri-
angulation of an arbitrary polygon), but more complex
operations are possible [29].

2) Coalesce(M): We need a procedure to reduce the num-
ber of coplanar triangles in a mesh. We call this Coa-
lesce(M). We choose to use the framework of Garland
and Heckbert [9] for this task. By selecting an error

threshold close to zero and specifying relevant loops as
constraints, we can achieve the desired effect.

3) ST(M, L): We need a cost function to determine how
much error the simplification of a feature introduces.
We choose to use a simple metric calculating the sur-
face area of the mesh M minus the surface area of the
simplified version of M, that is ST(M, L). Depending
on the amount of semantic information available for
the model, the cost function can be made more interest-
ing. Along with geometric characteristics, factors such
as importance, semantic sensibility, and physical plau-
sibility can be incorporated into such a metric.

The process for generating static LODs is as follows.
1. Pick the lowest cost feature (interior partition) node

with mesh M and loop L.
2. Calculate Simplify(M, L) and store the simplified ver-

sion with the node.
3. Collapse nodes. A node can be collapsed if the feature

child (the interior partition node) has been simplified
and the other child (the exterior partition node) does
not have any further children. To collapse a node we:
(a) combine the meshes M1 and M2 of the children to

obtain M = M1 + M2,
(b) call Coalesce(M) on the combined geometry and

store it with the node.
4. Repeat steps 2–3.

At any time the union of all leaf nodes can be calcu-
lated to obtain a valid level-of-detail of the model. To ob-
tain a discrete set of static LODs, we propose the follow-
ing methods: (a) find the peaks in a histogram of [errors
incurred, faces simplified]; (b) find the zero crossings of
derivatives of [errors incurred, faces simplified]; (c) round
to logarithmic steps; or (d) use thresholds. For our results,
we used a moving threshold. That is, when the error passes
e + t, where e is the last error incurred by the last LOD
(initially zero) and t is the threshold, we grab the current
LOD and update e. Note that, in general, applying any of
these methods to a traditional simplification sequence like
a quadric simplification will not produce the same results
as applying them to the hierarchically partitioned mesh,
which has eliminated meaningless or incorrect simplifica-
tion steps.

6 Results

In this section, we demonstrate that the proposed method
gives good results and that the consideration of features
is in fact crucial to get meaningful simplifications for
man-made objects. We demonstrate our results by com-
paring our simplifications with the algorithms proposed by
Garland and Heckbert (quadrics/Qslim) [9] and Lindstrom
and Turk (memoryless simplification) [19]. We did not try
to optimize our implementation for speed, but the simplifi-
cation times are still reasonable. To give a rough estimate,

Punctuated simplification of man-made objects

Fig. 11. Three levels-of-detail obtained with Qslim (left), memo-
ryless simplification (center), and our algorithm (right). The three
LODs contain 558 (top row), 318 (second row), and 76 (bottom
row) triangles. Our algorithm automatically extracts these levels-of-
detail. In contrast to the other two methods, both simplifications of
our method make sense and have good visual quality. Note that the
LODs in the top row are geometrically identical to the original (560
triangles)

Fig. 12. Difference images (negative image) of the second and third
rows in Fig. 11 with respect to the original (i.e. top row)

the simplification time is under 5 seconds for the models
shown here.

The first model is the model of the wheel shown in
Fig. 3. Figure 11 shows three LODs obtained using the
three simplification approaches. See the figure caption for
a description of the results. Figure 12 shows the image dif-
ferences for each of these LODs.

The second model used to illustrate our method is
an armoire (see Fig. 13 and Fig. 14). We compare again
against the original model.

Figure 15 shows a LOD sequence of a window model
produced with our method.

Fig. 13. Top left: the original armoire model with 476 polygons.
Bottom left: wireframe of the original. Top row: selected simplifica-
tions using our algorithm (94 triangles), Qslim (94 triangles), mem-
oryless simplification (94 triangles), and Maya (96 triangles) [25].
Bottom row: corresponding difference images (negative image) of
the simplifications to the original

Fig. 14. Close-up of the armoire. All images correspond to those in
Fig. 13. Notice that triangle-shaped artifacts appear on the Qslim,
memoryless, and Maya [25] results. Also notice the difference in
size and angle of the bevel on the armoire doors

Fig. 15. A sequence of simplifications of a window model is auto-
matically extracted with our algorithm. Entire features are removed
per step, while the rest of the model is retained

7 Discussion

Figures 16–18 compare the max, mean, and RMS errors
of three approaches, Qslim/quadric simplification (QS),
memoryless simplification (MS), and our punctuated sim-
plification approach (PS). Forward errors (original-to-sim-

J. Jang et al.

Fig. 16. Max, mean, and RMS error values for the wheel model
simplifications of 318 triangles. Forward (original-to-simplified),
backward (simplified-to-original), and forward plus backward er-
rors are shown for Qslim (QS – left), memoryless simplification
(MS – middle), and our method (PS – right)

plified) and backward errors (simplified-to-original) along
with forward plus backward errors are shown. Notice that
for the models tested, the visual quality of the simplifica-
tions is not fully represented or revealed by the metrics.
The difference images seem to suggest that punctuated
simplification is better than the other approaches. How-
ever, the max, mean, and RMS metrics give mixed results
and even results counter to what one gets from visual
examination. This confirms that different metrics, such as
one based on perception [32], are sometimes necessary
for evaluating simplification quality, especially for con-
structed models like these. Furthermore, even a straight-
forward measure of RMS image difference cannot account
for qualitative inaccuracies, such as violation of symme-
try (Fig. 11) or the creation of misrepresentative shapes
(Fig. 14).

8 Conclusions

In this paper, we described the punctuated simplification
approach for simplifying man-made objects. We argued
that previous simplification algorithms are in fact mainly
applicable to models that are dominated by smooth sur-
faces and that for another large class of objects (that we

Fig. 17. Max, mean, and RMS error values for the wheel model
simplifications of 76 triangles. Forward, backward, and forward
plus backward errors are shown for Qslim (QS), memoryless sim-
plification (MS), and our method (PS)

Fig. 18. Max, mean, and RMS error values for the armoire model
simplifications of 94 triangles (from LOD 5 of 10). Forward, back-
ward, and forward plus backward errors are shown for Qslim (QS),
memoryless simplification (MS), and our method (PS)

Punctuated simplification of man-made objects

call man-made objects) they often fail to calculate mean-
ingful results. We demonstrated that the recognition and
consistent removal of features is essential to obtain good
perceptual quality for the simplified models. We presented
an initial algorithm to attack this problem and gave a vi-
sual comparison to previous methods.

We believe the simplification of man-made objects is
an essential problem, because these models are at the heart
of many visualization applications.

For future research, we envision several ways to ex-
tend the implementation of the basic approach. Similar to
other level-of-detail algorithms, we plan to handle textur-

ing and view-dependent levels-of-details. Additionally, we
think that integration with other traditional simplification
algorithms would be important to obtain a complete sys-
tem for simplification.

The major drawback of the current approach is that
general and robust feature detection is still a challenge. We
expect to study this question in the future.

Acknowledgement This work is supported by the Department of
Defense’s MURI program, administered by the Army Research Of-
fice. We would also like to acknowledge the support of NSF and
FWF grant number J2329-N04.

References
1. Botsch, M., Steinberg, S., Bischoff, S.,

Kobbelt, L.: OpenMesh – a generic and
efficient polygon mesh data structure.
OpenSG Symposium (2002)

2. Cohen, J., Olano, M., Manocha, D.:
Appearance-preserving simplification of
polygonal models. In: Proceedings ACM
SIGGRAPH’98, pp. 115–122 (1998)

3. Coors, V.: Feature-preserving simplification
in web-based 3D-GIS. First International
Symposium on Smart Graphics, New York
(2001)

4. de Berg, M., Van Kreveld, M., Overmars,
M., Schwarzkopf, O.: Computational
Geometry. Springer, Berlin Heidelberg New
York (2000)

5. De Floriani, L.: Feature extraction from
boundary models of three-dimensional
objects. IEEE Trans Pattern Anal Mach
Intell 11(8): 785–798 (1989)

6. El-Sana, J., Varshney, A.: Topology
simplification for polygonal virtual
environments. IEEE Trans Visual Comput
Graph 4(2):133–144 (1998)

7. Erikson, C., Manocha, D., Baxter III, W.V.:
HLODs for faster display of large static
and dynamic environments. In: Proceedings
ACM Symposium on Interactive 3D
Graphics, pp. 111–120 (2001)

8. Früh, C., Zakhor, A.: 3D model generation
for cities using aerial photographs and
ground level laser scans. In: Proceedings
IEEE Computer Vision and Pattern
Recognition, pp. 31–38 (2001)

9. Garland, M., Heckbert, P.: Surface
simplification using quadric error metrics.
In: Proceedings ACM SIGGRAPH ’97,
pp. 209–216 (1997)

10. Garland, M., Heckbert, P.: Simplifying
surfaces with color and texture using
quadric error metrics. In: Proceedings IEEE
Visualization’98, pp. 263–269 (1998)

11. Gavankar, P., Henderson, M.R.:
Graph-based extraction of protrusions and
depressions from boundary representations.
Comput Aided Des 22(7):442–450 (1990)

12. Hoppe, H.: Progressive meshes. In:
Proceedings ACM SIGGRAPH’96,
pp. 99–108 (1996)

13. Hoppe, H.: View-dependent refinement of
progressive meshes. In: Proceedings ACM
SIGGRAPH’97, pp. 189–198 (1997)

14. Jang, J., Ribarsky, W., Shaw, C., Wonka, P.:
Appearance-preserving view-dependent
visualization. In: Proceedings IEEE
Visualization, pp. 473–480 (2003)

15. Jepson, W., Liggett, R., Friedman, S.:
Virtual modeling of urban environments.
Presence 5(1):72–86 (1996)

16. Kho, Y., Garland, M.: User-guided
simplification. In: Proceedings ACM
Symposium on Interactive 3D graphics,
pp. 123–126 (2003)

17. Kim, Y.S.: Recognition of form features
using convex decomposition. Comput
Aided Des 24(9):461–476 (1992)

18. Lindstrom, P., Koller, D., Ribarsky, W.,
Hodges, L.F., Faust, N., Turner, G.A.:
Real-time, continuous level of detail
rendering of height fields. In: Proceedings
ACM SIGGRAPH’96, pp. 109–118 (1996)

19. Lindstrom, P., Turk, G.: Fast and memory
efficient polygonal simplification. In:
Proceedings IEEE Visualization’98,
pp. 279–286

20. Low, K.L., Tan, T.S.: Model simplification
using vertex clustering. In: Proceedings
ACM Symposium on Interactive 3D
Graphics, pp. 75–82 (1997)

21. Lu, Y., Gadh, R., Tautges, T.J.: Feature
decomposition for hexahedral meshing. In:
Proceedings ASME Ddesign Automation
Conference (1999)

22. Lu, Y., Gadh, R., Tautges, T.: Volume
decomposition and feature recognition for
hexahedral mesh generation. 8th
International Meshing Roundtable,
SAND99-2288, Sandia National
Laboratories, pp. 269–280 (1999)

23. Luebke, D.: A developer’s survey of
polygonal simplification algorithms. IEEE
Comput Graph Appl 21(3):24–35 (2001)

24. Marefat, M., Kashyap, R.L.: Geometric
reasoning for recognition of

three-dimensional object features. IEEE
Trans Pattern Anal Mach Intell
12(10):949–965 (1990)

25. Maya R© version 6.0, April 9 (2004)
26. Parish, Y., Mueller, P.: Procedural modeling

of cities. In: Proceedings ACM
SIGGRAPH 2001, pp. 301–308 (2001)

27. Pojar, E., Schmalstieg, D.: User-controlled
creation of multiresoltion meshes. In:
Proceedings ACM Symposium on
Interactive 3D Graphics, pp. 127–130
(2003)

28. Pratt, M., Wilson, P.R.: Requirements for
support of form features in a solid modeling
system. Technical Report R-85-ASPP-01,
CAM-I Inc, Arlington Texas, June (1985)

29. Ribelles, J., Heckbert, P., Garland, M.,
Stahovich, T., Srivastava, V.: Finding and
removing features from polyhedra. In:
Proceedings ASME Design Engineering
Technical Conference, September (2001)

30. Rossignac, J., Borrel, P.: Multi-resolution
3D approximations for rendering complex
scenes. In: Geometric Modeling in
Computer Graphics, pp. 455–465, Springer
(1993)

31. The Stanford 3D Scanning Repository.
http://graphics.stanford.edu/data/3Dscanrep/
(2004)

32. Williams, N., Luebke, D., Cohen, J.,
Kelley, M., Schubert, B.: Perceptually
guided simplification of lit, textured
meshes. In Proceedings ACM Symposium
on Interactive 3D Graphics, pp. 113–121
(2003)

33. Wonka, P., Wimmer, M., Sillion, F.,
Ribarsky, W.: Instant architecture. In:
Proceedings ACM SIGGRAPH 2003,
pp. 669–678 (2003)

34. Woo, T.: Feature extraction by volume
decomposition. In: Proceedings Conference
CAD/CAM Technology in Mechanical
Engineering, MIT (1982)

35. Wu, M.C., Liu, C.R.: Analysis on
machined feature recognition techniques
based on B-rep. Comput Aided Des
28(8):603–616 (1996)

J. Jang et al.

JUSTIN JANG is a Ph.D. student in the Graphics,
Visualization, and Usability Center at the Geor-
gia Institute of Technology. He received his B.S.
degree (2000) in Computer Engineering from
Auburn University. His research interests include
shape analysis, geometry processing, and visual-
ization.

PETER WONKA joined the computer science
faculty of Arizona State University (ASU) as
Assistant Professor in 2004 after two years as
a post-doctorate researcher at the Georgia Insti-
tute of Technology. He received his Ph.D. from
the Vienna University of Technology in 2001.
His research interests include various topics in
computer graphics, especially real-time render-
ing and procedural modeling. Peter Wonka is
a member of the PRISM lab at ASU.

WILLIAM RIBARSKY holds the Bank of Amer-
ica Endowed Chair in Information Technology
at UNC Charlotte and is the founding director

of the Charlotte Visualization Center. He re-
ceived a Ph.D. in physics from the University of
Cincinnati. His research interests include visual
analytics, 3D multimodal interaction, bioinfor-
matics visualization, virtual environments, vi-
sual reasoning, and interactive visualization of
large-scale information spaces. Dr. Ribarsky is
the former Chairman and a current Director of
the IEEE Visualization and Graphics Technical
Committee. He also chairs the Steering Commit-
tees for the IEEE Visualization Conference and
the IEEE Virtual Reality Conference, the leading
international conferences in their fields. Dr. Rib-
arsky co-founded the Eurographics/IEEE visual-
ization conference series (now called EG/IEEE
EuroVis) and led the effort to establish the Vir-
tual Reality Conference series. Dr. Ribarsky has
published 100 scholarly papers, book chapters,
and books. He has received competitive research
grants and contracts from NSF, ARL, ARO,
ONR, AFOSR, DARPA, NASA, NIMA, and
several companies.

CHRISTOPHER D. SHAW is an Associate Pro-
fessor in the School of Interactive Arts and
Technology at Simon Fraser University Surrey.
Previously, he was a Senior Research Scientist
in the College of Computing at the Georgia In-
stitute of Technology. His research and teaching
efforts over the years have focused on areas
that require a broad integrative knowledge of
human-computer interaction, human perception,
and computing. His research efforts in virtual en-
vironments resulted in the development of the
MR Toolkit, which is VR software that has been
licensed at over 600 research sites worldwide
since 1994. Shaw received a B.Math degree from
the University of Waterloo in 1986, an MSc. in
Computing Science from the University of Al-
berta in 1988, and a Ph.D. in Computing Science
from the University of Alberta in 1997. He is an
associate editor of IEEE Transactions on Visual-
ization and Computer Graphics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

