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Abstract

This thesis makes a contribution to the field of three-dimensional visualization of urban environments,
for applications like urban planning and driving simulation. In a simulation system a user interactively
navigates through virtual cities in real-time. To give the impression of fluid motion, high frame rates are
necessary, and new images have to be rendered several times each second. To cope with the large amounts
of data, acceleration algorithms have to be used to sustain high frame rates. The contributions of this thesis
are new algorithms for occlusion culling, that is to quickly identify parts of the scene that are occluded by
other objects. These parts are invisible and therefore do not need to be sent to the graphics hardware. This
thesis contains three new algorithms:

The first algorithm calculates occlusion culling online for each frame of a walkthrough. The algorithm
computes a tight superset of objects that are visible from the current viewpoint. Graphics hardware is
exploited to be able to combine a large number of occluders. In contrast to other approaches, an occlusion
map is calculated using an orthographic projection to obtain smaller algorithm calculation times.

The second algorithm precalculates visibility. The scene is discretized into view cells for which cell-
to-object visibility is precomputed, making online overhead negligible. This requires the calculation of
occlusion from a region in space. The occlusion boundaries from a region are complex, and analytical
computation methods are not very robust and do not scale to the large scenes we envision. We demon-
strate how to approximate those complex occlusion boundaries using simple point sampling and occluder
shrinking. This approximation is conservative and accurate in finding all significant occlusion and occluder
interactions.

The third algorithm calculates occlusion in parallel to the rendering pipeline. We show how to use point
visibility algorithms to quickly calculate a tight potentially visible set which is valid for several frames,
by shrinking the occluders by an adequate amount. These visibility calculations can be performed on a
visibility server, possibly a distinct computer communicating with the display host over a local network.
The resulting system essentially combines the advantages of online visibility processing and region-based
visibility calculations, in that it is based on a simple online visibility algorithm, while calculating a visibility
solution that remains valid for a sufficiently large region of space.



Kurzfassung

Diese Dissertation beschäftigt sich mit der Visualisierung von dreidimensionalen Stadtmodellen für An-
wendungen wie Stadtplanung und Fahrsimulation. Für eine Simulation ist es wichtig, daß ein Benutzer
interaktiv in der Stadt navigieren kann. Dabei versucht man, wie bei einem Film, den Eindruck einer
flüssigen Bewegung zu erzeugen. Um dieses Ziel zu erreichen, ist es notwendig, mehrere Bilder pro Sekun-
de auf einem graphischen Ausgabegerät, wie einem Monitor, darzustellen. Die großen Datenmengen, die
für die Visualisierung eines Stadtmodells verarbeitet werden müssen, machen Beschleunigungsverfahren
notwendig, um genügend Bilder pro Sekunde anzeigen zu können. Der Beitrag dieser Dissertation sind
neue Verfahren der Sichtbarkeitsberechnung, um schnell diejenigen Teile des Stadtmodells zu finden, die
von weiter vorne liegenden Teilen verdeckt werden. Die verdeckten Teile liefern keinen Beitrag zu dem
erstellten Bild und müssen deshalb nicht von der Graphikhardware weiterverarbeitet werden. Die erzielten
Geschwindigkeitsverbesserungen der Darstellung sind in der Größenordnung von zehn bis hundertfacher
Beschleunigung für die verwendeten Testszenen. Es werden drei neue Algorithmen vorgestellt:

Der erste Algorithmus berechnet die Sichtbarkeit für jedes neue Bild in einer Simulation. Der Algo-
rithmus berechnet eine konservative Abschätzung der Objekte, die vom aktuellen Blickpunkt sichtbar sind,
ohne dabei sichtbare Objekte als unsichtbar zu klassifizieren. Einige wenige unsichtbare Objekte können
allerdings als sichtbar klassifiziert werden. Für die Sichtbarkeitsberechnung wird mit Unterstützung von
Graphikhardware ein Bild gezeichnet, das die Sichtbarkeitsinformation codiert. Mit Hilfe dieses Bildes
kann man für Szenenteile schnell feststellen, ob sie unsichtbar sind.

Der zweite Algorithmus verwendet Vorberechnungen für die Sichtbarkeit. Die Szene wird in viele Re-
gionen unterteilt, für die jeweils eine Liste von sichtbaren Objekten bestimmt wird. Im Gegensatz zum
ersten Algorithmus wird aber die Sichtbarkeit von einer Region und nicht von einem Punkt ausgerechnet.
Bekannte analytische Verfahren für dieses Problem sind instabil und zu zeitaufwendig für größere Szenen.
Das vorgeschlagene Verfahren zeigt, wie man diese komplexen Berechnungen mit Hilfe von Graphikhard-
ware effizient approximieren kann.

Der dritte Algorithmus ist die Grundlage für ein System, bei dem die Sichtbarkeitsberechnungen pa-
ralell zur Darstellung durchgeführt werden können. Diese können somit auf einem anderen Rechner, einem
Server, ausgeführt werden, der das Ergebnis der Sichtbarkeitsberechnung dann über das Netzwerk kommu-
niziert. Dieses paralelle Verfahren erlaubt es, ohne Vorberechnungen schnelle Simulationen zu erstellen.
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Chapter 1

Introduction

1.1 Urban visualization

The global scope of this work is urban visualization—modeling and rendering of existing or planned urban
environments. In the planning process, it is useful to simulate the environment before changes in the real
city are made. In this context, three-dimensional computer simulation gained immense popularity, not
only because it produces appealing graphics, but also because it is a more adequate representation for a
three-dimensional environment and easier to understand than conventional 2D plans. A common method
is to create a three-dimensional model with a commercial modeler and to produce short video clips for
presentations.

The real challenge, however, is the visualization in real-time, so that an observer can interactively
navigate in the environment with high frame rates. A system like this is not only useful for planning
purposes. It can be used as a basis for applications like traffic, driving and architectural simulations, three-
dimensional geographic information systems, information visualization and location-based entertainment.

1.2 Urban visualization in real-time

For real-time rendering we need a database of the geometric model of the environment. A user can navigate
in this environment using an input device such as a mouse, a keyboard or a car simulator. The user input
modifies the location of the viewpoint in the virtual environment, so that new images have to be rendered
several times each second.

An important goal of real-time visualization systems is maintaining a sufficiently high frame rate to
give the impression of fluid motion. However, for larger environments a simple approach is not able to
handle the large amounts of data so that algorithms are important to do the following:

• Calculate simplified versions of the model. Since the screen resolution is only finite, distant objects
should be replaced by simpler versions that are faster to render, without losing visual quality.

• Calculate occlusion. From any viewpoint only a portion of the scene is visible. An occlusion culling
algorithm identifies parts of the scene that are definitely invisible. These parts do not need to be
processed by the graphics hardware.

• Prepare and organize the model for real-time rendering. The model has to be organized in data
structures to achieve the following two goals: spatial arrangement that allows good occlusion culling,
and fast processing on the graphics hardware.

9



Chapter 1 Introduction

• Handle memory management. Large models do not necessarily fit into the main memory, and it is
often impractical to load the whole scene at once. It might be better to load data from the hard disk
or from a server on demand.

The contribution of this thesis lies in the area of occlusion culling. For many views in an urban environ-
ment one observes that only a few buildings are visible and that big parts of the environment are occluded.
To understand why the calculation of occlusion is still a problem requires a quick look at modern hardware
architecture.

1.3 Visibility in real-time rendering

In the beginning of computer graphics, visibility was an essential problem. To obtain a correct image it
was necessary to guarantee that surfaces in the back do not incorrectly occlude surfaces that are closer
to the viewer. On current hardware this problem is resolved with the help of a z-buffer that stores depth
information for each pixel of the image. With the use of the z-buffer, visibility can be calculated in the last
stage of the real-time rendering pipeline that is described as a three-step process:

1. Traversal: The database containing the geometrical model of the environment has to be traversed.
The geometry that is selected to be rendered is sent to the graphics hardware (A common method is
to select only objects that intersect the viewing frustum).

2. Transformation: The geometry is transformed from the world coordinate system to the screen coor-
dinate system.

3. Rasterization: After transformation the geometry is rasterized and written into the frame buffer. For
each covered pixel in the frame buffer, a fragment is generated. Each fragment has a z-value. This
z-value is compared to the z-value in the z-buffer to test the fragment’s visibility. Apart from a few
discretization errors, this visibility test always creates the desired results.

The visibility test is done very late in the pipeline and is done once for each generated fragment.
Although the correctness of the visibility calculation is sufficient, it is very inefficient for large scenes. If
we consider an urban walkthrough, one building might occlude hundreds of others. All those occluded
buildings would have to undergo the three steps of the rendering pipeline unnecessarily which is too time
consuming. In this thesis algorithms will be described that can quickly identify occluded scene parts in
the traversal-stage of the pipeline. The occluded parts will no longer have to undergo the other two steps
of the pipeline, which results in large time savings. As will be shown in the results in chapter 5, even
with occlusion culling alone, speed-ups of a factor of one-hundred are realistic for a medium-sized city
model. Furthermore, it is important to calculate visibility before the problem of model simplification or
data prefetching can be handled efficiently. The next section briefly describes our main contributions to
solve this occlusion culling problem.

1.4 Main contributions

The results of this thesis have been partially published by the author [Wonk99, Wonk00, Wonk01]. The
main contributions are:

• Development of an online visibility algorithm for urban environments. Previous approaches rendered
occluders into an occlusion map using perspective projection. We propose the use of orthographic
projection for the creation of occlusion maps:

Peter Wonka and Dieter Schmalstieg. Occluder shadows for fast walkthroughs of urban environ-
ments. Computer Graphics Forum (Proc. Eurographics ’99), 18(3):51–60, September 1999.

10



Chapter 1 Introduction

• Development of a visibility preprocessing algorithm. For preprocessing, visibility has to be calcu-
lated for a region in space rather than a point in space. This calculation is inherently complex. We
propose a method to approximate complex region visibility using simple point sampling:

Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility preprocessing with occluder
fusion for urban walkthroughs. Rendering Techniques 2000 (Proceedings of the Eurographics Work-
shop 2000), Eurographics, pages 71–82. Springer-Verlag Wien New York, June 2000.

• Construction of a hybrid system that calculates visibility in parallel to the rendering pipeline. This
system combines several advantages of point and region visibility:

Peter Wonka, Michael Wimmer, and François Sillion. Instant visibility. Computer Graphics Forum
(Proc. Eurographics 2001), 20(3), September 2001.

Furthermore, the author participated in the following project closely related to this thesis [Wimm01]:

• Development of Point-based Impostors. This representation can be used to simplify distant scene
parts to avoid aliasing artifacts and to accelerate rendering:

Michael Wimmer, Peter Wonka, and François Sillion. Point-Based Impostors for Real-Time Visual-
ization. In Karol Myszkowski and Steven J. Gortler, editors, Rendering Techniques 2001 (Proceed-
ings of the Eurographics Workshop on Rendering 2001). Eurographics. Springer-Verlag Wien New
York, June 2001.

1.5 Structure of the thesis

The thesis is organized as follows: Chapter 2 describes important basics of our work that are necessary
to understand the discussion of the related work and the proposed algorithms. This includes a definition
of terms, a motivation from human factors, and an informal study of visibility in urban environments.
Chapter 3 reviews related work and discusses it in the light of its suitability for visibility calculation in
urban environments. Chapter 4 introduces an algorithm to calculate visibility from a point and shows how
this algorithm was used to build an online occlusion culling system. Chapter 5 describes an algorithm to
calculate visibility from a region of space and is therefore useful for preprocessing. Chapter 6 shows how
to build an online occlusion culling system that is a hybrid between point and region visibility. Finally,
Chapter 8 presents the conclusions of this thesis.

11



Chapter 2

Basics of Real-time Rendering and
Visibility

This section describes important basics for the discussion of the related work and the research conducted
for this thesis. The first section explains frequently used terms. The second section describes human fac-
tors that became a driving motivation for our work and are essential for all real-time rendering systems.
The third section presents an informal study of visibility in urban environments. This study is not geared
towards a deeper understanding of the technical aspects of visibility problems but gives an intuitive im-
pression of the nature of visibility in urban environments.

2.1 Description of terms

Real-time rendering: In this thesis, the word is used in the global sense, describing rendering at interac-
tive frame rates. We can identify two types of real-time rendering: the term hard real-time is used
for a system that gives a guarantee for a constant frame rate, while soft real-time describes a system
without such a guarantee. Often this distinction is not necessary and therefore we use the general
term real-time to refer to both types of real-time rendering. A good introduction to the topic of
real-time rendering can be found in [Möll99].

Scene-graph: A scene-graph is a graph that is used to describe a computer graphics model (Figure 2.1).
This graph consists of nodes and edges. Each interior node of the scene-graph is the root-node
of a sub-graph. The actual geometry of the scene is located in the leaf-nodes and consists mainly
of triangles. Triangles are typically defined through their vertices, normal vectors at these vertices
and texture coordinates. The inner-nodes are used to define transformations and to group several
sub-graphs.

Object: An object is an object in a city like a building, a car or a tree. In a computer graphics model, such
an object is represented by a scene-graph. The terms scene-graph and object are used on different
levels: an object can be broken down into several smaller objects, e.g. a building can be broken down
into a roof, windows, doors, walls . . . that are themselves represented by a scene-graph (sub-graphs
of the scene-graph describing the whole object). Similarly, all objects in the scene are organized in
one scene-graph, describing the whole city model.

Occluder: An occluder is either a single polygon (occluder polygon) or a volume described by a subset
of R3 (volumetric occluder). Note that an occluder is used to calculate occlusion of parts of the
scene-graph, while the occluder itself does not need to be a part of the scene-graph.
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Figure 2.1: This figure shows a simple scene-graph of a building consisting of a roof and four facades. The
scene-graph has different group-nodes, geometry-nodes and one transformation-node.

Bounding Volume: A bounding volume is a volume (subset of R3) that encloses the geometry described
by a scene-graph or a sub-graph of the scene-graph (Usually such a bounding volume is stored with
a node in the scene-graph). A bounding box is a bounding volume defined by a box.

Occludee: An occludee is a sub-graph of the scene-graph that is tested for occlusion.

View Cell: A view cell is a region in space where the viewpoint can be located. In urban environments, a
view cell is typically an extruded polygon.

PVS: The PVS is a set of objects that are potentially visible from a viewpoint or a view cell. PVS is the
abbreviation for “potentially visible set”.

2.5D: We call an occluder 2.5 dimensional if it can be described by a function z = f(x, y). Basically this
function defines a height field.

2.2 Human factors and technological constraints

In walkthrough applications for urban environments, a user navigates through a city as a pedestrian or
vehicle driver. To give the impression of fluid motion, several images per second need to be displayed. The
rendering speed is measured in frames per second (fps) or Hertz (Hz). The general strategy of displaying
images is to use double buffering: The new image is drawn in the back buffer (off-screen) and swapped
into the front buffer (visible on screen) when it is finished.

To set useful goals in real-time rendering, it is important to understand the human factors that determine
the perception of interactive graphics and their relation to technological constraints. We are especially
interested in answering the following question: What frame rate should be used in real-time rendering?

The maximum frame rate is determined by the hardware setup. For video games running on a TV
set, the refresh frequency is limited to 59.94 Hz (NTSC) or 50 Hz (PAL). Higher frame rates cannot be
displayed on the screen. Similarly, on PCs the frame rate is limited by the monitor refresh rate, which is
typically between 60 and 120 Hz on current hardware. The frequency at which modulation is no longer
perceptible varies with the monitor, depending on attributes such as field of view, resolution and brightness
(Padmos [Helm94] reports that large, bright displays need refresh rates above 85 Hz). For field interleaved
stereo images the frame rate is at least 120 Hz, as one image is needed for each eye. A real-time rendering

13



Chapter 2 Basics of Real-time Rendering and Visibility

application should guarantee refresh rates equal to the refresh rate of the output device to avoid ghosting
artifacts, where objects appear to be split into multiple copies along the direction of motion [Helm94].

A constant frame rate is very important and is required for most visual simulators. A varying frame
rate distracts the user, complicates the accurate perception of velocities, and causes temporal inaccura-
cies resulting in jerky motion, because several frames would not appear at the time for which they are
scheduled [Helm94].

These high guaranteed frame rates, however, are out of reach for many applications. Several authors
(e.g. [Sowi94, Mano00, Möll99, Helm94]) usually recommend frame rates between 10 and 30 fps as a
reasonable goal for real-time rendering. The human eye sees guaranteed 20 fps as fluid motion—this is
probably the second best reasonable goal for real-time rendering.

To sum up, real-time rendering should be done with a guaranteed 60 Hz or more. The next reasonable
goal is sustained 20 Hz. The last resort is to render each frame as fast as possible. This usually results in
greatly varying frame rates and is not beneficial for many applications.

2.3 Visibility analysis of urban environments

In this section, we present an analysis of visibility in urban environments to sketch the problem. This
analysis results in a few key observations that motivate the algorithms described in this thesis and help to
evaluate the related work. We are mainly interested in walkthrough applications, where the viewpoint is
located near the ground. In these scenarios, occlusion culling is very effective. There is also a significant
amount of occlusion in flyovers, but we will not analyze these configurations. The analysis is done using
real photographs rather than computer graphics models. We have to consider that current models are greatly
simplified compared to the complexity of the real world, though we want to end up with models that closely
resemble reality. We will state different observations and illustrate each observation with photographic
examples.

Buildings are the main source of occlusion in urban environments. In several parts of a city a few close
buildings occlude the rest of the model (Figure 2.2). The visible portion of the model is small compared to
the whole city.

Figure 2.2: Two images from the city of Vienna. Note that buildings are the main source of occlusion.

It is also important to note that visibility in urban environments is, in practice, 2.5 dimensional. Build-
ings are connected to the ground and it is generally impossible to see through them. Therefore, occlusion is
defined by the roof edges of buildings. If we consider an image from a certain viewpoint, we can observe
that all objects behind a building that cannot be seen over the roof are occluded (Figure 2.3). Of course
there are several cases where this assumption does not hold. Objects like bridges or buildings with large
pathways through them would require more complicated treatment.
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Figure 2.3: Occlusion in urban environments is essentially 2.5 dimensional. The occlusion of a building
can be described by its roof edges, shown in red.

In general, the attributes of visibility will strongly vary in different cities and different areas within a
city. The centers of European cities have developed over centuries and have complex layout plans, whereas
many American cities contain long, straight streets. The optimal cases for occlusion culling are dense
environments with high buildings that are connected to building blocks and stand on flat ground. Streets
should be short and change direction frequently to prevent long open views. This is a typical setup for
the center of many European cities. Due to the flat terrain and the high buildings, the visibility problem
is almost reduced to two dimensions. Since the buildings are connected to building blocks one cannot see
between them. Although these scenes occur quite frequently, it is important to be aware that we cannot
rely on the fact that only a few objects close to the viewpoint are visible. First of all, even in the center
of such occlusion-friendly cities, not all parts of the environment conform to these ideal circumstances.
Furthermore, it is important to consider all types of urban scenes for the design of an occlusion culling
algorithm. We will now discuss the main factors that determine the complexity of visibility.

First, it is important to note that cities contain many viewpoints where a viewer can see quite far. Many
cities, such as London, Vienna and Paris, were built near a river. Rivers usually run through a city near the
center so that even in the inner city an observer can see for a distance of several hundred meters (Figure 2.4).
Other possibilities for long views include long, straight streets, large places and train stations.

Figure 2.4: These photographs were taken near the center of Vienna. Note that the view in the right image
is several kilometers.

In the center of large cities the building structure is very dense, to efficiently use the existing space. In
areas further away from the center, in suburbs or in smaller cities, people have more space so that buildings
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become smaller and are not organized in building blocks to make room for private gardens or parks. One
implication is that the height structure becomes more important due to smaller buildings (Figure 2.5), so
that it occurs more frequently that buildings are visible over the roof edges of closer buildings. If buildings
are smaller and not connected, more objects are visible in general (Figure 2.6).

Figure 2.5: The image on the left shows a view in the inner city of Vienna with high buildings. On the right
side, the view has a much more complicated height structure due to smaller buildings.

Figure 2.6: Two images from a small city. Note that buildings are not always connected and are smaller
than buildings in the center of a larg city.

An important factor for visibility is the terrain. If a city is built on flat terrain, the height structure is
less important, since only occasionally can one building be seen behind another. However, in the presence
of greater height differences, many objects can become visible (Figure 2.7). In the near field, buildings still
occlude many objects. In the far field, however, we made the observation that in these cases the visibility
is mainly determined by the terrain itself, and buildings no longer contribute much to the occlusion. A
huge number of objects may be visible in these types of scenes. These views are the transition from urban
walkthroughs to terrain rendering or urban flyovers.

The assumption of the 2.5D nature of visibility in urban environments breaks down when visibility is
determined by vegetation (Figure 2.8). These kinds of scenes cannot be handled by the algorithms proposed
in this thesis. One reason why we did not consider vegetation in our work is that the modeling and real-time
rendering of these scenes is an open problem. Trees are highly complex entities, and when we consider
a continuous image of many trees, this image will contain very high frequencies. One pixel can contain
several leaves and branches, and the contribution to a single pixel can come from multiple trees placed
several hundred meters apart. Rendering of such a scene calculates a sampled version of the continuous
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Figure 2.7: These images show the effect of greater height differences in the terrain. Note the large number
of visible objects that can be seen from one viewpoint.

image in the frame buffer. Prefiltering is necessary, because otherwise we would see strong aliasing artifacts
due to the high frequencies. Usually trees are modeled with several alpha-textured quadrilaterals. Such a
texture corresponds to a prefiltered version of one tree from one viewpoint. Although reasonable results
can be achieved when only a few dense trees are placed in the model, the strategy using billboards is only a
very crude approximation whose limitations become apparent if scenes like those in figure 2.8 are modeled.

Figure 2.8: Vegetation is a real challenge for computer graphics algorithms. The complexity of these
scenes is so high that it can be hardly captured by the human eye. Note that even these images fall short of
reproducing this complexity.

Another interesting observation is that visibility in computer graphics models differs quite strongly
from visibility in the real-world. Usually the views in computer graphics models are more open, due to
missing objects like trees, bushes, cars or details in the terrain (Figure 2.9).

Main Observations

Based on the previous observations we want to point out the following conclusions:

• Visibility in urban environments is basically 2.5 dimensional.

• An observer can only see a few close buildings in many parts of an inner-city walkthrough. However,
there are many different types of views with a wide range of complexity. One can never count on the
fact that only a few objects are visible.
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Figure 2.9: These images demonstrate the difference between the real-world and a computer graphics
model. In the left image the observer can see about 200 meters. The corresponding view in the computer
graphics model is much farther because of the missing trees. (The viewpoint, view direction and the
location of the trees is shown in red).

• If a city contains great height differences in the terrain, many objects will be visible from most
viewpoints.

• In the same view an observer can see a close object next to a distant one.

• Visibility in real cities differs from visibility in current computer-graphics models.
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Related Work

The structure of this chapter is as follows: First, we will review different approaches to urban modeling
to understand how a model looks and what data is typically available. Then we will address different
acceleration methods that can be used in addition to or instead of occlusion culling. In the last section we
will discuss the related work dealing with visibility that is relevant for this thesis.

3.1 Urban modeling

To create a smaller model consisting of a few buildings, commercial software like AutoCAD [Wils99],
ArchiCAD [Grap01] or Multigen [Inc.01] can be used.

A common approach to urban modeling is to replace geometric detail with texture maps obtained from
videos or photographs. Only basic geometry including building footprints, building heights, streets and
property borders is used for the geometric model. If this information is not already available from other
projects, it can be obtained by digitizing aerial photographs [Jeps96, Jeps95]. Building heights are either
measured, calculated by the number of floors in a building, or estimated from photographs [Hild95].

As a second step, photographs or videos are taken as a basis for texture mapping and geometry recon-
struction. For a simple model, these images are mapped on extruded building footprints. For higher model
quality or complex buildings, the images can also be used to reconstruct additional geometric detail (see
for example [Debe96, Debe98]).

Although such models look nice and realistic, the acquisition and post-processing of images is a
time-consuming task. The images have to be color corrected, perspective corrected or warped, and un-
desirable elements such as telephone poles and cars have to be removed (often done with Adobe Photo-
shop [Bout00]). Reported times for post-processing range from several minutes to two hours for more
covered images [Jeps96].

This approach is used with minor variations in many cities including Los Angeles [Jeps96], Tübin-
gen [Veen97], Frankfurt [Hild95] and Philadelphia [Maho97].

Procedural and parametric techniques are a good method for database amplification [Smit84] and pro-
vide scalable means for large-scale modeling. This is a common technique for the design of natural phe-
nomena like vegetation [Prus91, Gerv96, Webe95, Měch96, Deus98]. For urban environments, the solu-
tions proposed for modeling are rather simple compared to the successful work in plant modeling. The
main idea is to automatically extrude building footprints and use random textures for the facades. Promi-
nent buildings can be separately modeled with higher accuracy to allow recognition and orientation in the
city. This approach is used for the city of Rennes using the modeler VUEMS [Doni97b, Doni97a, Thom00]
and software tools from the company IWI [IVT01]. Another procedurally generated model is part of the
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computer game Midtown Madness [Micr01] that includes the cities of Chicago and San Francisco. The im-
portant landmarks, like the Loop, the Field Museum and the Navy Pier are modeled in sufficient exactness
so that the recognition effect is high.

In the future automatic acquisition of urban data using one or more cameras, videos or aerial pho-
tographs, will become more important. Examples include the recording of building facades using a CCD
camera [Mare97] and the City Scanning Project at MIT [Tell01] which aims at the fully automated recon-
struction of CAD data for a city. However, these reconstruction methods are not yet advanced enough to
create large scale models.

3.2 Acceleration of real-time rendering

3.2.1 The real-time rendering pipeline

To render a model, it is first loaded into main memory. During runtime the scene-graph is traversed top
down and the geometry is sent to the graphics hardware. This process is organized in a pipeline called
the Rendering Pipeline. The pipeline is organized in three stages, the Traversal, the Transform and the
Rasterization stage and was already briefly described in section 1.3. To optimize rendering, it is important
to understand this pipeline to identify useful optimization strategies. We want to point out two observations:

• First, the geometry and pixel processing in the Transform and Rasterization stage is usually done by
the graphics hardware. Results of the calculations cannot be accessed easily. Reading values from
the frame buffer, for example, involves very high overhead on current hardware. Optimizations in
these pipeline stages are usually reduced to efficient programming of the rendering hardware.

• Second, there is usually one stage in the pipeline that constitutes a bottleneck. Optimization should
concentrate on this stage. However, this bottleneck can change within a frame and can strongly
depend on the hardware and the display drivers. Therefore, it is often useful to make all stages as
fast as possible.

In the following we will discuss algorithms for fast real-time rendering. We will review standard optimiza-
tions that are important when programming the graphics hardware, geometric and image-based simplifica-
tions, and system issues. Finally, we will address related work in visibility.

3.2.2 Programming real-time rendering hardware

The rendering hardware is accessible through an application programming interface (API). Lower level
programming is possible but not recommended on current hardware. The two most popular APIs are
OpenGL [Woo99] and Direct3D [Kova00]. The straightforward rendering algorithm traverses the scene-
graph top down. When a geometry node is encountered the geometry is passed via an API call to the
graphics hardware. For an efficient scene-graph layout we have to consider the following three properties
of rendering hardware:

• State changes are relatively expensive. Switching different vertex shaders, textures or materials
is a time consuming operation. Therefore, rendering packages like Performer [Rohl94, Ecke00],
OpenGL Optimizer [Ecke98] and Open Inventor [Wern94] have auxiliary procedures that rearrange
the geometry to minimize state changes during rendering. At the same time the scene-graph can be
flattened to reduce unnecessary nodes in the scene-graph hierarchy.

• The result of a vertex transformation can be reused. If a surface is represented by a triangle mesh,
two neighboring triangles usually share two vertices. This can be exploited using triangle strips
which is a popular data format used to pass data to the graphics hardware. Vertices of neighboring
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triangles are sent only once to the graphics hardware and are transformed only once. Triangle strips
are created in a preprocess [Evan96, Xian99]. Newer graphics hardware includes a larger vertex
cache for previously transformed vertices. A preprocessing algorithm that exploits the vertex cache
was proposed by Hoppe [Hopp99].

• The transfer of data to the hardware is a critical operation in some architectures. On modern con-
sumer hardware it is necessary to avoid the extensive use of API calls. Therefore, it is necessary to
send many triangles to the graphics hardware with a single API call. However, it is not possible to
send an arbitrary group of triangles with one API call, because the triangles have to share the same
texture, material . . . .

Backface culling is an optimization typically implemented in the graphics hardware. Back-facing poly-
gons can be quickly rejected based on the vertex order. This test mainly helps in the presence of large
polygons where the pixel fill rate is the bottleneck.

Other optimizations include the use of precompiled rendering commands (e.g. OpenGL display lists),
optimized use of the cache hierarchy, multi processing, and optimized texture layout [Möll99, Rohl94].

In general the programming of graphics hardware is surprisingly frustrating and often gives unexpected
rendering times. The optimal way to program the graphics hardware changes quite frequently and depends
on many different factors that cannot be easily identified. Therefore, it is not possible to decide in advance
which API calls or data format to pass data to the graphics hardware will be the fastest. The only promising
strategy is to implement many different API calls and optimization strategies and time the results to see
what works best.

3.2.3 Levels of detail

For certain objects, the full geometric information in a given frame cannot be perceived, e.g. because
the object is far away from the viewpoint. To better use the effort put into rendering such features, an
object should be represented at multiple levels of detail (LODs). The main problems that need to be
addressed are the calculation of different levels of details, the selection of different levels of details during
runtime [Funk93, Ecke00], and the switching between different levels of details.

Different LODs of one object can be created manually or automatically. Several algorithms exist for the
automatic creation of LODs. They make use of vertex clustering [Ross93], edge collapses [Hopp96], octree
based simplification [Schm97a], and quadric error metrics [Garl97], to name just a few. Newer algorithms
also take into account texture and color information, which is crucial for most computer graphics models
(e.g. [Garl98, Cohe98a]).

Continuous (or smooth, or progressive) LOD representations (e.g. [Hopp96, Schm97b]) permit the
extraction of a model with an arbitrary triangle count at runtime, whereas discrete representations provide
a small number of pre-created LODs with fixed triangle counts. Some continuous algorithms allow the
level of detail to vary over the model depending on viewing parameters [Hopp97, Xia96, Lueb97].

Yet, for urban simulation projects [Jeps95], hard switching between a few pre-created LODs is very
popular because it produces almost no overhead during runtime. In general it is also difficult to simplify
trees and buildings because of their special geometric structure (Buildings have a very regular structure and
the leaves of trees consist of many disconnected triangles).

3.2.4 Image-based rendering

The idea of image-based rendering is to synthesize new views based on given images. Ideally, we would
like to replace distant geometry with one image, an alpha texture map, because it is very fast to ren-
der [Maci95]. Schaufler et al. [Scha96] and Shade et al. [Shad96] used this idea to build a hierarchical
image cache for an online system with relaxed constraints for image quality. However, precalculating
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many alpha texture maps for several viewpoints in the view cell and blending between them depending on
the viewing position requires too much memory if high image quality is desired. A more efficient solution
is a 4D parameterization of the plenoptic function, the light field [Levo96], which can be seen as a collec-
tion of images taken from a regular grid on a single plane. At runtime it is possible to synthesize images
for new viewpoints not only on this plane, but also for all viewpoints within a certain view cell behind
the plane. Gortler et al. [Gort96] independently developed a similar parameterization. They additionally
use depth information for better reconstruction. Depth information can also be added as a triangle mesh to
create surface light fields [Wood00, Mill98]. Chai et al. [Chai00] studied the relationship between depth
and spectral support of the light field in more detail and added depth information to the light field in layers.
Although a light field can be rendered interactively, memory consumptions and calculation times make it
hard to use for real-time rendering applications.

Starting from the texture map idea, depth information can be added to make an image usable for a
larger number of viewpoints, for example by using layers [Scha98, Meye98]. These layers can be ren-
dered quickly on existing hardware but they contain a strong directional bias which can lead to image
artifacts, especially in complex scenes. Several authors added depth information to images using triangles
[Sill97, Deco99, Dars97, Mark97]. While a (layered) depth mesh can be calculated and simplified for one
viewpoint, the representation is undersampled for other viewpoints, leading to disocclusion artifacts or blur-
ring effects. The calculation of an equally sampled high quality triangle mesh remains an open problem.
Finally, depth can be added per point sample. In particular, layered depth images (LDIs) [Shad98, Max96]
provide greater flexibility by allowing several depth values per image sample. However, warping the in-
formation seen from a view cell into the image of a single viewpoint again leads to a sampling bias. To
overcome this problem, several LDIs have to be used [Lisc98, Chan99].

As an alternative, point-based rendering algorithms were introduced by Levoy et al. [Levo85], Gross-
man et al. [Gros98] and Pfister et al. [Pfis00]. These algorithms are currently not implemented in hardware
and hole filling in particular is a challenging problem. For faster rendering, warping can be replaced by
hardware transformation together with a splatting operation [Rusi00]. In the context of complex geome-
try, points can no longer be seen as point samples of a surface [Pfis00, Rusi00] and a more sophisticated
treatment of filtering is necessary to construct a high quality representation.

Although image-based rendering is a promising approach to replace distant geometry in urban walk-
throughs, all of the current solutions have their limitations. The creation of high quality representations is
still an open research problem.

3.2.5 Database management and system integration

The integration of several rendering techniques for an interactive walkthrough system was done by the
research group at Berkeley [Funk96] for architectural scenes. The system uses a cell decomposition for the
calculation of potentially visible sets, precalculated levels of detail and asynchronous data prefetching for
memory management.

The problem of management and visualization of large GIS databases has been investigated by Kofler
et al. [Kofl98b, Kofl98a]. They propose the use of R-LOD-trees for fast retrieval and visualization of 3D
GIS data. Furthermore, they observed that conventional database systems provide inadequate performance
for the demands of 3D GIS applications and analyzed the applicability of object-oriented database systems.

Researchers at Georgia Tech [Lind97] are working on a GIS system for visual simulation. The main
problems to be tackled are LOD management for height fields and texturing of large terrains.

At the University of North Carolina [Alia99a], several acceleration techniques are being combined to
enable an interactive walkthrough in a massive CAD model - a powerplant with about 15 million polygons.
Besides LODs and database management, the system uses occlusion culling and textured depth meshes,
which are created in a preprocessing step. The placement of LDIs to obtain a guaranteed frame rate was
investigated by Aliaga et al. [Alia99b]. However, these methods are only plausible for high performance
workstations and take huge amounts of memory and preprocessing time. The involved assumptions do not
hold for consumer hardware.
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3.3 Visibility

There is a large amount of visibility literature. A very recent survey of visibility was written by Du-
rand [Dura99], which also incorporated visibility in related fields, like robotics and computer vision. In
this section we will give an overview of the work that is especially important for real-time rendering.

3.3.1 General idea

Calculating visibility for three-dimensional scenes is intrinsically complicated. Concepts like the as-
pect graph [Egge92], the visibility complex [Pocc93, Dura96] or its simpler version, the visibility skele-
ton [Dura97]), are important to the study of three-dimensional visibility and can be applied to scenes with
a few polygons. Unfortunately these concepts cannot be easily used for applications we envision. The scal-
ability issues and numerical robustness problems involved make room for a large amount of specialized
algorithms. Additionally, for real-time rendering systems the time constraints are an important factor, as
such a system cannot allot much time for visibility calculations. To cope with the complexity of visibility,
most algorithms use rather strong assumptions and simplifications that meet the demands of only a few
applications. Therefore, a careful choice of assumptions and simplifications is a crucial part in the design
of a visibility algorithm.

The idea of a modern visibility culling algorithm is to calculate a fast estimation of those parts of the
scene that are definitely invisible. Final hidden surface removal is done with the support of hardware,
usually a z-buffer. The visibility estimation should be conservative, i.e., the algorithm never classifies a
visible object as invisible. However, an invisible object can still be classified as visible because the z-buffer
would detect it as invisible in the last stage of the Rendering Pipeline. For large models it is also common
to calculate visibility on a per-object level rather than on a polygon level, because

• this saves a considerable amount of time when performing the occlusion tests, which is important for
online calculations.

• the memory consumptions would be a problem for offline calculations.

• triangles are usually sent to the graphics hardware in triangle strips (see section 3.2.2). A per-polygon
visibility classification would involve a costly rearrangement of data-structures at runtime.

3.3.2 View-frustum and backface culling

View-frustum culling [Clar76] is a simple and general culling method, which is applicable to almost any
model. Each node in the scene-graph has a bounding volume, such as an axis aligned bounding box or
a bounding sphere. When the scene-graph is traversed, the bounding volume of these nodes is compared
against the viewing frustum. If the bounding volume is completely outside the viewing frustum, the node
and its children are invisible. This method is essential and is implemented in almost all real-time rendering
systems.

Another method is backface culling. Usually surfaces are oriented and have only one visible side. Back-
facing surfaces can therefore be discarded. This test is usually done in hardware. The first version calculates
the normal vector of the projected polygon in screen space based on the orientation of the polygon. The
second version calculates the angle between the polygon normal and a vector from the viewpoint to one of
the vertices. If the angle is larger than π/2, the polygon can be discarded. Using the first kind of backface
culling makes it necessary to use the same vertex order for all polygons of an object, or better for the whole
scene. This demands careful modeling.

Backface culling for a single polygon can be extended to calculate a group of back-facing polygons.
Polygons with similar normals are grouped to clusters. At runtime a whole group can be determined
to be back-facing and discarded [Kuma96b, Joha98]. A variation of this algorithm for spline surfaces
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was also investigated [Kuma96a]. These methods work well for smooth surfaces, but in the context of
urban environments we have to consider that many polygons are orthogonal which results in large normal
variations. It is also important to note that back-facing polygons are eliminated because they must be
occluded by other polygons. Therefore, the effect of clustered backface culling will be reduced when it is
used in combination with occlusion culling.

3.3.3 Point visibility

Point based visibility is the visibility calculated from a point in space. The calculations are used to iden-
tify visible objects for every new frame in a walkthrough. We can identify geometric, image-based and
hardware-based point visibility algorithms.

Geometric point visibility

Several algorithms were proposed for occlusion culling in object space using a few large convex occluders.
Similar algorithms were proposed by Coorg and Teller [Coor97, Coor99], Bittner et al. [Bitt98] and Hudson
et al. [Huds97]. The main idea in these algorithms is to select a small set of occluders likely to occlude a
large part of the model. The occluders define a shadow frustum against which objects in the scene can be
tested. At startup the scene-graph is organized in a hierarchical data structure like a k-d tree or bounding-
box tree. For each frame of the walkthrough several occluders are selected and used to build a shadow data
structure. Then the scene-graph is traversed hierarchically and the bounding volumes of the scene-graph
are tested for occlusion. For the occluder selection a heuristic is used to calculate the occlusion potential
of an occluder polygon, based on attributes like the distance to the viewpoint, the area of the occluder and
the angle between polygon normal and the viewing direction. Bittner et al. [Bitt98] use a variation of the
shadow volume BSP tree to merge occluder shadows. This algorithm calculates better fusion of occluders
than the other algorithms.

These algorithms work in full 3D and demonstrate their results on urban walkthroughs. However, these
algorithms have certain properties that are not desirable for urban walkthroughs:

• Only a small number of occluders is considered.

• The occluders are selected according to a heuristic. For scenes of medium depth complexity a heuris-
tic can achieve good results. For larger scenes, much better occlusion calculation is necessary be-
cause through every small gap between two occluders hundreds of buildings can and probably will
be classified as visible. Good occluder selection should be based on visibility.

• The calculation of full three-dimensional occlusion is an overhead for urban scenes. If only a few
occluders are considered all occluders will be buildings. For buildings 2.5D calculations should be
enough.

An algorithm that improves these shortcomings was proposed only recently by Downs et al. [Down01].
Like the algorithm proposed in this thesis, they exploit the fact that urban environments can be seen as
height fields and calculate occlusion in 2.5D. Occlusion information is stored as an occlusion horizon. This
horizon is a conservative approximation of a cross section through the shadow defined through a plane
P. This plane P is swept front-to-back. During the sweep, scene-graph nodes can be tested hierarchically
against the occlusion horizon. New occluders are either found to be invisible or are inserted into the
occlusion horizon. The horizon is organized in a hierarchical tree and contains piecewise constant functions
(Figure 3.1). The big advantage of this algorithm is that, in contrast to many other approaches, the occluder
selection is based on visibility. Therefore, the algorithm does not degenerate as easily as other methods
(e.g. [Coor97, Bitt98, Huds97, Zhan97].
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Figure 3.1: These figures demonstrate the idea of the occlusion horizon. (Left) The occlusion horizon is
shown in red. (Right) The figure shows the occlusion horizon stored in a binary tree. Each interior node
stores the minimum and maximum height of its children.

Image-based point visibility

General algorithms for occlusion culling were proposed that calculate occlusion in image space. The basic
idea is to create or maintain an occlusion map with the same or lower resolution as the generated image.
The bounding volumes of the scene-graph nodes can be tested against the occlusion map to determine if
they are occluded.

Greene proposed the hierarchical z-buffer [Gree93, Gree96] as an extension to the regular z-buffer. The
scene is organized in an octree and the z-buffer is organized in a z-pyramid (similar to a texture pyramid
for mip-mapping). The lowest level of the pyramid corresponds to a regular z-buffer. The higher levels are
always half the resolution of the level below.

The spatial arrangement of the scene cannot be easily done dynamically and should be done in advance.
During runtime a bounding box of a scene-graph node can be tested for occlusion by rendering the bounding
box. The classification is done based on the z-values using the z-pyramid for accelerated comparison. If all
generated fragments that are created by the bounding box are behind the fragments already in the z-buffer,
the bounding box is occluded.

Greene proposes to organize the scene in an octree, but the system would also work for other spatial
data-structures. If a bounding box is invisible, it can be skipped. If it is visible, then either the bounding
boxes of the children can be tested or the geometry in the bounding box will be rendered. The scene-graph
should be traversed in front-to-back order because scene-graph nodes are only occluded by objects closer
to the viewpoint. When the geometry is rendered the z-buffer is updated, which usually involves an update
of all levels of the pyramid.

This algorithm builds on two major concepts:

1. A z-buffer pyramid to accelerate z-tests of large screen space areas. This is especially useful to test
bounding box nodes because they normally cover large screen space areas.

2. A way to communicate the results of the z-test back to the application.

These concepts are only partially implemented in hardware (see next section), so that a full imple-
mentation only runs in software. This is usually too slow for real-time rendering. Several variations were
proposed to obtain a working solution on current hardware. In his PhD thesis Zhang studies several ver-
sions and aspects of the problem of occlusion culling for general scenes using a variation of the hierarchi-
cal z-buffer [Zhan97, Zhan98]. This occlusion culling algorithm was implemented and tested on existing
graphics hardware.
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In general the major obstacle for hardware-accelerated occlusion culling is the fact that the application
cannot access the frame buffer directly but needs to copy the data to main memory first. A progressive
occlusion culling algorithm that updates the occlusion hierarchy each time an object is rendered is not
feasible on current hardware. Zhang et al. start with a multi-pass occlusion culling algorithm that updates
the occlusion representation fewer times. The algorithm consists of several iterations of the following three
steps:

• render selected occluders into an occlusion map (typically an off-screen rendering area).

• update the occlusion representation. Usually this includes reading back the frame buffer into the
main memory if hardware support is involved.

• traverse scene-graph nodes and add visible occluders to the selected occluder set.

Reading back the frame buffer is very expensive, even on high end machines. To obtain reasonable
calculation times Zhang mainly works with a one pass solution. Potentially useful occluders are selected
based on a heuristic and the occlusion representation is only built once.

A big difference to the hierarchical z-buffer is that such an algorithm can decouple the occlusion map
from the actual rendered image. If the occlusion map has a lower resolution this results in occlusion culling
which is faster but not strictly conservative. Furthermore it is easier to use occluders that are not polygons
of the original scene. The disadvantage is that rendering occluders is an overhead. Therefore Zhang et al.
select only large polygons for occlusion culling based on a heuristic.

In contrast to the hierarchical z-buffer they use one occlusion map using only 1-bit occlusion infor-
mation and a separate buffer to estimate the depth values. For each frame they select occluders near the
viewpoint and render them into an occlusion map. Then they read back the occlusion map into main mem-
ory and calculate a hierarchical opacity map. They propose to use mip-mapping hardware to create the
lower levels of the occlusion maps and the main processor to calculate the higher levels, where the maps
are smaller. The opacity information at higher levels allows for approximate occlusion culling, using a
user selected threshold. If an object is found to be occluded by the opacity test, it has to be tested against
a depth-estimation buffer to guarantee that the object lies behind the occluders. The depth information
buffer is another occlusion map that stores for each pixel the farthest value of an occluder in this pixel. The
resolution of this map should be small compared to the screen resolution. Zhang used a 64x64 map for his
results.

In summary the hierarchical occlusion maps are a good study of image-based occlusion culling on
current hardware. The occlusion map can fuse an arbitrary number of occluders, without any geometrical
restrictions. However, there are a few concerns regarding the design choices of the algorithm:

• The one pass solution might make the algorithm much more practical but it is not very systematic.
This results in a degeneration of the algorithm for complex views.

• Even a one pass solution that reads the frame-buffer only once is rather slow.

Ho and Wang observe that the occlusion map could be stored as a summed-area table[Ho] and Bormann
[Borm00] proposes layered hierarchical occlusion maps. However, these two methods do not address the
main shortcomings of the hierarchical occlusion map algorithm.

A more systematic algorithm was proposed by Hey et al. [Hey01]. They propose to use a lower resolu-
tion occlusion map in addition to the z-buffer. In contrast to the hierarchical occlusion maps, the occlusion
grid is updated more frequently. The main idea is the introduction of lazy updates: the occlusion map is
not updated every time the z-buffer changes but only when the information is needed to decide the outcome
of an occlusion query. Although the approach is more systematic, the algorithm computation time is even
higher.

The best available image-based occlusion culling system is probably the Umbra system by Surrender
3D [Aila01]. The system creates occlusion maps in software and does not rely on read operations on
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the frame-buffer. Although the system is faster than other algorithms, the overhead introduced through
occlusion culling is still high.

In general we can observe the following problem: point-based occlusion culling algorithms are too
slow. They introduce an overhead of several milliseconds so that the occlusion culling algorithm alone
often takes longer than the time that can be allotted to each frame in a 60 Hz walkthrough.

In principle, image-based occlusion culling fits well in the concept of the rendering-pipeline. However,
although frame buffer access is getting faster, the concept of reading back the frame buffer is not supported
in modern graphics architectures and a read-operation from the frame-buffer will involve a high perfor-
mance penalty. Therefore, several authors propose hardware extensions to solve the problem of occlusion
culling (e.g. [Bart98, Bart99] or [Gree99b, Gree99a]).

Hardware-based point visibility

The main idea of hardware-based visibility queries is to render bounding box polygons of a scene-graph
node without changing the frame buffer. The hardware extension can set a flag that indicated whether a
fragment passed the z-test or even report the number of visible fragments. If a fragment passes the z-test
the scene-graph node is potentially visible. Otherwise the bounding box is occluded and therefore the
scene-graph node is occluded. As with the hierarchical z-buffer the scene-graph should be traversed in
approximate front-to-back order.

HP has implemented occlusion queries in the visualize-fx graphics hardware [Scot98]. At the time of
writing of this thesis the visualize-fx graphics system is not very widespread and other vendors have far
greater importance on the graphics market.

SGI implemented a very similar occlusion query in a previous workstation line that is no longer sup-
ported in current workstations.

Newer graphics cards on the consumer market (ATI’s Radeon [More00] and Nvidia’s GeForce3) have a
version of the z-pyramid, to accelerate rasterization. As per-pixel calculations are becoming more and more
complicated, unnecessary calculations can be avoided by doing a z-test early in the pipeline. Improvements
are memory savings by z-buffer compression, fast z-buffer clears and (hierarchical) fragment tests early in
the pipeline. The details of ATI’s and Nvidia’s implementation are not publicly available.

The available information makes it hard to judge the near future of these hardware extensions. In
particular the occlusion culling queries for bounding-boxes are essential for occlusion culling of general
scenes. In the long run we would estimate that occlusion culling queries will be supported by most graphics
cards.

3.3.4 Region visibility

In general point visibility algorithms have to be executed for every frame during runtime, which poses two
problems:

• The visibility calculations are time consuming and use time that should rather be reserved for other
tasks.

• Current online visibility calculations do not contribute to the problem of constant frame time. On the
contrary: scenes with many visible objects often have higher algorithm calculation times.

Therefore, it is better for many applications to calculate visibility in advance for a region in space.
Many algorithms work according to this framework: the viewspace is split into view cells (regions) and
for each view cell visibility is calculated. The output of the visibility calculation is a potentially visible set
(PVS) of objects per view cell. This PVS is stored on the hard disk. During runtime only the PVS of the
current view cell (the view cell that contains the viewpoint) is rendered.
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Cells and portals

For building interiors, most visibility algorithms partition the model into cells connected by portals. Cells
roughly correspond to rooms and portals to doors connecting the rooms. Another cell is only seen through
a sequence of portals. A viewer located in a cell A sees another cell X, if there exists a sightline that stabs
the sequence of portals between cell A and cell X. The decomposition into cells can be made by hand or
can be done automatically [Mene98]. Teller et al. [Tell91, Tell92b, Tell93] build an adjacency graph, where
the nodes correspond to cells and the arcs to portals. To determine which cells are visible from a cell A,
the graph is traversed in depth-first order. The path to a cell X corresponds to a portal sequence that can be
tested for visibility:

• For simple 2D scenes, visibility can be calculated using linear programming.

• For rectangular axis-aligned portals in 3D, the problem can be solved by projecting it in 2D along
the three axis directions.

• For general 3D a conservative solution can be found using separating and supporting planes.

If the cell X is visible the cell can be added to the list of visible cells for the cell A, and the traversal
continues with the neighbors of the cell X. If the cell X is invisible, the traversal can terminate. Cell-to-cell
visibility can be refined to cell-to-object visibility for better results and during runtime also to eye to object
visibility.

Airey [Aire90] proposes a visibility test through ray casting. A 2D algorithm is proposed by Yagel and
Ray [Yage96], that uses a rasterization of the whole scene into a regular grid and calculates occlusion due
to opaque cells.

Luebke’s algorithm [Lueb95] completely eliminates the precalculation of the PVS and precomputes
only the cell and portal decomposition. During runtime the portals are projected to the screen. This results
in an axis aligned screen space rectangle. This rectangle is intersected with the projection of the portals
prior in the portal sequence. If the intersection is empty the recursion can stop. If the intersection is not
empty the cell is visible and the rectangle can be used to quickly reject invisible objects.

Urban environments were stated as a possible application for cell and portal algorithms, but no im-
plementation was reported. It might be hard to find a good partition into cells and portals of the model.
Furthermore, the height structure is more complicated. For example distant objects (e.g. a tower) can be
seen through a potentially very long sequence of portals.

Region visibility using large convex occluders

If a cell and portal decomposition is not available, occlusion can still be calculated for arbitrary view cells.
However, the visibility in 3D from a view cell is rather complicated. To avoid involved calculations, the
problem can be greatly simplified by considering only large convex occluders and ignoring the effects of
occluder fusion.

Cohen-Or et al. [Cohe98b, Nadl99] use ray casting to test if an object is occluded by a single convex
occluder. For each object they test occluders to check if the object is hidden. They cast rays from the
vertices of the view cell to the vertices of the bounding box of the tested object. Because occludees have to
be testing against multiple occluders the test is quite expensive. Cohen-Or et al. discuss several methods
to reduce some of the high costs.

The visibility octree [Saon99] is a similar method that computes occlusion due to single large convex
occluders for each node of an octree.

Region visibility with large convex occluders can detect some occlusion but the question is whether
it is sufficient. Durand [Dura00] showed in an informal comparison of his method to the algorithm by
Cohen-Or et al. [Cohe98b] that the amount of occlusion due to the combined effect of multiple occluders
(occluder fusion) can be significant.
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Approximate region visibility using occluder fusion

In this section we will discuss methods for occlusion culling that consider occluder fusion. These meth-
ods deal with the same problems as our algorithm described in chapter 5. All those methods, including
ours, were developed independently and concurrently and a more detailed discussion of the algorithms in
comparison to our method is presented after a description of our work in chapter 5.

Durand et al. [Dura00] propose extended projections that can be seen as an extension of image space
visibility, like the hierarchical occlusion maps, to area visibility. They place six projection planes around the
view cell. The algorithm proceeds for each of the six planes separately. First they project selected occluders
onto a plane. Then they read back the result from the frame buffer and build a hierarchical z-pyramid. To
detect occlusion, bounding boxes of scene-graph nodes are projected onto the plane. As in other image-
based occlusion culling methods, a bounding box is occluded if its depth values are behind the depth
values in the occlusion map. The key part is how to calculate the projection of occluders and occludees,
to guarantee a conservative result. They define the extended projection of occluders onto a plane to be the
intersection of all views in the view cell, and the extended projection of an occludee as the union of all views
in the view cell. To assign depth values to the projection they define the extended depth that is the maximum
depth of the occluders (or the minimum depth for the occludees). The practical implementation is quite
complicated in the general case, therefore Durand et al. discuss several optimizations and simplifications
for special configurations. One feature of this projection is that the position of the projection plane should
be near the occluders. Therefore an extension is proposed that calculates an occlusion sweep. The occlusion
aggregated on a plane can be reprojected on a plane behind. A similar version of this algorithm was
proposed already in 1991 by Lim [Lim92].

Schaufler et at. [Scha00] use volumetric occluders for occluder fusion. They insert the scene into an
octree. Their insertion relies on the fact that occluders are ”water tight”. Therefore, they can mark certain
octree cells as opaque and use them as occluders. For occluder fusion they combine neighboring octree
cells that are opaque or that are already found to be occluded. To determine occlusion due to a volumetric
blocker, an axis aligned box, they calculate the shadow and mark it in the octree as occluded. To calculate
a volumetric blocker they select an octree cell as occluder and try to expand it as far as possible. They
build on the following observation: An occluder can be expanded to neighboring cells, if they are opaque
or most importantly if they are already found to be occluded. They propose heuristic occluder extension
using a greedy algorithm. With these building blocks they traverse the scene front-to-back and calculate
the occlusion due to opaque octree cells. Before occlusion calculations they use blocker extension. This
algorithm is easy to understand and should be simple to implement.

Very recently another interesting algorithm was introduced by Bittner [Bitt01a]. His algorithm works
in line space and is essentially two-dimensional. In line space an occluder can be seen as a polygon that
describes which rays are occluded. To calculate the combined effect of multiple occluders, Bittner merges
the polygons using BSP trees. The interesting part of this algorithm is an extension to 2.5D that works
very well for urban environments. At the time of writing of this thesis this work is not yet finished, but
preliminary results indicate fast calculation times and good scalability [Bitt01b].

Ideally, a visibility algorithm should be very simple and work for general scenes. A robust method
is point sampling from several locations within the view cell. The point sampling can be done using
graphics hardware or ray casting. This method is easy to implement and is a good reference solution for a
comparison to test the quality of a conservative algorithm (e.g. [Deco99, Gots99, Aire90]). However, the
possible danger is to miss small objects or cracks between two occluders, so that the visibility solution is
not conservative.

3.3.5 Parallel visibility

On a multiprocessor system occlusion culling can be calculated in parallel for the cost of latency. While a
frame n is rendered occlusion can be calculated for the frame n+1 on another processor. This implies that
the viewpoint for the next frame has to be known in advance, which is only possible if latency is introduced
to the pipeline.
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This approach is used in the Performer toolkit [Ecke00] and the UNC massive model walkthrough
system [Alia99a]. The UNC system uses hierarchical occlusion maps [Zhan97], which poses the problem
that the graphics hardware has to be used to render the occluders.

3.3.6 Related problems

Occluder selection and synthesis

One common problem for all occlusion culling algorithms is the selection and synthesis of good occluders.
Many algorithms use ad hoc methods for their results which use prior knowledge about the scene structure.

The straightforward method is the selection of large scene polygons. However, in many scenes such
polygons do not exist. Modern graphics cards can render several millions of polygons per second so
that interesting scenes are highly tesselated. Therefore occluders have to be synthesized from the input
scene [Adúj00a, Bern00].

Koltun et al. [Kolt00] propose a 2D algorithm for urban environments. They aggregate occlusion from
several smaller buildings to obtain a large occluders for a view cell. The algorithm is done for several 2D
cross sections parallel to the ground plane so that the height structure can be captured. These occluders are
valid for only one view cell but these view cells can be several hundred meters long.

Occluder levels of detail

To accelerate occlusion culling, occluders can be used in several levels of detail. According to a heuristic,
more important occluders can be used in a high level-of-detail and less important occluders can be used
in a lower level to save computation time. For the level-of-detail generation it is important to note that
lower levels of detail should not occlude more than higher levels. Therefore lower levels of detail should
be completely contained in the original model.

Zhang [Zhan98] uses a modified version of the simplification envelopes [Cohe96]. Law et al. [Law99]
show how to add additional constraints to a level-of-detail algorithm and use a modified version of quadric
error meshes [Garl97] for their results.

Stress culling

When high guaranteed frame rates for arbitrary scenes are an important goal, several objects have to be
omitted or can only be rendered in a lower level of detail. To select which objects should be rendered in
a lower level-of detail, visibility calculations can be used. The basic idea is that objects that are likely
to be occluded can be rendered with a lower level of detail [Adúj00b, Klos99, Klos00]. This heuristic
selection of levels of detail results in popping artifacts that can be strongly noticeable. Although these
approaches are beneficial for some applications, the image quality is not sufficient for most applications of
urban simulation.

3.4 Summary

Visibility is a complex subject. Therefore most algorithms were designed with certain applications in mind
and use several assumptions and tradeoffs to obtain a practical solution. Tradeoffs include limitations
to convex occluders (no concave occluders), discretization of occluders, simplified handling of occluder
fusion, heuristic selection of occluders, tight approximation instead of conservative classification, and the
use of bounding boxes instead of actual geometry. These tradeoffs result in algorithms that are by nature
more suitable for a certain type of scene and less suitable to others. If we consider that the visibility
problems are usually well stated (calculate visibility from a point and calculate visibility from a region),
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there is a comparatively large number of algorithms that deal with these problems. We attribute that to
the fact that most algorithms rely on rather strong assumptions, and are therefore only suitable for a small
number of scenes or applications.

Another aspect is that visibility algorithms are often used as basis for other algorithms. Examples are
database prefetching in client-server walkthrough systems, image-based rendering, global illumination and
level-of-detail generation. This leads to a constant demand for new algorithms.

Therefore, it is likely that visibility will continue to be an open research topic, with room for new ideas.
In this sense the work in this thesis can hardly solve visibility problems for a broad range of applications
but is especially designed to build a real-time simulation system of urban environments.
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Visibility from a Point

This section introduces a new data structure to store occlusion information for 2.5D occluders. The rep-
resentation is an occlusion map that contains the orthographic projection of occluder shadows. We will
show how to exploit graphics hardware by rendering and automatically combining a relatively large set of
occluders to calculate visibility from a point. This occlusion map can be used to create an online occlusion
culling system for urban environments.

4.1 Introduction

The original motivation to create a new occlusion culling algorithm for urban environments was the high
overhead of previous algorithms. First of all, a good occlusion culling algorithm needs low calculation
times to be usable. The calculation times should be low in comparison to the rendering time. We assumed
that an algorithm that takes up 50%–80% of the frame time is inefficient and would not be able to compen-
sate for its calculation for many frames, where occlusion is low. Our original goal was to achieve frame
rates of 20 Hz and an algorithm calculation time of 20% of the frame time. Precalculation times should be
as low as possible.

Another problem of previous algorithms was the use of heuristics to select occluders. A good occlusion
algorithm should use all important occluders if possible because any holes reduce the performance of the
algorithm (see section 2.3). Therefore, the second goal of this algorithm was to allow handling a large
number of occluders.

The last goal was to have all forms of occluder fusion, which is typical for image-based occlusion
culling. To sum up, the algorithm should

• be fast to calculate.

• handle a large number of occluders.

• calculate occluder fusion.

In this chapter, we introduce a new hybrid image-based and geometrical online culling algorithm for
urban environments exhibiting the properties discussed above. We compute occluder shadows (Figure 4.1)
to determine which parts of the environment are invisible from a given viewpoint. Occluder shadows
are shadow frusta cast from selected occluders such as building fronts. The 2.5D property of an urban
environment allows us to generate and combine occluder shadows in a 2D bitmap using graphics hardware.
Our algorithm has the following properties:

• It uses a relatively large set of occluders (up to 500) that are automatically combined by the graphics
hardware.
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Figure 4.1: An occluder shadow is used for occlusion culling. Note how the roof top of the shown building
facade allows to determine whether an object is hidden from its occluder shadow footprint in the ground
plane.

• The algorithm is reasonably fast to calculate (about 13 ms on a 1998-mid-range workstation for our
environment of 4 km2) and therefore also useful for scenes of moderate complexity (Figure 4.7) and
walkthroughs with over 20 fps.

• We calculate the occlusion dynamically. However, useful occluders might need to be extracted in a
preprocess.

• The algorithm is simple to understand and implement.

The structure of this chapter is as follows: We give an overview of our algorithm and an explanation
of the various stages of our acceleration method. Next we will describe our implementation and give
results of different tests made with our example environment. Then we will discuss the applicability of our
algorithm and compare it to the other existing solutions. Finally, we will present ideas to achieve further
optimizations.

4.2 Overview of the approach

4.2.1 Occluder shadows

The concept of occluder shadows is based on the following observation: Given a viewpoint O, an occluder
polygon P casts an occluder shadow that occludes an area of the scene that lies behind the occluder, as
seen from the viewpoint. This area can be seen as a shadow frustum that is determined by the occluder and
the viewpoint. Objects fully in this shadow frustum are invisible.

A more formal definition of an occluder shadow (Figure 4.2) is given in the following (Please note that
the definition is also valid if the urban environment is modeled on top of a height field but this complicates
the definition and is omitted here for brevity):

• The environment is required to have a ground plane π with a normal vector N (up direction).

• An occluder polygon P is a (not necessarily convex) polygon with its normal vector parallel to the
ground plane (i.e., P is standing upright). P is constructed from a set of vertices V = {v1, . . . , vk},
connected by a set of edges E = {e1, . . . , ek}. An edge e from va to vb is written as e = (va, vb).
At least one edge of P must lie in the ground plane.
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Figure 4.2: This sketch shows the geometric relationship used for the occlusion culling. An occluder
shadow is constructed from a given viewpoint and an occluder edge of an occluder polygon P.

• An occluder edge is an edge e ∈ E with e = (va, vb) of P that does not lie in the ground plane. Let
va′ and vb′ denote the normal projection of va and vb onto π, respectively. If the polygon defined
through the vertices va, va′, vb′, vb is completely inside P the edge e is a valid occluder edge.

• An occluder shadow is a quadrilateral with one edge at infinity, constructed from an occluder edge
e = (va, vb) and two rays: va+λ(va−O) and vb+µ(vb−O). When looking in −N direction, the
occluder shadow covers all scene objects that are hidden by the associated occluder polygon when
viewed from O.

We exploit this observation by rendering the occluder shadow with orthogonal projection into a bitmap
coincident with the ground plane. The height information (z-buffer) from this rendering allows the deter-
mination of whether a point in 3D space is hidden by the occluder polygon or not.

4.2.2 Algorithm outline

This section will explain how the concept of occluder shadows is used for rendering acceleration. We
assume an urban model as described in the introduction. We rely on no special geometric features concern-
ing the model. We need no expensive preprocessing and all needed data-structures are built on the fly at
startup. For a completely arbitrary input scene, two tasks have to be solved that are fully addressed in the
explanation of this algorithm:

• The scene has to be decomposed into objects for the occlusion culling algorithm, which can be a
semantic decomposition into buildings, trees and road segments, or a plain geometric decomposition
into polygon sets.

• Useful occluders - mainly building fronts - must be identified. A more detailed discussion about
these problems is given in chapter 7.

The scene is structured in a regular 2D grid coincident with the ground plane, and all objects are entered
into all grid cells with which they intersect. During runtime, we dynamically select a set of occluders for
which occluder shadows are rendered into an auxiliary buffer - the cull map - using polygonal rendering
hardware. Each pixel in the cull map (image space) corresponds to a cell of the scene-grid (object space).
Therefore, the cull map is an image plane parallel to the ground plane of the scene (see section 4.3.2).
Visibility can be determined for each cell (or object) of the grid according to the values in the cull map. To
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calculate the occluded parts of the scene, we can compare for each cell the z-value in the cull map to the
z-value of the bounding boxes of the objects entered into the scene-grid at this cell (see section 4.3.3).

When we render an occluder shadow with the graphics hardware, we obtain z-values and color-buffer
entries that correspond to a sample in the center of the pixel. This is not satisfying for a conservative
occlusion calculation. For a correct solution, we have to guarantee that (1) only fully occluded cells are
marked as invisible, and (2) that the z-values in the z-buffer correspond to the lowest z-value of the occluder
shadow in the grid cell and not a sample in the center. How this is achieved is detailed in section 4.3.4.

To summarize, during runtime the following calculations have to be performed for each frame of the
walkthrough:

• Occluder selection: For each frame a certain number of occluders has to be selected, that have a high
chance to occlude the most parts of the invisible portion of the scene. The input to this selection is
the viewpoint and the viewing direction.

• Draw occluder shadows: The selected occluders are used to calculate occluder shadows which are
rendered into the cull map using graphics hardware.

• Visibility calculation: The cull map is traversed to collect all the potentially visible objects in the
scene. Objects that are definitely not visible are omitted in the final rendering traversal.

• Hidden surface removal: The selected objects are passed to a hidden surface removal algorithm
(z-buffer hardware).

4.3 Culling algorithm

4.3.1 Preprocessing

At startup, we have to build two auxiliary data-structures: the scene grid and the occluder grid. To construct
the scene grid we have to organize all objects in a regular grid covering the whole environment. All objects
are entered into all grid cells with which they collide, so that we store a list of objects for each grid cell.
Usually objects span more than one cell. As occlusion is computed on a cell basis, the complexity and size
of the environment influence the choice of the grid size.

Occluders have to be identified. In our implementation, occluders are created by the modeling system
and read from a file at startup (see chapter 7). The synthesis of good occluders from arbitrary scenes is an
open research problem. In our current implementation we use extruded building footprints as volumetric
occluders. Each edge of the building footprint corresponds to a façade of the building. An edge together
with the building height defines an occluder polygon and we store connectivity information between oc-
cluder polygons for more efficient rasterization (see section 4.3.4).

These tasks can be done very fast and require an amount of time comparable to the loading of the scene.

4.3.2 Cull map creation

Once an occluder polygon is selected, the associated occluder shadow quadrilateral is rendered into the
cull map. Since a quadrilateral with points at infinity cannot be rendered, we simply assume very large
values for the λ and µ parameters from section 4.2.1, so that the edge in question lies fully outside the cull
map. When the quadrilateral is rasterized, the z-values of the covered pixels in the cull map describe the
minimal visible height of the corresponding cell in the scene-grid. The graphics hardware automatically
fuses multiple occluder polygons rendered in sequence (Figure 4.3 and figure 4.8).

When occluder shadows intersect, the z-buffer automatically stores the z-value, which provides the best
occlusion.
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Previous approaches selected a set of occluders according to a heuristic depending on the distance
from the viewpoint, the area and the angle between the viewing direction and the occluder-normal [Bitt98,
Coor97]. This is a necessary step if only a small number of occluders can be considered, but it has the dis-
advantage that much occlusion can be missed. In our approach, the number of occluders is large enough,
so we use only the distance from the viewpoint as a criterion for dynamic selection during runtime (Fig-
ure 4.9).

Figure 4.3: The cull map is created by drawing occluder shadows as polygons using graphics hardware.
Overlapping occluders are correctly fused by standard rasterization and z-buffer comparison.

This is a good approach that guarantees systematic occlusion culling up to a certain distance. Beyond
that distance it basically depends on luck, like all other heuristics. See section 4.6 for a discussion of the
occluder selection.

We perform a simple backface culling test on all occluder candidates. Building fronts we consider are
generally closed loops of polygons, and it is sufficient to consider only front facing polygons. For each of
the occluders we render the occluder shadow in the cull map. The resulting cull map is passed to the next
step, the actual visibility calculation.

4.3.3 Visibility calculation

To determine the visible objects that should be passed to the final rendering traversal, we have two options:
We can either traverse the cull map or we can traverse the scene-graph to determine which objects are
visible. While traversing the scene-graph would make a hierarchical traversal possible, we found that a fast
scan through the cull map is not only simpler, but also faster.

Our algorithm therefore visits each cell that intersects the viewing frustum and checks the z-value in the
cull map against the height of the objects stored in that cell. We use a two-level bounding box hierarchy to
quickly perform that test: first, the z-value from the cull map is tested against the z-value of the bounding
box enclosing all objects associated with the cell to quickly reject cells where all objects are occluded.
If this test fails, the bounding boxes of all individual objects are tested against the cull map. Only those
objects that pass the second test must be considered for rendering. In pseudo code, the algorithm looks like
this:
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for each cell C(i,j) in the grid do
if C(i,j).z > cullmap(i,j)
for each object O(k) in C(i,j) do
if O(k).z > cullmap(i,j).z
and O(k) not already rendered

render O(k)

4.3.4 Cull map sampling correction

As stated in the previous section, the simple rendering of the occluder shadows generally produces a non-
conservative estimation of occlusion in the cull map because of undersampling. For (1) correct z-values in
the cull map and (2) to avoid the rendering of occluder shadows over pixels that are only partially occluded,
we have to shrink the occluder shadow depending on the grid size and the rasterization rules of the graphics
hardware. Our method to overcome these sampling problems requires information about the exact position
used for sampling within one pixel. Current image generators usually take a sample in the middle of a
pixel. For example, the OpenGL [Sega99] specification requires that (1) the computed z-value corresponds
to the height in the middle of a pixel, (2) a pixel fragment is generated when the middle of a pixel is covered
by the polygon and (3) for two triangles that share a common edge (defined by the same endpoints), that
crosses a pixel center, exactly one has to generate the fragment.

v1 e

�e

�f1
�f2

f2

g w2w2´w1 w1´

f1

v1´ v2´

v2

f1´ f2´

g´

Figure 4.4: Sampling correction is performed by moving three edges of the occluder shadow inwards so
that no invalid pixels can accidentally be covered.

Given these sampling constraints, a conservative solution for both stated problems is to shrink the
occluder shadow geometrically (Figure 4.4). Consider an occluder shadow quadrilateral constructed from
the vertices v1, v2,w1, andw2, defining the occluder edge e = (v1, v2) and three other edges f1 = (v1, w2),
f2 = (v2, w2) and g = (w1, w2). By moving e, f1, and f2 towards the interior of the polygon along the
normal vector by distances εe, εf1, and εf2, respectively, we obtain a new, smaller quadrilateral with edges
e′, f ′1, f ′2 and g′, that does not suffer from the mentioned sampling problems. The edge g is outside the
viewing frustum and need not be corrected, it is only shortened.
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To avoid sampling problems in x-y-direction, the correction terms εe, εf1, and εf2 have to depend on
the orientation of e, f1, and f2, respectively. An upper bound for them is l

√
2, where l is half the length of

a grid cell. However, it is sufficient to take l(|nx| + |ny|), where n is the normalized normal vector on an
edge that should be corrected. This term describes the farthest distance from the pixel middle to a line with
normal vector n that passes through a corner of the pixel.

If the occluder or the angle between the occluder and the viewing direction is small, f ′1 and f ′2 may in-
tersect on the opposite side of e as seen from e′. In this case, the occluder shadow quadrilateral degenerates
into a triangle, but this degeneration does not affect the validity of the occlusion.

original shadow polygon

conservative
shadow
polygon

Figure 4.5: This figure shows the sampling correction problem for z-values. We have to render a conser-
vative shadow polygon to guarantee that the discretized shadow volume remains conservative.

To avoid sampling problems in z-direction we have to guarantee that the discretized shadow volume
is conservative (Figure 4.5). We render the new, smaller quadrilateral with a slope in z that is equal to or
smaller than the slope of the original quadrilateral. In a case where the occluder edge e is parallel to the
ground plane, the gradient (i.e., direction of steepest slope in z) of the occluder shadow is identical to the
normal vector n of the occluder edge. Thus, the sampling problem for z-values is solved implicitly. If the
occluder edge is not parallel to the ground plane, we have to consider an additional correction term that is
dependent on the gradient of the occluder shadow. Note that only in this case is the z-value of the vertices
v′1 and v′2 different from that of v1 and v2.

4.4 Implementation

Our implementation uses input scenes produced by a procedural modeling system. We use building foot-
prints and building heights as input and generate geometry by extruding the footprints. Occluder informa-
tion and other semantic structures are created by the modeling system and written into a separate file. We
reuse this information instead of extracting occluder polygons at startup.

We implemented our algorithm on an SGI platform using Open Inventor(OIV) [Wern94] as high-level
toolkit for the navigation in and rendering of the urban environment. The cull map handling is done with na-
tive OpenGL (which also guarantees conservative occlusion) in an off-screen buffer (pbuffer). OIV allows
good control over rendering and navigation and is available on different platforms. In our cull map imple-
mentation, we use only simple OpenGL calls, which should be well supported and optimized on almost
any hardware platform. The most crucial hardware operation is fast copying of the frame buffer and the
rasterization of large triangles with z-buffer comparison. Hardware accelerated geometry transformation is
not an important factor for our algorithm.

We tested and analyzed our implementation on two different hardware architectures: an SGI Indigo2
Maximum Impact, representing medium range workstations, and an O2 as a low end machine. Whereas
the implementation of most tasks met our estimated time frames, the copying of the cull map showed
significantly different behavior on various hardware platforms and for different pixel transfer paths. Where
the time to copy the red channel of a 250x250 pixel wide frame buffer area on the Maximum Impact
takes about 3 ms, this step takes over 20 times as long on the O2, where only the copying of the whole
frame buffer (red, green, blue and alpha channels) is fast. These differences have to be considered in
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the implementation. Furthermore, copying the z-buffer values on an O2 is more time-consuming and not
efficient enough for our real-time algorithm.

Due to the fact that fast copying of the z-buffer is not possible on an O2, we had to resort to a variation
of the algorithm that only needs to copy the frame buffer:

1. At the beginning of each frame, each value of the z-buffer is initialized with the maximum z-value
from the objects in the corresponding grid cell. z-buffer writing is disabled, but not z-comparison.
Next the color buffer is cleared and the viewing frustum is rendered with a key color meaning visible.
The cells not containing any objects are initialized to have very high z-values, so that they are not
marked visible by rendering the viewing frustum.

2. Each occluder shadow is then written with a key color meaning invisible overwriting all pixels (=
grid cells) that are fully occluded.

3. Finally, the resulting frame buffer is copied to memory for inspection by the occlusion algorithm.

The sampling correction for the occluder shadows makes it necessary to keep information of directly
connected occluders. An occluder polygon is represented by its top edge and all connected occluders are
stored as closed poly-lines that correspond to the building footprints. We can shrink the building footprints
in a preprocess (see chapter 7). After shrinking of the building footprints, the occluder polygons are moved
towards the interior of the building, but they are still connected. The shrinking operation during runtime
uses the original and the shrunk occluder to obtain conservative shadow polygons, without producing cracks
between two occluder shadows stemming from the same building.

Furthermore, all occluder polygons have an oriented normal-vector that is used for backface culling.
This helps to reduce the number of occluders by about 50%.

4.5 Results

To evaluate the performance of our algorithm we performed several tests using a model of the city of
Vienna. We started with the basic data of building footprints and building heights and used a procedural
modeling program to create a three-dimensional model of the environment. This made it possible to control
the size and scene complexity of the test scene. We modeled each building with a few hundred polygons.
For the first test, we created a smaller model with 227,355 polygons, which covers an area of about a square
kilometer.

We recorded a camera path through the environment where we split the path in two parts. In the first
part (until frame number 250) the camera moves along closed streets and places. This is a scenario typically
seen by a car driver navigating through the city. In the second part the viewer moves in a wide-open area
(in the real city of Vienna there is a river crossing the city).

For our walkthroughs, we configured our system with a grid size of 8 meters and we selected all
occluders up to 800 meters (which is on the safe side). In most frames, we select between 400 and 1,000
occluders and drop about half of them through backface culling. The construction of the auxiliary data
structures and occluder preprocessing does not take longer than 10 seconds, even for larger scenes, while
loading of the geometry takes sometimes over a minute. The cull map size for this test is 128x128.

Figure 4.6 (left) shows the frame times for the walkthroughs on the Indigo2 in ms. The curve “frustum
culling” shows the frame times for simple view-frustum culling. The second curve “occlusion culling”
shows the frame times for our algorithm. We see that we have good occlusion and that the algorithm is fast
to compute. We have a speedup of 3.7 for the Indigo2. Furthermore, the frame rate stayed over 20 fps. The
frame rates in the second part are also high because the model is structured in a way so that little additional
geometry comes into sight.

For the second test, we used the same scene embedded in a larger environment to test (1) the robustness
of the occlusion and (2) the behavior of the algorithm when the viewpoint is located on wide-open places.
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Figure 4.6: (Left) The frame times for the walkthrough of a model consisting of 227,355 polygons on an
Indigo2 (frame times on y-axis in ms). Right: The frame times for the walkthrough of a model consisting
of 1,300,000 polygons on an Indigo2 (frame times on y-axis in ms).

Indigo2 Model 1 Model 2
Frustum culling 103 ms 653 ms
Occlusion culling 25 ms 37 ms
Algorithm time 7 ms 13 ms
Part 1 26 ms 32 ms
Part 2 24 ms 44 ms
Speedup 4.2 17.8
O2 Model 1 Model 2
Frustum culling 312 ms 2029 ms
Occlusion culling 68 ms 108 ms
Algorithm time 13 ms 25 ms
Part 1 68 ms 84 ms
Part 2 67 ms 149 ms
Speedup 4.6 18.8

Table 4.1: Summary of all measurements for the two walkthrough sequences. Speedup factors between
4 and 18 were be obtained. Frustum culling: average frame time using view-frustum culling. Occlusion
culling: average frame time using our occlusion culling algorithm. Algorithm time: average calculation
time of our algorithm. Part1 (Part2): average frame time of the walkthrough in Part1 (Part2). Speedup:
speedup factor compared to view-frustum culling.

The new city has about 1,300,000 polygons and covers a size of 4 km2 (Figure 4.7). The cull map size
for this test is 256x256. To be able to compare the results, we used the same camera path in the larger
environment. The results for the Indigo2 are shown in figure 4.6 (right) and a summary of all results is
given in Table 4.1.

It can be seen that the frame rate in the first part is almost the same as in the smaller model. Almost
exactly the same set of objects was reported visible for both city models. Longer frame times are only due
to higher algorithm computation time and overhead from data structure management. In the second part of
the walkthrough, the field of view is not fully occluded for several hundred meters (sometimes up to 700)
and a large number of buildings becomes visible. Still our algorithm works efficiently and selects only few
invisible objects.

This evaluation demonstrates that the occlusion is robust and that our algorithm generally does not leave
unoccluded portions in the field of view if suitable occluders are present (see Part 1 of the walkthrough).
Even the low-end O2 workstation was able to sustain a frame time of 108 ms.

In the second part of the walkthrough we demonstrated the algorithm behavior in a more challenging
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Indigo2
Cell size 8m 6m 4m 2m
Cull map size 128x128 174x174 256x256 512x512
Render shadows 5.3 5.3 5.3 8
Copy cull map 1.3 1.7 2.3 6.3
Traverse cull map 0.5 0.7 0.9 2.2
Render buildings 18.3 17.4 17 15.8
complete frame time 25.4 25.0 25.5 32.3

Table 4.2: This table shows the results of the walkthrough in the smaller model on the Indigo 2 for different
cell sizes (cull map sizes). All occluders in the viewing frustum were selected for this test (time values are
given in ms).

environment, where dense occlusion is no longer given. The performance drops as expected, but neverthe-
less the frame time of the Indigo2 does not exceed 85 ms (the maximum frame time) and the average frame
time for the second part also stays below 50 ms. The overall improvement for the whole path (compared to
simple view-frustum culling) equals a factor of about 18. However, results also indicate that performance
depends on the presence of a large amount of occlusion. To unconditionally sustain a high frame rate, a
combination with other acceleration methods (see proposed future work) is desirable.

A third experiment was conducted to examine the theoretical performance limits of the algorithm. The
goal was to assess how the amount of detected occlusion is related to grid size. Completely accurate
occlusion can be computed if all possible occluders are rendered into a cull map with infinitely small grid
elements. We therefore performed a walkthrough for model 1 with cell sizes of 8, 6, 4, and 2 meters. All
occluders in the viewing frustum were rendered into the cull map unconditionally. A breakdown of the
times for individual parts of the algorithm is given in Table 4.2.

The times reported for actual rendering of buildings indicate that a standard cell size of 8m has only
about 20% overhead compared to the much smaller 2m cells. This overhead is mainly due to the fact that
whole buildings are treated as one object. Despite its discrete nature, the algorithm estimates true visibility
very accurately. We expect that better results can be achieved with more careful scene structuring while
keeping cell size constant.

We also observed that the rasterization of occluder shadows and copying of the cull map becomes the
bottleneck of the system for larger environments. Cull map traversal is really fast for a typical setup (cull
map < 256x256), so that it is not necessary to find optimizations through hierarchical traversals.

4.6 Discussion

Algorithm calculation times: For the applicability of an occlusion culling algorithm we found that fast
calculation times are an important feature. If we assume the goal of 20 fps for a fluid walkthrough, we
have only 50 ms per frame. If 30 ms are spent on the occlusion algorithm, little is left for other tasks like
rendering, LOD selection or image-based simplifications. Such an algorithm may accelerate from 2 to 10
frames per second, but not from 4 to 20 fps, which is a fundamental difference. It was our goal to have
an algorithm that uses only 20% of the frame time for its calculations. However, although our algorithm
is faster than previously published methods, it suffers from the same kind of problem on current consumer
level hardware. It might be useful to accelerate from 4 to 20 fps but is too slow for 60 Hz walkthroughs on
current consumer level hardware.

An expensive algorithm depends on strongly occluded scenarios to compensate for its calculation
time, whereas a fast algorithm can also result in speedups for slightly occluded environments. Consider
HOMs [Zhan97] used for the UNC walkthrough system [Alia99a], for which the calculation times of the
occlusion algorithm itself on mid-range machines are relatively high. The pure construction time of the
occlusion map hierarchy given the basic occlusion map on an SGI Indigo2 Maximum Impact is about 9 ms.
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This is about the time for one complete frame of our algorithm on the same machine. However, it must
be stressed that HOMs provide a framework that is suitable for far more general scenes which cannot be
handled by our algorithm.

Occluder selection: The occluder selection is a weak part in our algorithm (see section 4.3.2): The
selection of occluders in a radius around the viewer only works well if the viewer cannot see farther than
this radius. However, we designed this algorithm with the idea of combining it with an online image-based
rendering algorithm [Wimm99] that does not depend on further visibility calculations. Other options are to
omit all distant objects (maybe in combination with the use of fog), or to use a more sophisticated heuristic
similar to previous approaches [Coor97, Huds97].

For the area visibility algorithm (see chapter 5) we developed a hierarchical extension that uses system-
atic occluder selection. This extension would also work for point visibility, but the calculation times could
vary greatly, a feature that is not very beneficial for the goal of constant frame rates.

Information: An advantage of our method is that it generates a discretized representation of the shadow
volume. This feature allows us to use this algorithm as a basis for other calculations, like area visibility
(see next chapter).

Current Hardware: Previously published geometrical (e.g. [Coor97, Huds97, Bitt98]) and image-based
algorithms [Zhan97] calculate full three-dimensional occlusion, but will probably not be able to compete
with the proposed algorithm in urban environments. Competitive algorithms were introduced only recently
by Downs et al. [Down01] and Aila and Miettinen [Aila01]. Both algorithms use visibility driven occluder
selection and are therefore more systematic than other methods. Additionally, the algorithms are imple-
mented in software and do not use graphics hardware. Current hardware architectures for consumer level
hardware do not encourage read access to the frame buffer. Although read-back times became much faster,
efficient programming of current hardware results in a high latency, that can easily be over one frame (i.e.,
the actual rendering on the graphics hardware is over one frame behind). It is still possible to read back the
frame buffer, but this results in an inefficient use of the graphics hardware.

4.7 Conclusions and future work

We have presented a new algorithm for fast walkthroughs of urban environments based on occluder shad-
ows. The algorithm has proven to be fast, robust, and useful even for scenes of medium complexity and
low-end graphics workstations. It is capable of accelerating up to one order of magnitude, depending
mostly on support for fast frame buffer copying. This support is now also available on low-cost hardware
for the consumer market.

Working on the combination of online occlusion culling and ray-casting, it became clear that

• online occlusion culling can hardly contribute to the goal of constant frame rates.

• online occlusion culling is too expensive on current hardware for walkthroughs at 60Hz or higher.

These problems are inherent to online occlusion culling and therefore it seems to be necessary to pre-
calculate visibility. Our next chapter will describe an efficient algorithm for urban environments.
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Figure 4.7: This model of the city of Vienna with approximately 1.3M polygons was used for our experi-
ments.

Figure 4.8: Two views of the cull map used for occlusion culling. The left view shows the grid cells
inspected for suitable occluders (in red) and selected occluders near the viewpoint (in blue). The right view
shows the culled portion of the model (in red) and the remaining cells after culling (in white).
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Figure 4.9: For the viewpoint used in figure 4.8, the resulting image is given on the left. The right view
shows a wireframe rendering of the occluders to give an impression of occluder density.
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Chapter 5

Visibility from a Region

This chapter presents an efficient algorithm to precompute visibility in urban environments. The algo-
rithm is conservative and accurate in finding all significant occlusion. It discretizes the scene into view
cells, for which cell-to-object visibility is precomputed, making on-line overhead negligible. It is able to
conservatively compute all forms of occluder interaction for an arbitrary number of occluders. To speed
up preprocessing, standard graphics hardware is exploited and occluder occlusion is considered. A walk-
through application running an 8 million polygon model of the city of Vienna on consumer-level hardware
illustrates our results.

5.1 Introduction

As described in the previous chapter, visibility calculations for a single viewpoint have to be carried out
online and infer significant runtime overhead. We observed that the proposed online algorithm cannot be
used to achieve the two main goals of real-time rendering (see section 2.2): 1) the frame rates are lower
than the monitor refresh rate (60Hz or more) and 2) a constant frame rate cannot be guaranteed.

These problems can be solved more easily, if occlusion is calculated in a preprocess. The issue of high
frame rates could be addressed by improving the algorithm calculation time of the online algorithm, but the
guarantee for a frame time is more involved. Even an exact visibility algorithm that uses no calculation time
does not solve the problem because too many objects can be visible. For several frames in a walkthrough,
it will be necessary to simplify distant geometry to accelerate rendering and to reduce aliasing. These
simplifications often rely on visibility preprocessing (e.g. [Sill97, Deco99]). Therefore, it is useful to
calculate visibility for a region of space (view cell) in a preprocessing step.

In this chapter we introduce an algorithm that calculates visibility for a view cell. The visibility algo-
rithm is based on point-sampling and builds on the method described in the previous chapter: we use the
concept of occluder shadows to combine visibility information of several point samples in a cull map. Our
results demonstrate that this method is useful for walkthroughs with high frame rates (i.e., 60Hz or more).

5.1.1 Motivation

Occlusion culling shares many aspects with shadow rendering. Occlusion culling from a view cell is
equivalent to finding those objects which are completely contained in the umbra (shadow volume) with
respect to a given area (or volume) light source. In contrast to occlusion from a point, exact occlusion
culling for regions in the general case (or its equivalent, shadow computation for area light sources) is not
a fully solved problem. Two main problems impede a practical closed-form solution:
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Figure 5.1: Views from the 8 million polygon model of the city of Vienna used in our walkthrough appli-
cation. The inset in the upper left corner shows a typical wide open view, while the large image shows the
portion of the scene rendered after occlusion culling. Note how occlusion fusion from about 200 visible
occluders allows the pruning of over 99% of the scene.

• The umbra with respect to a polygonal area light source is not only bounded by planes, but also by
reguli, i. e. ruled quadratic surfaces of negative Gaussian curvature [Tell92a, Dura99]. Such reguli
are difficult to store, intersect etc.

• The complete set of viewing regions with topologically distinct views is captured by the aspect
graph [Gigu91, Plan90], which is costly to compute (O(n9) time). For applications such as radiosity,
a more practical approach is the visibility skeleton [Dura97]. However, the algorithmic complexity
and robustness problems of analytic visibility methods impede their practical use for large scenes.

For visibility from a point, the joint umbra of many occluders is the union of the umbrae of the individ-
ual occluders, which is simple to compute. (The umbra with respect to a view cell is the region of space
from which no point of the view cell can be seen, whereas the penumbra is the region of space from which
some, but not all points of the view cell can be seen.) In contrast, for view cells, the union of umbrae is only
contained in the exact umbra, which also depends to a great extent on contributions of merged penumbrae
(Figure 5.2). While umbra information for each occluder can be described by a simple volume in space
(’in/out’-classification for each point), penumbra information also has to encode the visible part of the light
source, making it hard to find a practical spatial representation. Therefore a general union operation for
penumbrae is not easily defined.

Although an approximation of the umbra from multiple occluders by a union of individual umbrae is
conservative, it is not sufficiently accurate. There are frequent cases where a significant portion of occlusion
coming from occluder fusion is missed, making the solution useless for practical purposes. In particular,
we distinguish between the cases of connected occluders, overlapping umbrae, and overlapping penumbrae
(Figure 5.2, letter a, b and c respectively).

This chapter describes a fast, conservative occlusion culling algorithm for urban environments (i.e.,
with 2.5D occluders - objects represented by functions z = f(x, y)) that solves the aforementioned prob-
lems. It is based on the idea that conservative visibility for a region of space can be calculated by shrinking
occluding objects and sampling visibility from an interior point of the region. Given a partition of space
into view cells, we exploit graphics hardware to calculate and merge such conservative visibility samples on
the boundary of each cell. Thus, conservative visibility for each cell can be computed as a preprocess, and
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Figure 5.2: Different types of occluder interactions. Individual umbrae (shaded dark) cover only a small
area, while the occluders jointly cover a large unbounded area (shaded light).

visibility determination consumes no time during actual walkthroughs. This approach has several essential
advantages:

1. Culling Efficiency. Through the use of graphics hardware, our technique is able to consider a very
large number of occluders. This is especially important in situations where a large portion of the
scene is actually visible. Techniques that consider only a small number of occluders (e. g., 50-
100) and rely on heuristics to select them may fail to capture significant occlusion, especially under
worst-case conditions.

2. Occluder Fusion: Our technique places no inherent restriction on the type of occluder interaction.
Fusion of occluder umbrae and even penumbrae is implicitly performed. This includes the hard case
where individual umbrae of two occluders are disjoint (Figure 5.2, letter c). We also discretize umbra
boundaries, which are typically made up of reguli (curved surfaces).

3. Conservativity: Our method never reports visible objects as invisible. While some authors argue that
non-conservative (approximate) visibility can be beneficial, it is not tolerable for all applications.

5.1.2 Organization of the chapter

The remainder of the chapter is organized as follows. Section 5.2 introduces the main idea of how to
calculate occluder fusion for the area visibility problem. Section 5.3 describes how the scene is structured
into view cells. A short overview of occluder shrinking is described in section 5.4 (a detailed version can
be found in chapter 7). Section 5.5 shows how to use graphics hardware to accelerate our algorithm, while
section 5.6 presents a hierarchical extension to the main algorithm. Results are shown in section 5.7 and
section 5.8 contains a discussion of our algorithm in comparison with other methods. Section 5.9 concludes
the chapter and shows avenues of future research.

5.2 Occluder fusion

This section explains the main idea of our algorithm: visibility can be calculated fast and efficiently for
point samples. We use such point samples to calculate visibility for a region of space. To obtain a conser-
vative solution, occluders have to be shrunk by an amount determined by the density of point samples.
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5.2.1 Occluder fusion by occluder shrinking and point sampling

As can be concluded from the examples in figure 5.2, occluder fusion is essential for good occlusion
culling, but difficult to compute for view cells directly. To incorporate the effects of occluder fusion, we
present a much simpler operation, which can be constructed from point sampling (for clarity, our figures
will show a simple 2D-case only).

Our method is based on the observation that it is possible to compute a conservative approximation
of the umbra for a view cell from a set of discrete point samples placed on the view cell’s boundary.
An approximation of actual visibility can be obtained by computing the intersection of all sample points’
umbrae. This approach might falsely classify objects as occluded because there may be viewing positions
between the sample points from which the considered object is visible.

However, shrinking an occluder by ε provides a smaller umbra with a unique property: An object
classified as occluded by the shrunk occluder will remain occluded with respect to the original larger
occluder when moving the viewpoint no more than ε from its original position (Figure 5.3).
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�

�
Occluder Conservative

umbra for
neighborhood

�-

Sample
point

Figure 5.3: Occluder shrinking: By considering an occluder after shrinking it by ε, the umbra from a point
sample provides a good conservative approximation of the umbra of the original occluder in a neighborhood
of radius ε of the sample point.

Consequently, a point sample used together with a shrunk occluder is a conservative approximation for
a small area with radius ε centered at the sample point. If the original view cell is covered with sample
points so that every point on the boundary is contained in an ε-neighborhood of at least one sample point,
an object lying in the intersection of the umbrae from all sample points is therefore occluded for the original
view cell (including its interior).

Using this idea, multiple occluders can be considered simultaneously. If the object is occluded by the
joint umbra of the shrunk occluders for every sample point of the view cell, it is occluded for the whole view
cell. In that way, occluder fusion for an arbitrary number of occluders is implicitly performed (Figure 5.4
and figure 5.5). While the method is conservative and not exact in that it underestimates occlusion, the fact
that an arbitrary number of occluders can cooperate to provide occlusion helps to find relevant occlusion
as long as ε is small in relation to a typical occluder.

In general, the exact amount by which a planar occluder has to be shrunk in each direction is dependent
on the relative positions of sample point and occluder. If we consider a volumetric occluder, however,
it can be shown that shrinking this volumetric occluder by ε provides a correct solution for an arbitrary
volumetric view cell (see the appendix for a formal proof of this fact). Therefore, the occlusion culling
problem can be solved using occluder shrinking and point sampling.

5.2.2 Hardware rasterization of shrunk occluders

Using the occluder shrinking principle explained in the last section requires a great amount of point sam-
pling. To speed up computation, the algorithm described here exploits standard graphics hardware for
accelerated computation of view cell-to-object visibility. It builds on the occluder shadow work explained
in the previous chapter and thus operates on city-like scenes (2.5D). While this type of environment may
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Figure 5.4: When performing point sampling for occlusion after occluders have been shrunk (as indicated
by small triangles), all four occluders can be considered simultaneously, cooperatively blocking the view
(indicated by the shaded area) from all sample points.
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Figure 5.5: The fused umbra from the 5 point samples shown in figure 5.4 is the intersection of the individ-
ual umbrae (shaded light). It is here compared to the union of umbrae from the original view cell (shaded
dark). As can be seen, point sampling computes superior occlusion and only slightly underestimates exact
occlusion.

appear restrictive, it is suitable for the applications we have in mind (urban walkthroughs, driving simula-
tion, games), and typically provides a large amount of occlusion.

Note that the umbrae obtained by shrinking occluders by ε are overly conservative: although the shape
of the conservative umbra corresponds to the shape of the real umbra, its size is too small, i.e., shrinking
also moves the shadow boundaries into the interior of the actual umbra (Figure 5.3). Luckily, this is exactly
the operation needed to provide for conservative rasterization. It follows that if ε and the length of one cull
map grid cell (k) are coupled via the relation ε ≥ k

√
2

2 (see chapter 4), rendering shadow polygons need
not take into account rasterization errors. For a formal proof of this fact, see chapter 7. In practice, ε (along
with the cull map grid size) is chosen to trade off accuracy of occluder shadow calculation against total
preprocessing time.

5.2.3 Implications of occluder shrinking

In summary, occluder shrinking solves two important problems in one step:

1. It makes point sampling of the umbra conservative for an ε-neighborhood.

2. It makes hardware shadow polygon rasterization conservative.

Since occluder shrinking need only be applied once during preprocessing for each occluder, the actual
visibility computation is very efficient for each view cell.
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Note that while the algorithm apparently discretizes the view cell, it actually discretizes the complicated
occluder interactions (Figure 5.2), i.e., including merged penumbrae and umbra boundaries defined by
reguli. This principle makes it possible to compute occlusion from simple and fast point sampling.

5.2.4 Algorithm overview

In the following, we outline the basic preprocessing algorithm:

1. Subdivide environment into convex view cells, choose ε.

2. Shrink occluders to yield conservative visibility with respect to ε. This step also compensates for
rasterization errors.

3. Choose a view cell.

4. Determine a sufficient number of sample points for that view cell.

5. Determine a (potentially very large) number of occluders for that view cell (a straightforward imple-
mentation would simply select all occluders - for a more sophisticated approach, see section 5.8.2).

6. For each sample point, rasterize occluder shadows into a cull map using graphics hardware (the
rendered occluder shadows from individual sample points are combined in graphics hardware).

7. Traverse cull map to collect visible objects, then proceed to next view cell.

The following sections 5.3, 5.4, and 5.5 will explain the steps of this algorithm in detail, while section
5.6 presents a hierarchical extension of the algorithm which optimizes processing time.

5.3 Subdivision into view cells

The occlusion preprocessing procedure relies on a subdivision of the space of possible viewing locations
into cells. For these view cells, per-cell occlusion is later computed.

For our system we chose to use a constrained Delaunay triangulation of free space, modified to guaran-
tee that the maximum length of view cell edges does not exceed a user specified threshold. The actual view
cells are found by erecting a prism above each triangle of the triangulation. Note that because of the 2.5D
property of occluders, any object found visible from one particular point is also visible from all locations
above this point. This implies that sample points need only be placed on the 3 edges bounding the top
triangle of the view cell.

As free space is per definition not occupied by occluder volumes (buildings), the inside of occluders
need not be considered and occluders cannot intersect view cells. This way we can avoid special treat-
ment of occluders that intersect a view cell and we need not process areas inside buildings. However, the
algorithm could also use any other subdivision into view cells.

5.4 Occluder shrinking

The goal of occluder shrinking is to compute a set of occluders that can be used with point sampling to
yield conservative occlusion from a view cell. It is important to note that occluder shrinking is related to the
problem of occluder selection and synthesis. Buildings are usually highly tesselated so that scene polygons
cannot be used as occluders. Furthermore, the algorithm works primarily with volumetric occluders. For
our implementation we chose to use the occluders that are created by our modeling system. Since buildings
are procedurally created starting from building footprints, we use these extruded footprints as volumetric
occluders and shrink them at startup (see chapter 7).
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5.5 Rendering and merging occluder shadows

This section explains how to extend the frame buffer algorithm described in chapter 4 to calculate the
umbra from a view cell instead of one sample point only. The idea is to merge umbrae from sample points
already in graphics hardware.

The input to this algorithm is a set of occluders OS (represented by occluder edges in 2.5D) and a
number of point sample locations PS for the chosen view cell. The output is the cull map, an encoding of
the umbra stored in the z-buffer. A pixel in the z-buffer corresponds to a square cell in the scene and the
z-value of that pixel encodes the height of the umbra for that cell (see section 4.3.2 and figure 4.3). The
cull map is created by rendering shadow polygons computed by the viewpoint and an occluder edge into
the cull map.

In 2.5D, the umbra is a function z = f(x, y). Merging umbrae f1 and f2 from two occluders O1, O2 ∈
OS for the same viewpoint can be done by calculating the union

z = max(f1(x, y), f2(x, y))

for all (x, y), since for a point in space to be in shadow, it suffices if it is in shadow with respect to one
occluder. We use the z-buffer of commonly available graphics hardware to represent umbrae by rendering
them in an orthographic projection of the scene.

While the umbra from a single point sample can be computed in that way, the umbra of a view cell
requires the intersection of the umbrae from all sample points P ∈ PS, i. e.

z = min(max(fO,P (x, y) for all O ∈ OS) for all P ∈ PS )

Incremental rendering of the union of occluder shadows is easily performed with a z-buffer by rasteriz-
ing one occluder shadow polygon after the other. Incremental rendering of the intersection of the union of
occluder shadows is only conceptually simple, but not trivial to implement. A solution requires a two-pass
rendering effort using a combination of z-buffer and stencil buffer. For the first sample point, all shadow
polygons are rasterized just like in chapter 4. Then, for each additional sample point, after clearing the
stencil value to zero, the following two passes are carried out:

• The first pass identifies pixels where the previously accumulated umbra is already correct. This is
when any pixel from a new shadow polygon is higher than a pixel from the previous umbra. This
is done by rendering all polygons from the new sample point and setting the stencil value to 1 if a
greater z-value is encountered (z is not written in this pass).

• In the second pass, only pixels that are not yet correct (i.e., pixels that have not been identified in
the first pass) are considered (by testing the stencil value for zero). Those pixels are initialized to
a zero depth value and updated by simply rendering all shadow polygons from the current sample
point again (this time, z-values are written).

After all sample points have been considered, the cull map is copied to main memory and potentially
visible objects are determined by comparing their maximum z-values against the z-values stored in the cull
map.

5.6 Hierarchical occlusion test

For rapid preprocessing of large scenes, rasterizing all occluders to obtain a close approximation of exact
visibility is not feasible. Quick rejection of large portions of the scene including the contained occluded
occluders is essential. To achieve this goal, we employ a hierarchical approach. The idea is to calculate
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Figure 5.6: After computing an initial cull map, arbitrary parts of the scene can be quickly rejected by
projecting their axis-aligned bounding boxes against the horizon of the cull map.

visibility for a smaller area around the viewpoint and use the result to determine occlusion of larger parts
of the scene, especially of other occluders.

Starting from an initial size, e.g. 100x100 pixels, we construct successively larger cull maps (e.g., twice
as large in each dimension). At the borders of each cull map, the z-buffer values define a cross section
through the umbra, the cull map horizon. In each iteration, this information is used for the following tests:

1. If all scene objects are found to be invisible with respect to the cull map horizon, the algorithm
terminates, and the visible objects can be collected from the cull map (“early break”).

2. Occluders for the next iteration which are inside the current cull map are tested against the z-values
of the current cull map and are rejected if they are found invisible.

3. Occluders for the next iteration which are outside the current cull map are tested against the cull map
horizon and rejected if found invisible.

To test an object (or occluder) outside the cull map against the cull map horizon for visibility, it is
sufficient to guarantee that no sight line exists between the object and the view cell. To quickly evaluate
this criterion, we consider the bounding box of an object (or an occluder) and the bounding box of the
view cell (Figure 5.6). For those two boxes we calculate the two supporting planes on the side and one
supporting plane at the top from a bounding box edge of the object to a bounding box edge of the view cell.
These three planes define a conservative view channel from the view cell to the object. This view channel
is intersected with the cull map horizon. An object is occluded if the computed view channel is completely
contained in the horizon.

We use a quadtree of axis aligned bounding boxes for accelerating the bounding box tests, so that
together they sum up to less than 5% of the total algorithm computation time.

5.7 Implementation and results

A walkthrough system using the techniques outlined in this chapter was implemented in C++ and OpenGL.
All tests reported here were run under Windows NT on a Pentium-III 650MHz with 1GB RAM and a
GeForce 256 graphics accelerator.
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5.7.1 Preprocessing

A model of the city of Vienna with 7,928,519 polygons was used throughout testing (Figure 5.9). It
was created by extruding about 2,000 building block footprints from an elevation map of Vienna, and
procedurally adding façade details such as windows and doors. One building block consists of one up
to ten connected buildings. Note that each building block was modeled with several thousand polygons
(3,900 on average). Building blocks were further broken down into smaller objects (each consisting of a
few hundred polygons) which were used as primitives for occlusion culling.

82,300 view cells were considered. The sample spacing constant ε was set to 1 m, which led to the use
of 6-8 sample points per view cell edge on average. An initial cull map size of 100x100 pixel (with a grid
cell size of 2 m for the final walkthrough) was used, with a maximum cull map size of 1,500x1,200 pixel
(tiled) for the hierarchical algorithm.

Preprocessing took 523 minutes. 54% of the preprocessing time were spent on reading back cull maps
from the frame buffer.

5.7.2 Quality

We experimented with different settings for sample spacing (ε), cull map grid size and cull map dimensions.
Figure 5.7 shows the results for various grid sizes. As can be seen, larger grid sizes also yield acceptable
occlusion, allowing the handling of larger models. On average, our algorithm identifies 99.34% (1:150) of
the scene as occluded. While these numbers are representative for a real-world data set, arbitrary occlusion
ratios can be generated by increasing the depth complexity of the model. More interesting is the fact that
the absolute number of occluders (in our case, occluder edges) that contribute to occlusion is about 200 on
average for our test model, which is quite high. See section 5.8.2 for a discussion of this fact.
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Figure 5.7: Influence of various grid sizes of the cull map on occlusion quality. Plotted are the number of
visible objects (y-axis) against the view cells visited in the test walkthrough.

5.7.3 Real-time rendering

To assess real-time rendering performance, precomputed occlusion was used to speed up rendering of a
prerecorded walkthrough of the model, which was 372 frames long and visited 204 view cells. The model
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consumed approximately 700 MB (including auxiliary rendering data-structures) and was fully loaded into
main memory before the beginning of the walkthrough. Occlusion information (object IDs of potentially
visible objects for each view cell) consumed 55 MB and was also fully loaded.
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Figure 5.8: Frame times of occlusion culling vs. view-frustum culling for the walkthrough. Note that frame
times are plotted on a log scale to fit two orders of magnitude into the diagram.

We measured frame times for two variants

• Full occlusion culling

• View-frustum culling as a reference measurement

Occlusion culling provided an average speed-up of 93.78 over view-frustum culling. Figure 5.8 shows
the frame times from our walkthrough for occlusion culling vs. view-frustum culling (logarithmic scale).
Note that the desired 60 Hz are achieved for the second part of the walkthrough (rather dense occlusion),
while the first part (wide open view) would require further optimizations (e. g. the use of simplified
representations for distant objects).

5.8 Discussion

5.8.1 Comparison

Competitive methods for view cell visibility have only recently been investigated independently by other
authors. We are aware of two approaches: both require that an occluder intersects the accumulated umbra
of previously considered occluders for occluder fusion to occur. Schaufler et al. [Scha00] extend blockers
into areas already found occluded, while Durand et al. [Dura00] project occluders and occludees onto
planes with new extended projections from volumetric view cells.

While these methods work in full 3D, they only consider a subset of occluder interactions handled by
our method. Since their spatial data structure only represent umbra information, they cannot handle cases

54



Chapter 5 Visibility from a Region

such as figure 5.2, letter c, for example, where the penumbrae of two occluders can be merged, even though
there is no joint umbra. In most cases, this will cause a larger number of objects to appear in a PVS than
necessary.

We found that complex shadow boundaries already arise in simple cases. Even in 2.5D, a simple
occluder with non-convex footprint gives rise to so-called ’EEE event surfaces’ [Dura97], ruled quadric
surfaces incident on three edges in the scene. Those event surfaces bound the umbra due to the occluder,
but are usually not considered in other methods. Our approach discretizes such boundaries through point
sampling, which gives a good approximation of the real umbra.

We believe that discretization is a reasonable trade-off between correctness and efficiency: our method
implicitly handles all types of occluder interactions, and if we decrease ε together with the cull map grid
size, our method converges to a correct solution.

Although the idea of occluder shrinking and point sampling is applicable also in 3D, an extension of the
hardware-accelerated methods presented in section 5.5 is not straightforward, which is the main limitation
of our algorithm.

5.8.2 Selection of occluders

Several algorithms achieve good results with a heuristic which selects a set of occluders that is most likely
to occlude a large part of the scene [Coor97, Huds97]. However, we have found that the number of
occluders that contribute to occlusion is typically quite large (as indicated by results presented in section
5.7.2). Even missing small occluders can create holes that make additional objects visible. For an accurate
representation of occlusion, only those occluders that would not contribute to a more exact solution can be
discarded. In our case, these are the occluders inside the calculated umbra.

5.8.3 Use of graphics hardware

Using a large number of occluders requires significant computational effort. However, our preprocessing
times are reasonable even for large scenes because the sole geometric operation, occluder shrinking, needs
to be performed only once during preprocessing. Per view cell operations almost fully leverage the speed
of current rasterization hardware, so we can calculate and render up to several hundred thousand occluder
shadow polygons per second.

A disadvantage of our method is that it requires read access to the frame buffer. In current consumer
hardware this access is reasonably fast1, but still too slow to allow more efficient variations of the proposed
algorithm. Ideally, we would like to test each occluder for occlusion just before it is rendered.

5.9 Conclusions and future work

Visibility preprocessing with occluder fusion is a new method for accelerated real-time rendering of very
large urban environments. While it cannot compute exact visibility, no simplifying assumptions on the
interaction between occluders or heuristics for occluder selection are necessary. Through point sampling,
the proposed algorithm approximates actual umbra boundaries due to multiple occluders more exactly than
previous methods, leading to better occlusion.

The measured number of occluders that contribute to occlusion (200 on average) leads us to believe
that simultaneous consideration of a large number of occluders is indeed crucial for achieving significant
culling in hard cases where large open spaces are visible. The frame rates from our walkthrough, which are

1Note that the timings in this chapter were done using an older GeForce driver. Newer drivers, released after spring 2000, are an
order of magnitude faster.
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closely below or above the desired 60 Hz, show that no significant time is available for on-line occlusion
calculation, and that precomputed occlusion is necessary for true real-time performance.

To sum up, we are approaching our goal of hard real-time rendering. We demonstrated that walk-
throughs with high frame rates are feasible. The problem of constant frame rates, however, cannot be
addressed by visibility calculations alone. Although our current research focuses on constructing suitable
image-based representations for areas of the city where visibility preprocessing is not sufficient [Wimm01],
the description of these methods is beyond the scope of this thesis. Instead, we will address another
visibility-related problem in the next chapter—preprocessing times.

While computation time of a preprocessing step is not strictly critical, it is still an issue in practice. The
use of graphics hardware and hierarchical cull map generation makes our algorithm practical even for large
data sets. However, precomputation times of several hours are still inconvenient. In the next chapter, we
propose a method that eliminates preprocessing and calculates visibility for small view cells at runtime.

Figure 5.9: Overview of the 8 million polygon model of the city of Vienna used as a test scene. Note
that the city is modeled in very high detail - every window, for example, is modeled separately with 26
polygons.
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Instant Visibility

We present an online occlusion culling system which computes visibility in parallel to the rendering
pipeline. We show how to use point visibility algorithms to quickly calculate a tight potentially visible
set (PVS ) which is valid for several frames by shrinking the occluders used in visibility calculations by
an adequate amount. These visibility calculations can be performed on a visibility server, possibly a dis-
tinct computer communicating with the display host over a local network. The resulting system essentially
combines the advantages of online visibility processing and region-based visibility calculations, allowing
asynchronous processing of visibility and display operations. We analyze two different types of hardware-
based point visibility algorithms and address the problem of bounded calculation time which is the basis
for true real-time behavior. Our results show reliable, sustained 60 Hz performance in a walkthrough with
an urban environment of nearly 2 million polygons, and a terrain flyover.

6.1 Introduction

In chapter 4 we introduced a point visibility algorithm for urban environments. The general problem of
point visibility algorithms is that they have to be executed for each frame and the renderer cannot proceed
until a PVS is available. Their relatively long computation time significantly reduces the time available to
render geometry, if not reducing the achievable frame rates below limits acceptable for real-time rendering
applications.

Therefore, we concluded that hard real-time rendering can better be achieved with visibility preprocess-
ing (see chapter 5). Precalculating visibility for a region of space (view cell) reduces almost all runtime
overhead. However, there is a tradeoff between the quality of the PVS estimation on the one hand and
memory consumption and precalculation time on the other hand. Smaller view cells reduce the number of
potentially visible objects and therefore improve rendering time. However, smaller view cells also increase
the number of view cells that need to be precomputed, which can result in prohibitively large storage re-
quirements and precalculation times for all PVS s. Another problem is that many runtime modifications
of the scene cannot be handled, and even small offline changes to the model might entail several hours
of recomputation. This makes region visibility a viable choice for certain models (as, for example, in a
computer game), but impractical for dynamic systems where changes to the model occur frequently (as,
for example, in an urban modeling scenario).

In this chapter we address the aforementioned problems. We show how to achieve a large improvement
over previous systems by adding new hardware to the system in the form of an additional machine in the
network which is used as a visibility server. We calculate visibility at runtime, avoiding memory problems
because the PVS need not be stored, but for a region, allowing it to be calculated in parallel to the rendering
pipeline so that it imposes virtually no overhead on the rendering system. This results in Instant Visibility,
a system which calculates a tight PVS with very little preprocessing and practically no runtime overhead
on the graphics workstation.
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The remainder of the chapter is organized as follows: after reviewing some relevant work, section 6.2
gives an overview of the system, and section 6.3 gives a detailed description of the various algorithms
involved. We discuss integration of existing point visibility algorithms into our system in section 6.4, and
present results in section 6.5. Section 6.6 gives a detailed discussion of some important aspects of the
system.

6.2 Overview

We introduce a new visibility system that allows calculating visibility in parallel to the traditional rendering
pipeline. The idea is to calculate a visibility solution (PVS ) which is valid for several frames, depending on
a maximum observer movement speed. This is achieved by using a point visibility algorithm and shrinking
the occluders so as to make the resulting visibility solution valid for a certain ε-neighborhood around the
viewpoint from which the visibility solution is calculated.

The algorithm consists of a short preprocessing phase and an online phase. The following parameters
have to be determined in advance:

• Choose a point visibility algorithm.

• Decide how much time to allot for the visibility solution.

• Set a maximum observer movement speed.

In the preprocessing phase, occluders are generated for the scene and shrunk by an amount determined
through the maximum movement speed and the time allotted for the visibility solution. For the online
phase, two computing resources are needed:

• one resource to render and display frames with the current PVS

• a second resource to calculate the PVS for the next set of frames

6.3 Instant visibility

6.3.1 The traditional pipeline

The traditional rendering pipeline consists of several steps, where each step depends on the outcome of the
previous step. Roughly, we identify two important steps of the pipeline for our discussion:

• Vis(P ) determines which objects are visible from an observer position P .

• Draw(P ) draws (traverses, transforms, rasterizes) the objects identified as visible as seen from the
observer at position P .

These two steps communicate via the

• PVS (P ), potentially visible set, i.e., the set of objects determined to be potentially visible for a
position P .

Efforts to parallelize Vis(P ) and Draw(P ) (for example, in a manner consistent with the multiprocess-
ing mode of a popular rendering toolkit [Ecke00]) suffer from latency, since Draw(P ) requires the result
of Vis(P ) to be able to operate (Figure 6.1 left).
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Figure 6.1: (Left) Parallelization in the traditional pipeline introduces latency and limits the time available
for visibility. The figure shows where additional latency is introduced. (Right) The new Instant Visibility
pipeline. Vis can take several frame times, the arrows show for which frames the resulting PVS is used.

6.3.2 Extending PVS validity

In chapter 5 we showed that the result of any point visibility algorithm can be made valid for an ε-
neighborhood around the viewpoint by occluder shrinking. If all occluders in the scene are shrunk by
an amount of ε, the pipeline step Vis(P ) actually computes

PVS ε(P )

the set of objects potentially visible from either the point P or any point Q with ‖P − Q‖ < ε.
PVS ε(P ) can also be characterized by

PVS (P ) ⊆ PVS ε(P ) ∀Q : ‖P −Q‖ < ε

We observe that the result of Vis(P0) is still valid during the computation of Vis(P1), as long as the
observer does not leave an ε-neighborhood around P0.

6.3.3 Parallel execution

We exploit the above observation to remove Vis from the pipeline and instead execute it in parallel to the
pipeline (Figure 6.1 right). Vis(P ) might even take longer than a typical frame to execute - as long as the
observer doesn’t move too far away from P . More precisely, it is easy to show the following

Lemma 1 Assume a frame time of tframe . Assume also that Vis(P ) takes at most a time of tvis to compute,
where tvis is a multiple of tframe , and Vis(P ) always starts at a frame boundary. Then the time tε for which
the visibility solution PVS ε(P ) computed by Vis(P ) has to be valid so as to allow parallel execution of
Vis and Draw can be calculated as

tε = 2tvis − tframe

Proof 2 Vis(Pi) takes tvis to calculate. The result has to be valid till the result from Vis(Pi+1) is avail-
able, which takes again tvis . But, the last frame where PVS ε(Pi) is valid displays an image for a viewpoint
at the start of the frame. During the time period needed to render this last frame, no visibility solution is
actually needed. So, we have tε = tvis + tvis − tframe .

Given a maximum observer speed vmax , the amount ε by which to shrink occluders can now be readily
calculated as
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ε = tεvmax

If the visibility solution does not take longer to compute than a typical frame (i.e., tvis = tframe ), this
means that tε = tframe and ε identifies the amount of space the observer can cover in one frame.

The algorithm described here effectively allows near-asynchronous execution of Vis and Draw . This
makes it possible to achieve high frame rates even if the used visibility algorithm is not fast enough to
complete in one frame time. In a typical scenario, the point visibility algorithm can provide results at a rate
of at least 20 Hz, and the screen update rate is 60 Hz. Then PVSε has to be valid for the distance ε the
observer can go in 5 frames. Assuming a maximum observer speed of 130 km/h, ε would be 3 m.

6.3.4 Networking

Executing visibility in parallel to rendering requires an additional computing resource. If the point visibility
algorithm does not need access to graphics hardware itself, it can run on a separate processor. In case the
point visibility algorithm does need access to graphics hardware, multichannel architectures allow the
system to run on one machine.

The real strength of the method, however, lies in its inherent networking ability. The low network
latency of today’s local area networks allows a second machine to be used as a visibility server. At the start
of a visibility frame, the current viewpoint is passed to the visibility server. After visibility calculations,
the PVS is transmitted back to the graphics workstation.

A PVS typically contains object identifiers of a spatial scene data structure, so the size of a PVS
depends on the granularity of this data structure and the amount of occlusion present. It should be noted
that PVS -data is well compressible; even standard entropy coding achieves a compression ratio of up to
3:1. To give a practical example, passing a PVS containing 4,000 32bit object identifiers on a 100MBit-
network takes about 1ms after compression.

Running the point visibility algorithm on a second machine also has the advantage that access to graph-
ics hardware is automatically available, provided the visibility server is equipped with a good graphics
card.

6.3.5 Synchronization

Running the visibility step in parallel to the rendering step requires synchronizing the two. In particular, it
is crucial to deal with situations where visibility takes longer than tvis to calculate, because the rendering
step cannot continue without a potentially visible set. We list several ways to cope with this problem and
discuss their applicability.

The preferred strategy depends strongly on the point visibility algorithm chosen. Many such algorithms
consist of two steps: creating an occlusion data structure using a set of occluders, and testing the scene
against this occlusion data structure. We assume that the number of occluders to draw determines the
running time of visibility, and that the time necessary to test the scene against the occlusion data structure
can be determined in advance.

guaranteed visibility Use a point visibility algorithm that has an inherent bound on its running time.

abort visibility Consider only so many occluders that visibility can execute in tvis .

predictive occluder scheduling Determine in advance which occluders to use so that visibility can exe-
cute in tvis and best possible occlusion is achieved. If occluder levels of detail are available, they can
be incorporated in a similar fashion to Funkhouser’s predictive level of detail scheduling [Funk93].
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Figure 6.2: (Left) An orthographic occlusion map. The shadow cast by an occluder is projected ortho-
graphically into the cull map, which stores the depth values of the highest shadow. (Right) A perspective
occlusion map. Occluders are projected onto a plane defined by the current camera parameters.

The next two possibilities are intended as fallback-strategies rather than solutions of their own, in case
the other strategies fail, or small errors are not an issue and the chosen visibility algorithm executes fast
enough in the majority of cases. They are implemented in Draw instead of Vis .

stall Stall movement to prevent the observer from leaving the ε-neighborhood as long as there is no visi-
bility solution available. This always guarantees correct images.

incomplete visibility Let the observer leave the ε-neighborhood, but still use PVSε(P ). Errors in visibil-
ity might occur, but observer speed is continuous and unhampered.

6.4 Integration with current occlusion culling algorithms

In this section we discuss important issues when integrating a point occlusion algorithm into the system.

6.4.1 Choice of projection

Image-based occlusion culling algorithms rely on projecting occluders and scene objects to a common
projection plane.

For the application in urban environments, we propose rendering the shadows cast by occluders into
an orthographic top-down view of the scene, the cull map (Figure 6.2 left and chapter 4). Although the
approach is limited to 2.5D scenes, it has two advantages:

• Shrinking the occluders also guarantees conservative rasterization of occluder shadows into the cull
map.

• It is very easy to calculate occlusion for a whole 360◦ panorama.

Other common approaches like the hierarchical z-buffer or the hierarchical occlusion maps are based
on a perspective projection of the occluders and the scene into the current viewing frustum (Figure 6.2
right). The advantage is that arbitrary 3D scenes can be processed. However, visibility is only calculated
for the current viewing frustum. Therefore, the viewing frustum (a pyramid) for occlusion culling has to
be carefully chosen so as to include all parts of the scene that could be viewed within a time of tε.
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Figure 6.3: Adjusting the frustum for perspective projections. The original frustum f1 is made wider by an
angle of ϕ. The resulting frustum f2 is then moved back to yield a frustum f3 tight on the ε-neighborhood,
to accommodate rotation and movement during the time tε.

To make this at all possible, a maximum turning speed ωε has to be imposed. The viewing pyramid is
then made wider at all sides by the angle ϕ the observer can turn in tε, given by ϕ = tεωε. Finally, the
pyramid is moved backwards until it fits tightly on an ε-sphere centered on the viewpoint, to account for
backward and sideward movement (Figure 6.3).

As a simple example, assume visibility and screen update rates of 20 Hz and 60 Hz respectively, as
above. If ωε = 180◦

s (e.g., relatively fast head movement), the pyramid would have to be made wider by
15◦ on each side. This would enlarge a typical viewing frustum of 60◦ to 90◦.

6.4.2 Occluder selection policies

The execution speed of most current occlusion culling algorithms is mainly determined by the number of
occluders they consider. It is thus desirable not to render all occluders for every viewpoint. Typically, a
heuristic based on the projected area is used to select a number of relevant occluders. Note that since only
visible occluders contribute to occlusion, finding all relevant occluders boils down to solving the visibility
problem itself - it is therefore not possible to find exactly all relevant occluders.

We present and discuss 3 different approaches to occluder selection. In the discussion, an occlusion
data structure is a perspective or orthographic projection of occluders.

conservative Always render all occluders. Although slow, this approach has the advantage that the time
required for calculating visibility can be estimated or even bounded, which is important when deter-
mining the number of frames to allot for visibility calculation.

temporal coherence Use the set of occluders visible in the previous visibility step. Since new important
occluders can appear even when moving only a small distance, occlusion will not be perfect. This
approach is useful in scenarios where visibility takes quite long to compute, but the rendering step is
not saturated. It essentially moves load from Vis to Draw .

2-pass In a first pass, create an occlusion data structure with the occluders visible in the previous step as
above. But instead of the scene, test the occluders against this data structure for visibility. Occluders
found visible are used to create a new occlusion data structure in a second pass. The scene is then
tested against this new occlusion data structure for visibility.

Like the conservative approach, this approach computes the correct PVS , and like the temporally
coherent approach, it reduces the number of occluders to be used, at the expense of having to build
an occlusion data structure twice. It is best used when rendering all occluders is expensive compared
to testing objects against the occlusion data structure.
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6.4.3 Occluder shrinking

Theoretically, Instant Visibility works with any point visibility algorithm. In practice, there are restrictions
on the type of occluders that can be used. In order to shrink occluders in 3D, they must be of volumetric
nature. Furthermore, typical occluding objects should be large enough to ensure that shrunk occluders
provide sufficient occlusion. See chapter 7 for details about occluder shrinking.

6.5 Implementation and results

We have implemented an Instant Visibility system and show its applicability on two different test scenes.

The first scene (Figure 6.4) demonstrates a walkthrough of an urban environment (2 km x 2 km) consist-
ing of about 1.9 million polygons. An orthographic projection was used for the point visibility algorithm.
For each visibility calculation we considered all occluders in the scene. 1,483 occluders (Figure 6.6) were
generated from the building footprints and shrunk with the 2D algorithm described in chapter 7. Shrinking
the occluder takes no more than 4 seconds.

The second scene (Figure 6.5) shows a flyover of a mountain range (4 km x 4 km) populated with
trees. The size of the complete database is 872,000 polygons. Orthographic projection was used for point
visibility, and 4,470 occluders (Figure 6.7) were generated from the terrain grid.

We recorded a path through each environment and compared the frame times for rendering without
occlusion, rendering using region visibility, rendering using Instant Visibility and the pure visibility calcu-
lation times (Tab. 6.1). For Instant Visibility, we set the rendering frame time to 16 ms and the visibility
frame time to 32 ms (= two rendering frames) for both experiments. Head rotation was not restricted, so
we calculated occlusion for a full 360◦ panorama. Viewer movement was restricted to 108 km/h for the
first scene (which gives ε = 1.5 m) and 720 km/h for the second scene (which gives ε = 10 m).

urban walkthrough
method avg min max std dev.
VFC 207.3 57.6 733.4 131.9
region visibility 8.7 3.1 15.7 2.8
Instant Visibility 7.4 2.7 12.9 2.1
visibility time 19.0 17.6 20.9 0.4

terrain flyover
method avg min max std dev.
VFC 10.8 2.6 23.0 5.2
region visibility 6.2 1.0 14.2 3.3
Instant Visibility 5.5 1.0 13.6 3.3
visibility time 19.1 23.5 17.6 0.9

Table 6.1: The table shows the measured times in milliseconds for the two test scenes. We measured
rendering times for view-frustum culling (VFC), region visibility and Instant Visibility. The last row shows
the time required for the visibility calculations for Instant Visibility. Note that the rendering times for
Instant Visibility always stay below 16 ms. This is necessary for a 60 Hz simulation.

We want to point out the following observations:

• Instant Visibility is slightly better than region visibility.

• The frame rate is always below 16 ms for Instant Visibility. To give a real guarantee for the frame
rate, LOD switching [Funk93] would have to be implemented. For our results, we only used distance
based LODs for the trees in the terrain flyover.
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Figure 6.4: This figure shows an orthophoto of the urban environment. The area is located near the center
of Vienna and is about 2 km x 2 km wide.

• The times for visibility are well below 33 ms. Although the standard deviation is very small, a real
guarantee would require a very careful analysis of the code. The variation is mainly due to the code
that tests the scene against the occlusion map.

We additionally measured the latency and throughput of our 100 MB/s network by sending PVS data
from the server to the client. We measured 0.741 ms on average for the latency (min: 0.605 / max: 0.898)
and 1.186 ms for a PVS of 8 KB (min: 0.946 / max: 1.694). For our examples we did not need more than
4 KB of PVS data.

6.6 Discussion

We have shown that the Instant Visibility system is able to handle different types of scenes while main-
taining high frame rates. An important aspect of a walkthrough system is to make reasonable assumptions
about observer movement. Although it might be true that walking speed is limited to several km/h in the
real world, it is doubtful that imposing such speed limits would benefit the behavior of a typical user of
a walkthrough system. Mouse navigation in particular allows the user to change location quickly and to
rapidly explore different sections of the environment. We have observed peak speeds of about 300 km/h in
the urban scene, and up to 3,000 km/h in the terrain scene. The actual limits to be chosen depend strongly
on the type of application (100 km/h might be a reasonable limit for an urban car simulation, for example)
and user behavior.

Another point to note is that the Instant Visibility system solves the visibility problem by providing a
PVS for each frame, but this PVS might still be too complex to be rendered interactively on the graphics
workstation. Level-of-detail approaches and image-based rendering methods should be used to further
reduce the rendering load. Funkhouser’s predictive level-of-detail scheduling [Funk93] provides a way to
maintain the desired frame rate during a walkthrough (in this method, levels of detail are selected before
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Figure 6.5: This figure shows an overview of the terrain. The model covers 4 km x 4 km of the city of
Klosterneuburg, a smaller city in the north of Vienna.

Figure 6.6: The figure shows the building fronts that are used as occluders in the urban walkthrough. The
parks are shown as green textured polygons and are not used as occluders.
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Figure 6.7: The occluders used for the terrain flyover are shown in red.

Figure 6.8: The figure shows a frame of the urban walkthrough. Note that the geometric complexity is
high, as all windows are modeled as geometry.
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Figure 6.9: A typical frame of the terrain flyover. Note that a large portion of the scene is visible.

a frame is rendered so as to maximize the visual quality while bounding the rendering cost). Terrain
rendering should benefit from a multiresolution algorithm.

We would also like to briefly skirt the problem of hard real-time systems. Although the Instant Visibility
system tries to maintain a given frame rate, it is not a hard real-time system. It is in general hard to give
accurate running times and upper bounds for any algorithm, and especially so for rendering and visibility
algorithms which depend on graphics hardware and drivers. Therefore, the system can occasionally miss a
frame, which we deem reasonable in view of the high costs involved in assuring hard real-time behavior.

The Instant Visibility system works very well if overall smooth system behavior and high frame rates
are desired. The advantage over region visibility is that the time required for preprocessing is negligible,
so that it is even possible to modify the scene during runtime. If occluders are shrunk separately, rigid
transformations do not require any recalculation at all; in all other cases, calculations remain local to the
area changed. This was one of the motivations that lead to the creation of the Instant Visibility system—we
found that we rarely ever used region visibility because the needed PVS dataset was never available, and
if it was, the scene had already changed, making the PVS unusable.

Another advantage over region visibility is that the view cells defined by an ε-neighborhood are usually
smaller than typical view cells for region visibility, providing for better occlusion.

However, if its significant storage overhead and precalculation time are acceptable, region visibility
offers the advantage that difficult visibility situations can be treated with special care. If the PVS is large,
the visibility solution can be refined, and alternative representations for objects can be precalculated on a
per-view cell basis. This is advantageous for shipping systems where the scene is not going to change, and
which should not require more resources than a single machine.

Finally, we discuss the issue of latency and synchronization. The advantage of Instant Visibility over
traditional pipeline systems is near-asynchronous execution of visibility and rendering, which is tightly
coupled with a reduction in latency. In a traditional pipeline architecture [Ecke00, Alia99a], visibility and
rendering have to be synchronized, so the rendering frame rate is tied to the time required for visibility
(Figure 6.1). The latency from user input to the display of an image on the screen is therefore at least twice
the time required for visibility (an image is always displayed at the end of a frame interval). In Instant
Visibility, on the other hand, the time required for visibility only influences the maximum observer speed.
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The graphics hardware can render at the highest possible frame rate, and the latency is always one frame
interval. At the same time, visibility can be calculated more accurately because there is more time available
for visibility and thus more occluders can be considered.

6.7 Conclusions

We have introduced Instant Visibility, a system to calculate visibility in real-time rendering applications.
Instant Visibility combines the advantages of point and region visibility, in that it is based on a simple
online visibility algorithm, while producing a PVS that remains valid for a sufficiently large region of
space. We have demonstrated the behavior of the system in two real-time simulation applications with
sustained refresh rates of 60 Hz. We believe that Instant Visibility is a valuable alternative to visibility
preprocessing (see chapter 5) and we would strongly recommend the use of Instant Visibility whenever a
second computer is available as a visibility server or in a multiprocessor system like the Onyx2.
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Chapter 7

Occluder Synthesis and Occluder
Shrinking

7.1 Occluder synthesis

Among the objects in the scene, candidates for good occluders have to be identified. An occluder should
have good potential for occlusion - it should be fully opaque and large enough to possibly occlude other
parts of the scene. Objects like trees, bushes, vehicles, or roads violate one or more of these requirements,
which leaves mainly buildings and the terrain as useful occluders.

It is important to note that the algorithms described in this thesis basically rely on volumetric occluders.
This restriction is not necessary but simplifies the calculations greatly. The proof presented in this chapter is
also based on volumetric occluders. Even for the point visibility algorithm we shrink volumetric occluders,
which allows all shrinking operations to be done at startup.

The second important fact is that good models are highly tesselated, which prevents us from using the
geometric information directly. Occluders have to be synthesized from the input scene. This occluder
synthesis is an open research problem that is not addressed in this thesis. Instead we make use of a priori
knowledge about the scene structure. The input scenes for our tests are generated by a procedural modeling
system (Figure 7.1). The input to the modeling system is a file describing the building footprints and the
building heights. We simply use the extruded building footprints as volumetric occluders. We do not need
to consider irregular features of the façade like doors, windows or balconies as long as we can guarantee
that occluders are a subset of the visual hull (i.e., the maximal object that has the same silhouettes and
therefore the same occlusion characteristics as the original object, as viewed from all view cells [Laur94]).
The footprint of the occluder may be (and usually is) concave.

An extruded building footprint is a volumetric occluder. However, the calculation of occluder shadows
relies on polygonal occluders. Each edge of a building footprint defines such a polygonal occluder that
corresponds to a façade in the real city (Figure 7.2).

Our current implementation handles arbitrary 2D-occluders and height fields stored as a regular grid
(each grid point has a height value). However, the occluders from the terrain data were only used for
the terrain flyover, because the city model we use is sufficiently dense so that the terrain occluders would
not add additional occlusion. Although our implementation only handles the 2D and the 2.5D case, the
Occluder Shrinking principle can be applied to full 3D, and the proof in the next section is valid for three-
dimensional volumetric occluders.
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Figure 7.1: A simple overview of our modeling system. Starting from a satellite image, building footprints
are digitized and heights are generated randomly. As a second step the building footprints are extruded
automatically so that façade detail is added to the buildings.

building footprint volumetric occluder

edge

occluder polygon

Figure 7.2: This figure shows the relation between volumetric and polygonal occluders. (Left) A building
footprint. (Right) The extruded building footprint defines a volumetric occluder. One edge of the building
footprint corresponds to an occluder polygon.

7.2 A proof for conservative point sampling

Let an occluder O be an arbitrary connected subset of R3. A shrunk occluder O′ is a subset of O so that
for all points A ∈ O′ : |B −A| ≤ ε→ B ∈ O.

Theorem 3 Any point P that is occluded by O′ seen from a sample point V is also occluded by O from
any sample point V ′ with |V ′ − V | ≤ ε (Figure 7.3).

Proof 4 Assume there is a V ′ for which P is not occluded by O. Then any point along the line segment
V ′P must not be contained in O. Since P is occluded, there is at least one point Q ∈ O′ along the
line segment V P . V V ′P form a triangle and |V ′ − V | ≤ ε, so there must be point Q′ along V ′P with
|Q′ − Q| ≤ e . By definition, all points within an ε-neighborhood of Q are contained in O, so Q′ is
contained in O. Therefore P cannot be visible from V ′. q.e.d.

Corollary 5 A viewing ray starting in V ′ which is parallel to V P must also intersectO, as there must also
be a point Q′′ along the parallel ray with |Q′′ − Q| ≤ ε, which again implies Q′′ ∈ O. It follows that
if a rasterized shadow polygon line goes through the center of a pixel (causing the pixel to be shaded by
rasterization hardware), all parts of the pixel with a distance to the line ≤ ε are guaranteed to belong to the
ideal shadow polygon which would have been cast by V ′ through O. Therefore O′ also yields conservative
results with respect to rasterization error if ε ≥ k

√
2

2 , where k is the length of one cell of the cull map, as
k
√

2
2 is exactly the maximum distance of two parallel lines through the same pixel where one of them passes

through the pixel center (Figure 7.4).
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Figure 7.3: Any point P hidden by a shrunk occluder O′ from V is also hidden by the original occluder O
from any point V ′ in an ε-neighborhood of V .
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Figure 7.4: A pixel together with an actually rendered shadow polygon S(O′, V ) (shaded dark) rendered
from sample point V for a shrunk occluderO′, and the additional part of an ideal shadow polygon S(O, V ′)
(shaded light) as it would be rendered by infinitely precise rendering hardware from some point V ′ with
|V ′ − V | ≤ ε for the original occluder O. The pixel shown is filled by hardware because S(O′, V ) covers
the pixel center. If ε ≥ k

√
2

2 , all of the pixel is actually covered by S(O, V ′) and rasterization is correct.

Note that it can be shown that conservative results can already be had if ε ≥ k
2 , but a proof for this is

more involved.

7.3 Implementation of occluder shrinking

7.3.1 Occluder shrinking in 3D

A general polyhedral occluder must be shrunk so that any point of the surface of the shrunk occluder has at
least a distance of ε to any point on the surface of the original occluder, so that any object occluded by the
shrunk occluder from a sample point will also be occluded with respect to the original larger occluder for
any point in an ε-neighborhood of the sample point. In practice, rather than directly shrinking the original
occluder’s geometry, it is easier to take an indirect approach by enlarging the exterior of the occluder and
intersecting the enlarged exterior with the occluder.

If volumetric objects are given as polyhedra we can shrink occluders as follows: Calculate a tetrahedal-
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ization for the exterior of the occluder, enlarge each tetrahedra by ε, and intersect the occluder with the
union of all enlarged tetrahedra. Polyhedral set operations have been explored for CSG by applying the
operators directly [Laid86] or via BSP-subdivision [Nayl90].

Purely geometrical approaches are sometimes prone to numerical robustness and efficiency issues. In
an alternative approach based on discretization, Schaufler et al. [Scha00] have shown how to represent the
opaque portion of a general scene via an octree, provided the model is water-tight. The advantage of using
an octree to represent occluders is that the set operations required for shrinking are trivial to implement.
After shrinking the octree, it is converted to polyhedral form. To speed up occluder rendering, it is advisable
to simplify the occluder mesh using a conservative level of detail algorithm [Law99].

7.3.2 Occluder shrinking in 2.5D

In 2.5D, occluders can be arbitrary discontinuous functions z = f(x, y) with compact support. Occluders
must be given as a triangular irregular network, with heights assigned to the vertices of the triangles and
possibly with discontinuities. This is sufficient for city structures; however, building footprints must be
triangulated first (Terrain is usually given in a triangulated form). The following algorithm computes
shrunk occluders:

1. Enclose the occluder in a box larger than the occluder itself and triangulate the whole box area (if
not already done)

2. Above each triangle (no matter whether it belongs to the occluder or the ground), erect a triangular
prism. The union of all these prisms is equal to the exterior of the occluder with respect to the
enclosing box.

3. Enlarge each prism by ε and subtract the enlarged prism from the occluder using standard CSG or
BSP Boolean set operations. Note that enlarging a triangular prism is trivial as it is a convex volume.

7.3.3 Occluders shrinking in 2D

Occluders with constant height (buildings with flat roofs) can be represented by arbitrary 2D polygons with
a single height value. For such occluders, occluder shrinking can be performed purely in 2D:

1. Enclose the polygon in a box larger than the polygon itself.

2. Triangulate the exterior of the polygon.

3. Enlarge each triangle of the exterior by ε and clip the polygon against the enlarged triangle.

At the corner points, the ε-neighborhood of such an enlarged exterior triangle consists of arc segments.
For a good approximation, these arc segments are approximated by tangent lines. Using 3 tangent lines
usually suffices for a good approximation without making the resulting enlarged triangle too complicated
(Figure 7.5).

7.4 Advanced occluder shrinking

This section describes a restricted version of occluder shrinking that is mainly useful for Instant Visibility.
Up to this point we have used occluder shrinking based on ε-neighborhoods. It stands to reason, however,
that the observer is usually limited more in some directions than in others, and therefore an isotropic ε-
neighborhood is not flexible enough. In most applications, movement in the up/down-direction will occur
less frequently and with less speed than movement in the plane.
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Figure 7.5: To extend a triangle by ε, the arc at the corner is approximated by 3 tangential line segments.

We therefore introduce a more formal definition of occluder shrinking based on Minkowski-operators,
which allows handling anisotropic neighborhoods. The Minkowski-subtraction of two sets A and B is
defined as

A�B :=
⋂

b∈B

{a+ b|a ∈ A}

The erosion of a set A by a set B is defined as

E(A,B) := A� (−B)

Intuitively, erosion can be interpreted as flipping the shape B around its origin and using this to carve out
A, with the origin of B following the surface of A. We make use of erosion for occlusion via the following

Lemma 6 Let an occluder O be an arbitrary subset of R3, and let V be the set of possible movement
vectors from the current viewpoint vp (a not necessarily bounded subset of the vector space R3). Define a
shrunk occluder O′ via O′ := E(O, V ). Then any point p occluded by O′ seen from vp is also occluded
by O when seen from any viewpoint vp′ ∈ VP (where VP := vp + v, v ∈ V ).

Proof 7 Interpret occlusion as a shadow problem. Then the space of possible viewpoints VP can be
interpreted as a volumetric light source. The question whether p is occluded as seen from all points of
VP translates to the question whether p is in the umbra region of the light source VP . Erosion has
previously [Luka98] been shown to provide an answer to this problem (the formulation in the previous
chapter is based on Minkowski addition but can easily be shown to be equivalent to erosion).

The practical implication is that occluder shrinking can be adapted to anisotropic observer movement.
If, for example, movement is restricted to the ground plane, then objects only have to be shrunk in the
two dimensions of the plane. An important optimization results for 2.5D environments: the region of
possible observer movements can be approximated by a cylinder with radius ε and slightly elevated top.
The elevation of the cylinder top is defined by how far the observer can move up and down in the time tε.

Implementation of advanced occluder shrinking can proceed exactly as in section 7.3. The new formu-
lation immediately validates the 2D algorithm shown above for 2.5D urban environments, if occlusion is
always calculated from the highest possible observer point. For the more general 3D algorithm, the only
change is that exterior cells should be expanded by the vectors present in −V instead of a constant ε in all
directions.
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Conclusions and Future Work

The driving motivation for this research is real-time simulation of urban environments. For real-time
simulation, high frame rates are crucial to give the impression of fluid motion. For large environments
consisting of several million polygons a brute-force approach is no longer sufficient for fast rendering
and therefore acceleration algorithms are necessary to handle the large amounts of geometric data. If we
consider an observer who navigates through a city near ground level, it will be rapidly apparent that only
a few buildings of the environment are actually visible. For our 8 km2 test scene of Vienna, for example,
we observed that the ratio of visible to invisible objects is typically smaller than 1 : 100. Therefore, it is
essential to identify objects that are definitely invisible because all rendering time spent on invisible objects
is wasted. Invisible objects cannot contribute to the final image and hence do not need to be sent down the
rendering-pipeline.

8.1 Synopsis

The research described in this thesis investigates methods of calculating occlusion culling for urban envi-
ronments. General three-dimensional visibility is a complex problem. Therefore, we use the observation
that visibility in urban environments is mainly determined by buildings so that the visibility problem can
be simplified to 2.5D: occluders are height fields, i.e., functions z = f(x, y). We propose three related
algorithms to calculate occluded scene parts:

• The first algorithm calculates visibility from a viewpoint for every frame in a walkthrough.

• The second algorithm calculates visibility for a region and is used for visibility preprocessing.

• The third algorithm calculates visibility for a small ε-neighborhood. This visibility solution is valid
for a few frames in a walkthrough and combines some of the advantages of preprocessing and online
calculations.

For the design of the occlusion culling algorithm it is necessary to evaluate the algorithms in the context
of a real-time rendering application. In the following we want to discuss how well our algorithms fulfill the
demands of typical applications and how our algorithms relate to other aspects in the design of a complete
system.

8.2 Frame rate control

We discovered that the importance of high frame rates is often underestimated in real-time rendering.
Ideally, an urban walkthrough system should guarantee frame rates equal to the monitor refresh rate, which
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is typically over 60 Hz. If the frame rate is lower than the monitor refresh rate, we observed that the
resulting ghosting artifacts are strongly noticeable in our test models.

These high frame rates leave only a few milliseconds time for a single frame. Besides occlusion culling,
many different tasks like database-traversal, simulation, user-input, and networking have to be done in that
time span. On current hardware, this leaves too little time for our online visibility calculations. Therefore,
visibility preprocessing is a better option for the applications we envision. Our results for the visibility
preprocessing algorithm showed that these high frame rates are realistic even when consumer hardware is
used. We also showed that it is possible to sustain high frame rates using the Instant Visibility system.

The important part of the frame rate control is the guarantee for a constant frame rate. For a carefully
designed test scene, it is possible that the visible geometry can be rendered in the given time frame for
all viewpoints. In a general scene, however, there will be several viewpoints where too much geometry
is visible and further simplification is needed. The proposed Instant Visibility system could handle these
frames with a level-of-detail selection strategy that gives a guarantee for the frame time [Funk93]. However,
such a selection strategy does not ensure a high image quality and strongly noticeable artifacts can occur.
Furthermore, the selection calculations themselves take additional time, the most precious resource in
real-time simulation. With the use of the visibility preprocessing algorithm a more efficient simplification
strategy can be used. Visibility preprocessing allows the identification of areas with many visible objects
before runtime and simplification calculations can concentrate on the areas where they are really needed.
In the existing system we use point-based representations, called Point-based Impostors, to simplify distant
geometry [Wimm01]. However, an algorithm that can automatically place these Point-based Impostors and
give a guarantee for a given frame rate and a certain image-quality is subject of ongoing research.

8.3 Visibility and modeling

We found that occlusion culling is related to modeling and scene structuring. For example, a “large” scene
that consists of several million polygons can span several hundred square kilometers, but each building
might only be modeled with a few large textured polygons. For each viewpoint, only a few polygons will
be visible and the graphics hardware will not be pushed to its limit. Although such large models with
little complexity might be interesting, we believe that it is important to work with models of higher visual
complexity. Therefore, we tried to evaluate our algorithms using highly tesselated models, such that the
potentially visible set for most view cells can be rendered at over 60Hz but not much faster. Figure 8.1
shows images of our current model that consists of over 10 million triangles for a 8 km2 area of Vienna.

For such highly tesselated models it is not practical to store visibility on a per-triangle basis. First,
the storage requirements for the potentially visible sets of all view cells would be prohibitively high. Sec-
ondly, efficient real-time rendering requires that the triangles are sent to the graphics hardware in groups
using only a single API call. The triangles in a group have to share the same texture, material . . . (see
section 3.2.2). These groups cannot be formed efficiently during runtime and should thus be calculated in
a preprocess.

In our system we used the following solution: we split the scene into objects that are subject to vis-
ibility classification. Each object consists of several triangles and is passed to an optimization program
that performs mode sorting, triangle stripping and scene-graph flattening. For this process there is a clear
tradeoff involved. On the one hand, larger groups of triangles allow for more efficient mode sorting and
can be rendered with fewer API calls. On the other hand, smaller objects allow for more efficient visibility
classification. We experimented with a few different object sizes for the splitting operation, but our im-
plementation is too limited to present systematic results. A more detailed investigation of the relationship
between scene structuring and visibility is a topic for future work.
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8.4 Visibility and navigation

The main topic of this thesis was to investigate occlusion culling for walkthrough navigation. For this type
of navigation the viewpoint is located close to the ground and we simulate the environment as it would be
seen by a pedestrian or a car driver. For several applications it is also interesting to view the scene from
above. Through flyover navigation we observed two things:

• The visibility calculations still work well. In several cases the calculations even become faster be-
cause the shadows cast by occluders become shorter so that we do not need to rasterize large polygons
anymore.

• Many objects become visible. As discussed in the previous section the model is constructed with a
geometric complexity so that the PVS can be rendered for a viewpoint near ground level. For our test
scenes the PVS for an elevated position is easily 10–50 times larger than a typical PVS near ground
level.

This means that the visibility calculations would still work but they do not solve the main problem
any more. For walkthrough navigation we demonstrated that the design of a real-time rendering system is
closely related to visibility. A system for flyover navigation would require fundamentally different design
choices.

8.5 Visibility and dynamic objects

In a typical urban environment we can observe several moving objects, such as cars, buses and pedestrians.
Many applications of urban visualization will also require including these objects in the simulation.

We did not consider moving objects in our results, but they can be handled by the proposed algorithms.
The more important case is where only occludees are allowed to move and occluders have to remain static.
We mainly consider buildings and terrain as occluders so that this is an adequate restriction for a typical
application. The main part of the occlusion calculations does not need to be altered. For online visibility we
have to introduce an additional step where we test moving objects against the cull map. For the visibility
preprocessing algorithm, we recommend using the extension described by Durand et al. [Dura00, Suda96]:
A hierarchy of bounding volumes is constructed in the regions of space in which dynamic objects can move.
During preprocess, these bounding volumes are also tested for occlusion. During runtime a dynamic object
is displayed, if the bounding box containing the dynamic object is in the current PVS.

However, for an urban modeler, for example, it is also necessary to deal with changing and moving
occluders. For such an application it is only possible to use the online visibility or the Instant Visibility
algorithm. A moving occluder cannot be handled by the proposed visibility preprocessing algorithm.

8.6 Visibility and shading

For many scenes the visibility problem can be stated as a geometric problem by treating the scene-triangles
as static opaque surfaces. However, the occlusion effect of scene objects is closely related to rendering.
Sometimes the occlusion properties of scene-objects can be changed at runtime through advanced shading
calculations or rendering techniques. In the following we will discuss three examples where shading can
affect the occlusion properties of the geometry:

First, newer graphic cards have the capability of vertex shading, that allows the altering of the positions
of vertices when they are processed by the hardware. These changes correspond to a simple form of
animation.

Secondly, pixels can be eliminated in the shading process. The most important example is alpha-
texturing. A balcony or a fence, for example, can be modeled with a few large textured polygons. The
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detailed geometry can be represented by a texture map, where several pixels are marked as transparent in
the alpha channel of the texture. During rendering these pixels would be eliminated by the alpha test and
more distant objects could be seen “through” the polygons. This problem can be even more involved when
the elimination of pixels is obscured by a complex pixel shader.

Thirdly, shading can be used to achieve transparency effects by combining multiple triangles via alpha
blending. A transparent surface like a window can therefore not be considered as an occluder.

Using our procedural modeling system we have full control over the model and therefore we can use
the knowledge of those special cases for the occluder calculation process or avoid the generation of tricky
configurations. However, the treatment of these special cases in arbitrary test scenes is more involved and
leads to the problem of automatic occluder synthesis, a topic for future work.

8.7 Indirect visibility

Another different type of problem occurs with the use of rendering techniques, where objects can con-
tribute to the final image that are not directly visible. Examples include the calculation of reflections in the
windows of a building or a car and the casting of shadows. The incorporation of such rendering techniques
and their effect on visibility calculations is an interesting topic for future research.

8.8 Visibility and simplification

As discussed above, a guaranteed high frame rate can only be achieved with the use of simplification
algorithms, like levels of detail. For visibility preprocessing and occluder synthesis it is easier to use
simplification strategies that do not change the occlusion properties of objects that are used as occluders.
This should not be a strong limitation because for buildings most simplification algorithms would try to
simplify the façade and the part of the visual hull which is used to form occluders would remain unchanged.
However, if this cannot be guaranteed, the solution would strongly depend on the simplification that is
used. For levels of detail, for example, it would be possible to use different versions of occluders that each
corresponds to a range of levels of detail. A simpler solution would be to use only one occluder that is
contained in the visual hull of all levels of detail. The problem of simplification leads again to the problem
of occluder synthesis.

8.9 Occluder synthesis

In the presence of highly tesselated models it is not possible that scene polygons can be used as occlud-
ers any more. Since each building consists of several hundred polygons we cannot simply extract large
polygons from the scene. Therefore, occluders have to be synthesized from the input scene. This problem
was not treated systematically in this thesis, but we believe that the occluder synthesis during modeling
is a useful method that could be applied in many existing systems. However, the automatic synthesis of
occluders from general input scenes is probably the most important topic for future work.

Additionally, the occluder shrinking principle relies on volumetric occluders. Therefore, an occluder
synthesis algorithm for volumetric occluders is needed.

8.10 Extension to 3D

Some ideas in this thesis are applicable to full 3D, but most parts are only useful for 2.5D visibility solu-
tions:
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• The occluder shrinking principle is applicable to full 3D. Therefore it is possible to calculate Instant
Visibility for 3D scenes using a variation of the hierarchical z-buffer [Gree93] or the hierarchical
occlusion maps [Zhan97].

• Visibility preprocessing using point sampling could also be combined with a 3D point visibility
algorithm to calculate a full 3D solution. However, we expect a straightforward solution to be pro-
hibitively slow.

• Occlusion culling using cull maps is inherently 2.5D and cannot be extended to three dimensions.

For current urban models we believe that the restriction to 2.5D is a useful simplification of the oth-
erwise complex visibility problem. However, as we showed in our analysis of urban environments in
chapter 2, visibility can be very complicated for many parts of a real city. For example, if vegetation plays
a more important role in urban models this will require the use of more powerful visibility algorithms. It
could be useful to use the proposed 2.5D algorithms as a first pass and try to eliminate more objects in a
second pass with a full 3D algorithm.

8.11 The future

At the time of the start of this thesis visibility calculation was a hot research topic that needed to be solved
to be able to build an urban simulation system. Due to the intense research in visibility for real-time
rendering in the last three years, we believe that visibility is not the main problem any more, because the
existing solutions are suitable for most existing urban models. However, if the scenes that can be modeled
and rendered are becoming larger and more detailed, new interesting visibility questions will arise.

Personally, I believe that visibility will stay an interesting and important research problem in the near
future and so I would like to finish with Calvin’s words [Watt96]:

It’s a magical world, Hobbes, ol’ buddy . . . let’s go exploring.
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Figure 8.1: These images show the current city model.
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[Dura97] Frédo Durand, George Drettakis, and Claude Puech. The Visibility Skeleton: A Powerful
and Efficient Multi-Purpose Global Visibility Tool. In Turner Whitted, editor, SIGGRAPH
97 Conference Proceedings, Annual Conference Series, pages 89–100. ACM SIGGRAPH,
Addison Wesley, August 1997. ISBN 0-89791-896-7. Cited on pages 23, 46, and 55.
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Fourier, Grenoble, France, July 1999. Cited on pages 23 and 46.
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